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ABSTRACT
Recently there is a growing interest in both the architecture
and the security community to create a hardware based so-
lution for authenticating system memory. As shown in the
previous work, such silicon based memory authentication
could become a vital component for creating future trusted
computing environments and digital rights protection. Al-
most all the published work have focused on authenticat-
ing memory that is exclusively owned by one processing
unit. However, in today’s computing platforms, memory
is often shared by multiple processing units which support
shared system memory and snoop bus based memory coher-
ence. Authenticating shared memory is a new challenge to
memory protection. In this paper, we present a secure and
fast architecture solution for authenticating shared mem-
ory. In terms of incorporating memory authentication into
the processor pipeline, we proposed a new scheme called
Authentication Speculative Execution. Unlike the previous
approach for hiding or tolerating latency of memory au-
thentication, our scheme does not trades security for per-
formance. The novel ASE scheme is both secure to be com-
bined with one-time-pad (OTP) based memory encryption
and efficient to tolerate authentication latency. Results us-
ing modified rsim and splash2 benchmarks show only 5%
overhead in performance on dual and quad processor plat-
forms. Furthermore, ASE shows 80% performance advan-
tage on average over conservative non-speculative execution
based authentication. The scheme is of practical use for
both symmetric multiprocessor systems and uni-processor
systems where memory is shared by the main processor and
other co-processors attached to the system bus.

1. INTRODUCTION
Recently, there has been intensive research in the area of
trusted computing facilitated by hardware based authenti-
cation and decryption/encryption [11, 6, 4]. The effort of
putting security features to hardware platforms and micro-
architecture holds great promises to address many security
issues that have haunted computing industry for decades

∗This tech report is a revision of a draft submitted to a
computer architecture conference, March 21, 2004 with the
same title.

including digital rights protection, anti-reverse engineering,
software confidentiality, secure distributed computing, and
virus protection to name just a few. Among many such ar-
chitectures proposed recently, hardware based memory au-
thentication is often an essential and absolutely necessary
component. Software based memory authentication, no mat-
ter how carefully designed, always have the vulnerability
of executing altered codes or accessing altered data driven
by malicious purposes such as bypassing security/copy right
checking. Virus can spread also due in part to the fact that
a modified code image can be loaded and executed without
being detected. Software and operating system based au-
thentication on either code or data before the program exe-
cution can help to reduce the risk but would not eliminate
the vulnerability completely. For example, a simple soft-
ware based solution is to allow the OS to schedule a process
read from the disk only after the code image of the process
has been authenticated. This solution enhances security but
would not prevent attackers from modifying codes on the fly
after it is loaded.

There has been a number of papers published recently in
the architecture community addressing the problem of pro-
viding a secure computing environment where memory is
authenticated with hardware support [3, 6, 7]. The chal-
lenge of memory authentication in the architecture design is
to find out an efficient way that high speed memory authen-
tication can be achieved at low cost without compromising
security. However, most solutions proposed thus far assume
that the memory is exclusively ”owned” by one computing
unit (often the main processor). Inside the processor, mem-
ory is authenticated on per process basis with a root mem-
ory authentication signature computed for each process’s
virtual space. Such strong process isolation (on both the
inter- and intra- processor levels) prevents the root signa-
ture from being shared by multiple processors. When inter-
processor memory sharing is inevitable, a copy from one
processor’s authenticated domain to another’s is required.
Such copying operations often require re-authentication of
the shared memory by the destination processor. For mul-
tiprocessor (MP) systems, it is not a trivial task to syn-
chronize and maintain root signatures for frequently shared
memory information without significantly degrading system



performance. Worse yet, it is difficult to achieve integrity
protection of memory shared among multiple processors be-
cause of potential re-play attack on either the shared bus
or the shared physical memory. This means that all the ex-
isting approaches of hardware based memory authentication
are not applicable to the scenario of multiprocessor memory
protection.

We present a fast and low overhead solution to authenti-
cate MP shared memory. Through securing every compo-
nent along the path from a computing device to another
computing device or the commonly shared memory, a chain
of authentication is constructed. The chained authentica-
tion scheme is capable of preventing most software based
and hardware based attacks on the memory system and the
shared data path among processors. Such a secure mem-
ory environment facilitates high speed secure data sharing
for both MP systems and the kind of uni-processor systems
that demand high performance secure data communication
between the main processor and other processor-like periph-
erals that attach to the system bus. The scheme also option-
ally provides high performance protection on information
confidentiality of shared data.

Furthermore, the paper addresses for the first time, the is-
sue of how to tie the result of memory authentication se-
curely into the processor pipeline design. We investigated
and compared three alternative designs regarding how re-
sults of authentication is used — authentication in-order ex-
ecution (AIOE), authentication speculative execution (ASE),
and lazy authentication execution (LAE). Under authentica-
tion in-order execution, when either instruction or data fetch
incurs a cache miss and causes information fetched from the
memory, the processor pipeline stalls until the newly fetched
instruction or data is fully authenticated 1. For authentica-
tion speculative execution(ASE), the processor pipeline re-
sumes execution immediately after the fetched information
is decrypted before the authentication completes. In other
words, instructions using either un-authenticated data or re-
sults computed based on unauthenticated data can be spec-
ulatively issued and executed but is not allowed to retire
until both the code itself and all the data it depends on
are authenticated. Furthermore, bus cycles are not granted
to memory accesses that are not considered secure or au-
thentication safe. A memory access is not considered au-
thentication safe if, 1) it tries to write un-authenticated re-
sults back to memory; 2) it read/write to a memory address
generated from un-authenticated data; 3) it fetches instruc-
tions from memory based on control flow determined by un-
authenticated data. Such memory accesses are called au-
thentication unsafe accesses. An authentication unsafe ac-
cess becomes authentication safe only after all the data it
depends on is authenticated. Lazy authentication (LAE) is a
weak authentication scheme that only authenticates fetched
data and instructions in groups over a relatively large time
span in the magnitute of tens of thousands of cycles.

The security and performance implication of the three design
choices have not been clearly discussed previously in the

1Note that (1) pipeline has to stall for decryption if the
fetched information is encrypted; (2) in an out-of-order ma-
chine, other instructions having no dependency on the miss-
ing instruction or data can be issued and executed

literature and we advocate in this paper the advantage of
ASE for both security and performance reasons. Although
LAE could deliver the best performance but it is weak in
security and when combined with a stream cipher, it leads
to significantly less secure systems subject to many potential
attacks. ASE achieves reasonable performance at the same
time does not sacrifice security. Furthermore, ASE supports
precise interrupts for authentication exception, which is not
possible for a LAE based design.

The main contributions of the paper are summarized as fol-
lows.

• A unified fast and secure way for authenticating mem-
ory for both symmetric multiprocessor and uni-processor
systems. The approach relies on division of labor and
distributes security workload to both secure processors
and a secure memory controller (North Bridge) thus
requires a light weight secure processor design. The
approach detects not only software based tampering
of data but also physical attacks including re-play at-
tacks on the shared memory.

• An innovative secure multiprocessor bus protocol for
authenticating coherent bus transactions.

• A fast memory authentication approach based on stream
ciphers and authentication speculative execution to tol-
erate the latency of memory authentication for both
processor-to-processor and memory-to-processor accesses.

• A secure authentication mechanism that is not only
fast, but also authentication safe, and supports precise
interrupts for security exceptions. Despite being fast,
it does not trade security for performance as is the case
with lazy authentication schemes like LHash [7].

The rest of the paper is organized as follows, the next section
presents the previous related work on memory authentica-
tion for memory exclusively owned by one processor. After
that, section 3 addresses the security risks and performance
implications associated with shared memory authentication.
It also presents assumptions of the targeted platforms of our
solution. Then in the next section, we present our main so-
lution for authenticating memory shared symmetrical multi-
ple processors. Section 4 shows performance evaluation and
results. Finally, we conclude the paper in section 5.

2. SHARED MEMORY PROTECTION
In this section, we address many basic issues associated with
shared memory protection at a high level. It presents the
basic platform architecture our solution is targeted for. It
also answers the questions such as why shared memory needs
protection and shows the types of attacks our solution is
aimed to prevent. It describes the main rationale of our
solution and paves the road for the detailed discussion in
the next section.

History shows that when it comes to break security measures
in a commodity computing platform, attackers often are not
only well motivated but also very knowledgeable and pos-
sess the required skill to build customized hardware to break
the security protection in any imaginable way [10]. In order



to crack out the protected secret, attackers may dump all
the bus transactions on the system/peripheral buses, con-
struct customized spoofing device or hardware, exploit the
coherence snooping bus protocol by injecting fake bus sig-
nals, re-play bus transactions, spoof, alter or re-play RAM
contents on the fly through hardware. Although software
based protections or light weight hardware based protection
such as TCPA [1] provide some protection using minimal
silicon resources, it is almost impossible for them to survive
from the kind of hardware attacks like the ones mentioned
above.

Since the whole system is open to physical attacks from the
hackers, almost all the recently published systems for hard-
ware based memory protection assume that everything in a
computing platform is insecure except the main processor
with build-in security support[11, 6, 4]. Based on such as-
sumptions, many proposed protection solutions often have
all the hardware security features including memory authen-
tication implemented in the main secure processor. Solu-
tions proposed by Gassend et al. [3], the GHTree authen-
tication scheme constructs a m-ary hash tree for protecting
the integrity of virtual space of an application process in a
single processor platform. As shown by the results, GHTree
will incur about 20% execution overhead with a 2MB L2
cache and 33% memory overhead. To improve the perfor-
mance of memory authentication, a LHash scheme [7] was
proposed. The scheme logs memory operations and per-
forms integrity checks only when a large number of memory
operations are accumulated. Results indicate that LHash
out-performs CHTree only when a large number of memory
accesses are aggregated and authenticated together. Accord-
ing to our definition, LHash is a type of lazy authentication
technique. Our study of attacks on tamper resistant system
show that there are some potential security risks associated
with lazy authentication, especially when it is used together
with stream cipher for memory protection.

Furthermore, all the existing solutions are designed for uni-
processor memory protection and assume that the boundary
between the protected secure domain and the insecure do-
main lies at the interface between the secure processor and
the system bus. Such centralized view fits with the uni-
processor platform but does not apply to the multiprocessor
systems. A simple way to extend the existing solutions to
the multiprocessor scenario is to have a separate copy of the
memory for each processing unit and have the secure OS
to copy the data from one unit’s trusted domain to another
unit’s domain using protected message passing mechanism
when it is needed. This will however significantly increase
the delay of inter-processor communication and greatly un-
dermines performance of multiprocessor applications.

One of the challenges of designing a secure multiproces-
sor system is how to prevent and detect re-play attacks.
There are two types of re-play attack, 1) re-play logged bus
transactions, including both cache-to-cache and memory-to-
cache bus transactions and 2) re-play information stored in
the physical RAM. Under the system where the memory is
exclusively owned by a single processing unit, re-play at-
tack can be prevented using a hardware implementation of
Merkle hash tree or a MAC tree inside the processing unit.
But such solution does not apply when memory can be up-
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dated by multiple processing units/devices. If each process-
ing unit maintains its own authentication tree, either Merkle
hash tree or MAC tree, to verify and synchronize the root
signatures of these authentication trees across multiple pro-
cessors is not trivial and can have significant performance
impact on frequent inter-processor communication.

Another challenge of designing tamper resistant multipro-
cessor system is how to distribute and share secret infor-
mation among the processors and devices in a MP plat-
form. Such shared information may include symmetric cryp-
tographic keys, shared sequence number, and etc. Distribut-
ing and sharing of secret is a unique problem to multipro-
cessor shared memory protection.

A third challenge is on inter-operability of MP tamper re-
sistant system with MP operating system. Protections pro-
vided by a MP tamper resistant system can be best viewed
as security primitives analogous to other architecture sup-
port designed for synchronization and consistency. These
security primitives themselves can not guarantees security
requirements from being violated. But they can be used by
properly developed secure operating system and secure ap-
plication to construct a software environment that memory
integrity and secrecy can be guaranteed.

To conclude, shared memory authentication is a unique prob-
lem of memory authentication and can not be satisfyingly
solved by the existing single processor based Merkle hash/MAC
tree approaches without significant modification. A fast,
secure, and unified solution for authenticating memory is
essential for designing future high performance tamper re-
sistant system.

Different from the centralized approach, our new scheme
tries to tackle the problem in a distributed fashion where
both the main processor(s) and the chipset contribute to
create a secure environment for trusted software execution.
Our shared memory authentication scheme is targeted for
both multiprocessor systems where a single system memory
is shared by multiple processors through a shared coher-
ent system bus and regular single processor system where
system memory is shared by a main processor with other
co-processors that attach to the system bus. Figure 1 il-
lustrates the type of platform architecture our solution is
applicable.

Instead of having each processing unit/device to use its own



Merkle hash/MAC tree, our solution solves the problem of
shared memory protection through a centralized MAC tree
based authentication implemented in the memory system
with a secure multiprocessor coherent bus protocol. It is
designed to provide a trusted environment for MP shared
memory by securing the data path from each processing
unit to the shared system memory. With the MAC mem-
ory authentication tree embedded in the north bridge, the
data path between the memory controller and the physical
RAM is secured. Furthermore the secure MP bus proto-
col provides a trusted and authenticated environment for
both cache-to-cache and memory-to-cache bus transactions.
Un-trusted devices cannot complete bus transactions to the
protected shared memory and any attempt to re-play past
authenticated bus transactions can also be detected. Since
both the data path from each processing unit to the sys-
tem memory and the data paths among processing units
are protected, secure and authenticated sharing of the sys-
tem memory becomes possible. Different from the previous
approaches that put all the hardware resources for memory
authentication into single secure processor, our solution pro-
vides a trusted environment for MP shared memory through
securing the platform.

3. SECURITY MODEL FOR SHARED MEM-
ORY

In this section, we present detailed security model and ar-
chitecture support for shared memory authentication. We
only focus on the symmetric multiprocessor system where a
coherent snoop bus and a large physical RAM are shared by
a number of processors. It is straightforward to extend the
solution to situations where each processor maintains a local
memory. Such efforts are not made in this paper and the
topic may be a subject of future study. The proposed MP
shared memory protection scheme can be used to ensure
both integrity and confidentiality for MP shared memory.
In this section, we first present a platform oriented security
model for multiprocessor system. Then, we propose archi-
tecture supports for the security model and authentication
speculative execution as an authentication latency tolerating
technique.

3.1 Symmetric multiprocessor security model
Figure 1 shows target architecture of MP systems. A split-
transaction, cache coherent system bus provides intercon-
nect for each processor to the memory system. The secu-
rity model holds no specific assumptions about the coher-
ent bus protocol. Neither is it tied to any particular MP
system. Examples of applicable MP systems include SGI’s
POWERpath-2, Alpha’s MP protocol, and Intel’s Xeon pro-
cessor based MP systems. To simplify discussion, the scheme
is presented using a split-transaction, SGI Powerpath-2 like
cache-coherency protocol [8]. Applying the scheme to other
MP system should be straightforward with little changes.
The shaded blocks in the system are trusted and protected
components. The dark stars denote points of potential at-
tacks.

The security model presented in this section provides a sys-
tem level specification for constructing a trusted environ-
ment for MP software execution. It addresses four issues,
management of protected MP process, distribution and shar-

ing of secret, protection on integrity and secrecy, and soft-
ware distribution. The security model assume the existence
of a secure OS kernel [3]. A secure OS kernel is a set of
trusted core OS services. These services are executed in a
trusted domain. The secure kernel is verified by secure BIOS
during system boot [2].

3.1.1 process control
One basic and essential protection on a multi-task system
is process or task isolation. Different process should not
be allowed to access other process’s protected domain. To
achieve process isolation, two conditions must be satisfied.
First, each process must be uniquely identified. Second,
unique per process cryptographic information must be used
for protecting integrity and confidentiality of each process’s
memory. The traditional process id is not a good choice
because the likelihood of reusing a process id is very high.
In this paper, we define a unique 128-bit number, process
uuid, universal unique identifier to uniquely identify a pro-
cess. The process uuid can be obtained either from a random
number generator or derived from process id by encrypting
it through a session key. Secret padding and keys used for
authenticating or encrypting memory information of each
process is derived from each process’s uuid. The process
uuid itself is not considered as secret and can be securely
shared among multiple processors. Process uuid is treated
as process context and is protected against tamper during
process context switch.

A new privileged instruction is introduced to setup process
uuid, called set uuid. Execution of the instruction includes
several steps. One step involves that the processor assigns
the process uuid to an internal uuid register and computes
a process key as described in figure 2. Other steps relate
to how the process uuid is shared by other devices attached
to the shared bus. They are described later. set uuid is
a privileged instruction used by the secure kernel during
process context switch.

3.1.2 integrity and confidentiality protection
Integrity code is also referred to as message authentication
code (MAC), which is a well established technique to guar-
anteeing data integrity by verifying whether a piece of re-
ceived or retrieved data was tampered or not during trans-
mission or storage. For the purpose of memory integrity pro-
tection and authentication, when a processing unit wants to
store a chunk of data to the insecure memory, it will com-
pute an integrity code using a MAC generation algorithm
and store the result integrity code alongside the data. In the
case of digital-rights protection or secure software execution,
the data itself may or may not be encrypted depending on
the security requirement. Later, when the same processing
unit or any other processing unit wants to access the data,
it will verify the integrity of the data by re-computing the
integrity code of the retrieved data using the same MAC al-
gorithm and compare the result with the retrieved integrity
code. Alternation on either the integrity code or the data
itself during storage will result into a mismatch of the two
integrity codes.

In our shared memory authentication scheme, each process-
ing unit is responsible for computing the integrity code for
data to be stored to the memory or requested by other pro-



Write Cache Block():
variables:

input cache blockaddr ; // cache block
input physical addr; // addr of the cache block
input process uuid; // uuid for the executing process
output encrypted integrity codeaddr ;
output encrypted cache blockaddr ;
static bus sequence num;
static integrity key;

operations:
integrity codeaddr =

XOR Truncate64bit(SHA256(physical address
||cache blockaddr||integrity key));

process key =
AESsession key(secret const||process uuid);

integrity OTP =
XOR Truncate64bit(SHA256(const integrity
||bus sequence num||process key));

encrypted integrity codeaddr =
integrity OTP⊕integrity codeaddr ;

encryption OTP =
SHA256(const encryption||bus sequence num||process key));

encrypted cache blockaddr =
encryption OTP⊕cache blockaddr ;

Figure 2: Security Operations on Each Cache Block
Evicted from Processor or Transmitted as Coher-
ence Reply

cessor units. When the data is shared by multiple units,
the key along with other necessary information for gener-
ating/verifying the integrity code must be shared among
all the involved processing units. The integrity code is en-
crypted using stream cipher when it is transmitted through
the shared system bus. An one-time-pad (OTP) is uniquely
computed using a confidential shared bus sequence number
kept track by all the units attached to the system bus. The
sequence number is incremented by all the devices attached
to the system bus after each bus transaction. For protecting
confidentiality of either information stored to the memory
and coherence reply to other processor’s request, the data
can be optionally encrypted using another OTP also com-
puted based on stream cipher and the shared bus sequence
number. figure 2 shows operations on a cache block that
is either evicted from the secure processor or requested by
other processors.

The operations are conducted on each protected cache line
that is to be written to the system bus. XOR Truncatex is
a function that splits input into multiple x-bit chunks and
xored them together to generate a x-bit output. SHA256
[12] and AES128 [5] are hash and encryption standards. In-
tegrity key is a 256-bit secret shared by the units attached
to the shared system bus. Session key is a AES key uniquely
initialized every time after the system is started. Distribu-
tion of the shared secrets such as the sequence number and
the session key is addressed in Section 3.1.3. The symbol ||
in figure 2 stands for concatenation operation and ⊕ stands
for XOR (exclusive or) operation. Both the integrity key
and the sequence number are hidden from software access
and can not be accessed externally neither. Similarly, com-
puted data such as integrity code and the process key are
also hidden from software access. Only encrypted integrity
code and cache block are observable because they are trans-
mitted over the shared bus.

Note that most of the shared secrets, such as the session
key, the integrity key, and the sequence number are not fixed
constants. They are uniquely assigned each time after the
system is booted using approach described in the next sec-
tion. Integrity verification and decryption of received cache

Read Cache Block():
variables:

input physical addr;
input process uuid;
input encrypted integrity codeaddr ;
input encrypted cache blockaddr ;
output cache blockaddr ;
output authenticated;
static bus sequence num;
static integrity key;

operations:
process key =

AESsession key(secret const||process uuid);
integrity OTP =

XOR Truncate64bit(SHA256(const integrity
||bus sequence num||process key));

received integrity codeaddr =
integrity OTP⊕encrypted integrity codeaddr ;

encryption OTP =
SHA256(const encryption||bus sequence num||process key));

cache blockaddr =
encryption OTP⊕encrypted cache blockaddr ;

integrity codeaddr =
XOR Truncate64bit(SHA256(physical address
||cache blockaddr||integrity key));

if (received integrity codeaddr == integrity codeaddr)
authenticated = true;

else
authenticated = false;

Figure 3: Security Operations on Each Cache Block
Received

block (coherence reply and memory read) are shown in fig-
ure 3. Output bit authenticated indicates whether integrity
of the read cache block can be verified. It is set if integrity
of the received cache block can be verified.

As shown in figure 2 and figure 3, the designed security
model minimizes the performance critical interval between
encryption and decryption. The encryption OPT can be
pre-computed. In the best scenario, the interval of trans-
ferring an encrypted cache block consists of only time of a
XOR operation on the send side, transmission delay, and
another XOR operation on the receive side. Authentication
requires much more time because integrity code has to be
computed before transmission and verified after the cache
block is received.

3.1.3 distribute and share secret
How to securely distribute and share secret such as the keys,
the padding, the sequence number, and etc is a major chal-
lenge for designing a secure distributed system. Obviously,
the secret can not be broadcasted as plaintext over the sys-
tem bus. Integrity of the shared secret also has to be main-
tained so that it can not be forged. Furthermore, the shared
secret such as the session keys, the sequence number must
not be the same each time the machine is rebooted to pre-
vent re-play attack. In this paper, we present a novel and
efficient way for distributing secret information across mul-
tiple processors connected by a shared bus.

Similar to a regular symmetric multiprocessor system, one
processor has to be designated as the boot processor to bring
up the system. This processor will execute its secure BIOS
and boot into a secure OS. The uniqueness of our solution
is that the shared secrets themselves are not transmitted
instead they are computed by each involved processor in a
secure way based on information that can be openly shared.

First, during boot time, the bootstrap processor broadcasts
the range of physical memory to be protected to all the pro-
cessing units and memory controller. It could be only a



Distribute Shared Secret():
variables:

input device id;
output bus sequence num;
output integrity key;
output session key;
local random numuber array[MAX NUM DEVICES];
local counter;

operations:
counter = 0;
while (1) {

if (counter!=device id) {
random number array[counter] =
random number broadcasted by devicecounter ;

} else {
broadcast a random number;
random number array[device id] =
the number broadcasted;

}
counter++;
break if all the devices are granted chance to broadcast;

}
random string = random number array[0] ||

random number array[1] ||
... ||
random number array[TOTAL NUM DEVICES];

session key =
XOR Truncate128bit(SHA256(random string
||secret hash key));

integrity key=AESsession key(secret constant);
bus sequence num=AESsession key(secret constant+1);
enter barrier;

Figure 4: Processor Initialization and Distribution
of Shared Secrets

portion of the entire physical address space or all the physi-
cal RAM space. After that, it starts key generation. During
key generation, each unit attached to the multiprocessor bus
is granted in turn bus cycles to broadcast a random 64-bit
number. Then each unit concatenates all the random num-
ber it collects from the bus including the one it broadcasts
and feeds the result into a hash function. The hash result
is truncated into a 128-bit AES session key. Then, all the
shared secrets including the shared bus sequence number,
the process key, the integrity key are all computed based on
the session key ( figure 4).

Both the secret hash key and the secret constant are con-
stants permanently burnt into the processor chip, and mem-
ory controller during manufacture. They are secrets stored
in the chip un-accessible by either software running inside
or any device from outside. After a device creates all the re-
quired keys and numbers, it will enter a synchronization bar-
rier. After all the devices on the symmetric multiprocessor
bus complete key generation and enter the synchronization
barrier, regular bus and memory transaction are resumed
with the appropriate protection specified in this paper.

The session key and bus sequence number are not tied to
a particular process and are not considered part of a pro-
cess context. But a process is free to specify whether seg-
ments/pages of its virtual memory should be mapped to pro-
tected physical memory. Note that a different session key is
generated each time after a MP system is freshly rebooted.

3.1.4 software distribution and platform key
The cryptographic protection proposed in this paper is ”self-
contained” because the session key, the root of all the keys,
the sequence number, etc, is not a constant and modified
each time after the system is rebooted. Software vendors are
not able to generate the integrity code or OTPs used in the
protection because they don’t known the session key. To ex-
ecute software either encrypted or authenticated by vendors

in the mode with the proposed protection, conversion from
the vendor protected domain to the multiprocessor platform
protected domain is required. This is achieved through a
platform key. A platform key is a pair of public-private keys
with private key permanently burnt into MP chipset. Ven-
dors encrypt the symmetric cryptographic key used to en-
crypt/authenticate a software with the public platform keys.
When the software is copied to memory from its disk image,
it will be decrypted, authenticated using the keys set by the
software vendors, and then re-encrypted using the methods
described in figure 2 and figure 3. As we will describe in the
next subsection, this conversion does not necessarily require
processor involvement and can be performed in high speed
with security enabled DMA engines.

3.2 Architecture Support of MP security model
In this subsection, we present a detailed architecture model
for implementing the MP security model described in the
previous section. There are two important issues that have
to be kept in mind during implementation. One is that the
implementation has to be secure. The second is that the im-
plementation must be efficient and high performance under
the condition that security is not compromised. There are
three security enabled platform architecture components,
the shared system bus, the memory controller, and the se-
cure processors. Extra security related functionality has to
be added to these components to support the proposed MP
security model. Furthermore, new techniques must be in-
vented to minimize the performance impact of security ver-
ification. For MP systems and benchmarks, authentication
latency is an even more significant performance influencing
factor because integrity code of coherent reply of cache-to-
cache communication has to be computed, transmitted, re-
computed, and verified. To tolerate the latency of integrity
checking, we proposed two new techniques described in this
subsection. First, we proposed a split transaction bus model
for data and its integrity code. Second, we proposed authen-
tication speculative execution to further tolerate the latency
of authentication in the secure processor.

3.2.1 secure symmetric coherent bus protocol
The purpose of the secure multiprocessor bus protocol is to
prevent spoof and re-play attack on the shared coherent MP
bus. It plays an essential role for providing a chain of au-
thentication for both cache-to-cache and memory-to-cache
accesses. Although the principle of how we secure the MP
bus is in fact not tied with any MP coherence bus protocol,
but for the sake of discussion, we restrict the design to a 4
state coherence protocol similar to SGI POWERpath-2 with
cache-to-cache transfer triggering a write-back to memory.
Each cache has four states; invalid, exclusive, dirty exclusive,
and shared. Transition between cache states is caused by ac-
tions initiated by the processor or by coherent transactions
appearing on the bus. Duplicate set of cache tags [8] is main-
tained by the processor interface ASIC and bus arbitration
is done in distributed manner. Similar to POWERpath-2,
every bus transaction consists of five clock cycles. System
wide bus controller logic executes the same five-state ma-
chine synchronously: arbitration, resolution, address, de-
code, and acknowledge.

All the devices connecting to the shared multiprocessor bus
including the memory controller share the secret 64-bit bus



transaction sequence number described in figure 2 and fig-
ure 3. Since all the bus transactions are visible to all the
units attached to the snoop MP bus, it is straightforward
for a unit on the bus to update and keep track of the se-
quence number. After a bus transaction completes, every
unit on the bus increments its copy of the sequence num-
ber internally. The sequence number is initialized during
system boot according to figure 4. The number is kept as
secret by all the involved devices and never transmitted in
either plaintext or ciphertext across the bus. Aside from the
sequence number, the integrity key, the session keys are also
shared by all the devices attached to the shared bus.

One unique performance feature of our secure bus is split
transaction of data and its integrity code. As shown in fig-
ure 2 and figure 3, integrity code computing and verification
is the slowest part of MP security model. To minimize the
impact of authentication on performance, our secure bus
model allows data block and its integrity code separately
transmitted. For coherent reply, a cache block can be trans-
mitted first followed by the encrypted integrity code after
it is computed. The un-authenticated data will be used by
the processor pipeline of the destination processor specula-
tively. We call this scheme, authentication speculative exe-
cution (ASE). After the integrity code is finally received and
verified, completed instructions using the un-authenticated
data can be retired or stalled memory operations using ad-
dress generated using the un-authenticated data can be is-
sued. Section 3.2.3 details the ASE scheme.

Note that the 64-bit bus sequence is enough for security
protection. This is because for a bus running at speed of
hundreds of MHz or a few GHz, it would take at least hun-
dreds of years if not thousands for a 64-bit sequence number
to wrap-around.

3.2.2 secure memory system
Note that using integrity code alone is not sufficient for ver-
ifying memory integrity because a hacker can replace new
data along with its MAC stored to the memory with old
staled data and MAC. Such re-play attack is not detectable
without using techniques such as Merkle hash tree or MAC
tree. When memory is not shared by multiple processors,
all integrity protection features can be implemented in the
main processor [3, 6, 7]. But this solution can not be applied
to MP shared memory systems.

The secure memory system consists of a memory controller
with an integrated security engine, RAM DIMMs, and a
number of physical RAM chips. The primary goal of the
security engine embedded in the north bridge memory con-
troller is to detect alternation or re-play of data stored in
the system memory. It is another critical component in the
chain of shared memory authentication. A simple solution
is to have either Merkle hash tree or MAC tree implemented
in the memory controller. Note that the integrity code it-
self is not transmitted in plaintext over the MP bus and is
unknown to the hackers. A MAC tree can be employed to
provide both security and speed for memory authentication.
Organization of the MAC tree is shown in figure 5. A leaf
node represents an individual integrity code and each inter-
nal node denotes a MAC of all the children nodes. The de-
tailed operation is as follows. After integrity of received data
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Figure 5: MAC tree

Sequence Number Encryption():
variables:

input bus sequence num;
input address;
output encrypted bus sequence num;
static sequence MAC key;
static sequence key;
local counter;

operations:
sequence number integrity codeaddr =

XOR Truncate16bit(SHA256(address
||bus sequence num||sequence MAC key));

encrypted bus sequence num =
AESsequence key(bus sequence num
||sequence number integrity codeaddr);

Figure 6: Bus Sequence Number Encryption

is verified, the memory controller will update the MAC tree
by substituting the new integrity code (after it is XORed
with the integrity OTP) into the tree. Then it will send the
data with the encrypted integrity code to the memory. To
be able to verify the integrity code later, the memory con-
troller will also store encrypted bus sequence number to the
memory. Each bus sequence number can be encrypted using
AES as shown in figure 6. Both the sequence MAC key and
the sequence key used during encryption are secret informa-
tion maintained by the memory controller.

To improve performance, the bus sequence numbers for fre-
quent data blocks can be cached inside the north bridge
memory controller. This will speed up integrity verification
for data retrieved from the physical RAM.

Upon receipt of a read request, the memory controller will
fetch both the data and the associated encrypted integrity
code from the physical RAM. The corresponding encrypted
bus sequence number will also be retrieved if it is not cached
in the north bridge. The authentication mechanism will ex-
tract the original integrity code using the approach detailed
in figure 3. To verify whether the integrity code and the
data is a re-play, it is inserted into the MAC tree. Start-



ing from the bottom of the tree, recursively, a new MAC is
computed and compared with the cached internal MAC tree
node. If a match is found, validity of the integrity code is
verified. Since it is impossible to cache all the internal nodes
of the MAC tree, many internal MAC tree nodes have to be
stored in the insecure system memory and brought into the
memory controller when they are needed. To prevent from
leaking sensitive information and jeopardizing security, con-
fidentiality of the internal MAC tree node has to be main-
tained. This is achieved by encrypting the internal MAC
tree node using 128-bit AES encryption scheme.

Memory latency plays a critical role in high performance
computing and should be minimized whenever it is possi-
ble. Our secure memory system is specifically designed for
reducing memory latency at the same time without loss of
security protection. The features provided by the proposed
architecture to reduce memory latency are summarized as
follows:

• The integrity OTP and encryption OTP can be pre-
computed. To speed up the process of verifying re-
trieved integrity code from memory, the north bridge
can pre-fetch the encrypted bus sequence number. If
addresses of future memory accesses can be predicted
or speculated, the integrity and encryption OTPs for
these addresses can be pre-computed.

• Both the MAC tree node and the bus sequence num-
ber for frequent data blocks can be cached to improve
memory access speed.

The secure memory controller is the center of the proposed
MP security model. Beside the MAC tree, it also shares se-
crets with other processors attached to the shared bus, main-
tains platform key pairs described in the security model, and
transforms protected information from the software vendor’s
domain to the platform’s domain.

The memory controller holds several security oriented regis-
ters. Fixed addresses are assigned to these registers and ac-
cess to these registers must be conducted through protected
bus transactions. First, there is a process uuid register asso-
ciated with each processor. During execution of a set uuid
instruction by a secure processor, the processor also issues
a secure write access to the corresponding uuid register in
the north bridge so that a process key can be derived by the
memory controller. Upon receipt of a new uuid value, the
memory controller computes its version of the current pro-
cess key according to figure 2. Similar to the uuid register,
there are north bridge registers assigned for holding software
vendor keys encrypted by the platform’s public key. The
north bridge can extract the vendor keys using the private
platform key. When vendor keys are enabled, transactions
from peripheral devices such as disks, network devices are
first verified or decrypted using the vendor keys and then
converted using the process key and the integrity key un-
derstandable by the secure processors according to figure 2.
The platform key pair is permanently set in the north bridge
during manufacture.

It is important to point out that the secure OS kernel always
resides in a separately protected memory space. Access to
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the secure kernel uses a different process key and set uuid
is not required when application switches to secure kernel
mode. A copy of the memory range of secure kernel is also
maintained by the north bridge. The uuid registers and en-
crypted vendor key registers in the north bridge reside in the
secure kernel memory space.

Another important security role served by the secure mem-
ory controller is the conversion of memory protection when
data is transmitted from peripherals such as disk to the
physical memory. The conversion mechanism supports both
DMA based and processor based memory operations. For
DMA, the involved secure processor initializes both the re-
lated uuid register, and the software vendor key register
first, then starts DMA engine. The memory controller will
automatically verify and convert protections from vendor’s
domain to the platform’s domain for every chunk of data
written to the memory. Similarly, when results in the mem-
ory are DMAed to the peripherals, they can be optionally
converted back to the software vendor’s domain. Both op-
erations can be achieved with support of the security DMA
engine without increasing workload on the secure processor.

3.2.3 authentication speculative execution
As aforementioned, there are three alternatives of incorpo-
rating results of integrity verification into processor pipeline
— AIOE, ASE, and LAE. The pros and cons of each ap-
proach are listed in Table 1. To achieve a balance between
security and performance, ASE is definitely the best com-
promise. Detailed discussion of vulnerabilities of LAE is
outside the scope of this paper.

Under ASE, data and its integrity code can be transmit-
ted separately. Each data transaction on the MP bus is
tagged with a transaction number. The upper bound of the
tag is the maximum number of outstanding bus transac-
tions supported. A bus transaction is not considered com-



Table 1: Pros and Cons of AIOE, ASE, and LAE
Scheme Pros Cons
AIOE secure slow, support precise interrupt
ASE secure support precise interrupt, faster than AIOE, allow split transaction of data and integrity code
LAE fastest insecure, worst for protection using one-time-pad, no precise interrupt for authentication failure

plete if its integrity code has not been received. For both
inter-processor communication and regular memory fetch,
data can be transmitted and processed even before integrity
code arrives, hence the pipeline execution will not be stalled.
Note that for inter-processor communication, integrity code
has to be computed by the source processor, transmitted,
and verified by the destination processor. For a memory
fetch, integrity code has to be verified through the MAC
tree. Data transactions with either un-verified integrity or
missing integrity code are kept in a structure we call the
Authentication Sequence Buffer (ASB) which is illustrated
in figure 7. ASB is an on-chip buffer that keeps read transac-
tions with outstanding integrity codes or transactions with
unverified integrity codes in the sequence they were triggered
in the system. There is one ”authenticated bit” associated
with each ASB entry. This bit is set when the integrity of a
read transaction is verified. ASB broadcasts the index of an
authenticated entry to a bus shared by memory load/store
queues and the re-order buffer. We should note that though
the transactions can be authenticated in any order ASB en-
tries have to be broadcasted sequentially which justifies it
being called a sequence buffer. Both load/store queues and
re-order buffer have an extra ASB tag field. If the value
stored in the tag field is zero, it means that value held in
the queue or the re-order buffer is either authenticated, or
produced using authenticated data. If the ASB tag value is
a positive number i, it means that data associated with the
queue or re-order buffer is not considered authenticated un-
til integrity of the transaction held in entry i of the ASB is
verified. When a load/store queue or reorder buffer snoops
a broadcast of index i from the ASB, any entry tagged with
index i is reset to zero.

An ASE processor allows the usage of un-authenticated data
for continuing program execution. However, the uncommit-
ted results will be tagged with its corresponding entry in-
dex in the ASB. For example, let us consider an instruction
”load r2, [addr]” which uses data fetched from [addr], but
misses the cache. Therefore, data of [addr] will be fetched
from memory and the transaction allocates an entry with
an index i in the ASB. Then the entry holding r2 value in
the physical register file will be tagged with i. The instruc-
tion is also inhibited from being retired from the processor
pipeline. However, the dependent instructions using r2 as
an input operand are allowed to be issued and executed.
For example, assume that the next instruction is ”add r3,
r3, r2”, where source r3 contains an unauthenticated input
value and tagged with a value k. After the add instruction
is completed, the destination r3 will be tagged with either
i or k depending on which one will be broadcasted by ASB
later. If i would be broadcasted later than k, then r3 will
be tagged with i, otherwise, r3 will be tagged with k. The
pseudo-code in figure 8 shows how to decide which tag would
be broadcasted later given two source tags, the ASB tag to
be broadcasted next(ASBhead), and a pointer to the next
free ASB entry (next free ASB). Implementation of the ASB

tag mixer (ASBhead, next free ASB, src1 tag, src2 tag){
if (ASBhead < next free ASB) {

return MAX(src1 tag, src2 tag);
}else {

if both src1 tag1 and src2 tag >= ASBhead
or both src1 tag1 and src2 tag <= next free ASB
return MAX(src1 tag, src2 tag);
if (src1 tag1 < =src2 tag) return src1 tag;
else return src2 tag;

}
} Figure 8: Compute a new ASB tag

tag updating rules is done in hardware, and called ARB Tag
Mixer.

When un-authenticated data is to be stored to the memory
hierarchy or data/instruction needs to be fetched from mem-
ory hierarchy using address computed from un-authenticated
data, it is allowed to be issued to the memory hierarchy.
Load and store queue of memory units are also extended
with an ASB tag field. When a piece of data is forwarded
from the store queue, its ASB tag kept in the store queue is
also ”forwarded” to update the destination register’s ASB
tag.

If the access < addr, ASB tag i > has to be issued to the
memory and hits either L1 or L2 cache and the authentica-
tion tag i can be cached somewhere, execution can be still
continued as normal. Next time, the data in addr is fetched
into some physical register again, the cached ASB tag i will
also be retrieved and used to update the register’s ASB tag
field. But, if the access is authentication unsafe and triggers
a L2 miss, it will be stalled for the purpose of security pro-
tection. The stalled access together with its authentication
tag i will be maintained in a cache, called Authentication
Stall Cache (ASC). ASC maintains all the L2 miss mem-
ory accesses that are authentication unsafe and can not be
issued to the bus because of unauthenticated ASB tags.

The Authentication Stall Cache (ASC) also receives ASB
broadcast. If a broadcasted tag is equal to the tag stored
in a ASC entry, the corresponding stalled memory access
can be removed from the cache and ready to be granted bus
cycles.

The above description requires that authentication tag be
cached alone with the data in the on-chip cache. This can be
achieved by adding a field to each cache line. However, since
the interval between the time that an un-authenticated data
is received or produced and the time when it is authenticated
(all its sources are authenticated) is relatively short, it is
more efficient to disassociate ASB tag and the data to have
a separate small tag cache for storing authenticated tags.
Furthermore, the tag cache can be merged with the Stall
Cache to be a unified ASB Tag & Stall Cache as shown in
figure 9.

Instruction fetch is stalled when its execution or fetch de-
pends on unauthenticated data, such as conditional branches.
The instruction is tagged with ASB tag of data sources, and
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is stalled until the data sources are verified. Under ASE, if
instruction fetch hits on-chip instruction caches, it can be
optionally speculatively executed but results produced by
the instruction will be tagged with ASB tag associated with
the instruction. However, if the conditional branch triggers
a L2 miss, it will be stalled in the ASC until the data source
it depends on is authenticated.

3.3 Security Analysis
This section provides a security analysis of both the MP
bus protocol and the secure memory system. The objective
of MP shared memory authentication is to prevent unau-
thorized alternation and re-play of coherent reply and data
stored in the shared memory. There are a number of tech-
niques adversaries can try to break our system and we will
show that none of them will succeed in breaking the pro-
posed protection mechanism. First, hacker may try to forge
the integrity code. This clearly would not work because each
unit can verify the integrity code and our integrity code is
generated using a strong cipher. The integrity key is a secret
and it is re-generated after a machine is rebooted. Second,
hacker may try to re-play both data and the associated in-
tegrity code on the MP bus, this would fail because every
bus transaction is protected by a sequence number that does
not stay the same. Third, hacker may try to do re-play at-
tack on the memory. This would not succeed neither because
of the MAC tree protection. Since both the secure MP bus
protocol and the secure memory system use stream cipher,
people may suspect that attacker can launch known plain
text attacks. This is also impractical because plain text at-
tacks requires that attacker knows the integrity code. In our
scheme, integrity code is kept as a secret. It is not accessible
either by software or external devices. Only encrypted in-
tegrity code is transmitted and stored in the physical RAM.
Moving memory block and its encrypted MAC around does
not work neither because the encrypted MAC is generated
using address as part of the input. Re-play data written
by a different process will also fail because the MAC is en-
crypted by OTP generated using a process key unique to
each process. Finally, security privileged instructions such

Table 2: Memory Overhead
Structure Size (bytes)

ASB(32 entries) 32*(8b MAC+1b cntrl)=288
ASB Tag & Stall Cache64 entries (4b addr+1b tag+1b cntrl)*64=384

Table 3: Applications and input parameters
Application Parameters

lu 256 by 256 matrix, block 8
radix 512K keys
water 343 molecules

quiksort 32768
mp3d 5000
fft 65536

as setup uuid can be only used inside the secure kernel. User
program is not allowed to use these instructions thus pre-
venting spoofing of a process uuid.

4. PERFORMANCE ANALYSIS
4.1 Memory overhead
The proposed memory protection scheme described needs
additional memory space to implement security related ta-
bles or caches such as ASB, ASB tag cache, sequence number
cache, etc. These tables or caches often contain only small
number of entries and in lots of cases can be merged with
other related structures. For example, ASB can be merged
with the existing table for tracking outstanding bus transac-
tions. Table 2 lists the memory overhead of required on-chip
structures.

The sequence numbers associated with each cache line size
RAM block and the intermediate nodes of MAC tree are
stored in the RAM. The space needed is approximately 1/(m-
1) of the RAM size with an m-ary balanced MAC tree. As
we use 256-bit cache line and 64-bit sequence number and
MAC. The RAM overhead is about 25% of the protected
RAM space. Note that the scheme allows only portion of
the whole RAM protected. It is up to the system on how
the protected physical memory is allocated. The caches im-
plemented in the memory controller are sequence number
cache and MAC tree caches for the frequent sequence num-
bers and MAC tree nodes. They are typically small from
8KB to no more than 32KB.

4.2 Simulation Environment
Table 3 shows the MP applications we used in the study
and the parameters used for simulation. The applications
are from the SPLASH-2 benchmark suite [14].

For charaterizing and evaluating our proposed scheme for an
MP system, we use RSIM [15] as our infrastructure to simu-
late a 4-node MP system. Each node includes a MIPS R1000
like out-of-order processor, L1, and L2 cache. We modified
the simulator in order to support the SGI POWERpath-
2 MP coherent bus protocol and a shared main memory.
Secure snoop bus protocol, memory authentication, and au-
thentication speculative execution are all incorporated into
the RSIM simulator. To characterize the memory trans-
actions more accurately, we integrated an accurate DRAM
model [9] based on the PC SDRAM specification. SPLASH-
2 benchmark suite [14] was used. The SPLASH-2 bench-



Parameters Values

CPU 4-issue per cycle
reorder buffer 64 instructions

load/store queue 64 instructions
L1 cache 8-Kbyte, directly mapped
L2 cache 4W, Unified, 32B line,

256KB
L1 Latency 1 cycle

L2 Lat (256KB) 3 cycles
Memory Latency X-5-5-5 (cpu cycles)

X depends on mem page status
Memory Bus 200 MHz, 8B wide

SHA-256 Latency 180ns
AES Latency 180ns

Bus Sequence # Cache 2Way; 8KB, 32KB; 64B line
MAC tree 2Way; 8KB,32KB; 64B line

Table 4: Processor model parameters

Figure 10: Authentication Performance

mark applications [14] and its input parameters use in this
study are listed in Table 3.

Table 4 lists the basic processor configuration parameters
used throughout the experiments unless otherwise specified.
The latencies of Mac tree and sequence number caches were
obtained using CACTI [13].

4.3 Performance
4.3.1 Authentication Performance
First, we compared the performance of different authentica-
tion execution schemes in figure 10. The figure shows IPC
normalized to baseline (baseline corresponding to the results
under no security protection of any kind) under two scenar-
ios, AIOE, and ASE. We tried two MP settings, 2P and 4P
systems because dual and quad processor platforms are the
most popular choices for creating commodity workstations
today. The data indicates that ASE is much faster than
AIOE and incur very small performance degradation. The
average performance degradation for ASE is less than 5% for
both 2P and 4P systems. The performance improvement of
ASE over AIOE on average is about 80% for both 2P and
4P systems. Figure 11 shows two important profiling re-
sults of the benchmarks, combined L1/L2 cache misses and
proportion of memory references with respect to the total
number of executed instructions. Based on the figure, we
can find out applications that have high cache miss rates or
applications that have lots of memory references.

Furthermore, we evaluated the effect of ASB tag & stall
cache. There are several conditions, an ideal tag cache (al-
ways hit), a 32 entry tag cache (8-way, 4 set), 64 entry tag
cache (8-way, 8 set), and no tag cache under a quad pro-

Figure 11: Characteristics of Cache and Memory
References

Figure 12: Authentication Performance under Dif-
ferent Tag Cache Setting, 32K mac tree & 32 K
sequence number caches, Processors=4

cessor setting. The results are displayed in figure 12. The
figure shows IPC normalized to the results of ideal tag cache.
As suggested by the results, tag cache can improve perfor-
mance for some benchmarks especially quicksort, radix, and
mp3d. According to figure 11, these three benchmarks are
memory intensive. The average improvement is about 5%,
and more than 10% for some benchmarks compared to the
system with no tag cache.

Another factor of authentication performance is the amount
of cache resources in the north bridge. Results in figure 13
show the effects of MAC tree and sequence number cache
size using IPC normalized with results under ideal MAC
tree and sequence number cache. On average, 32KB MAC
tree and sequence number caches show IPC 97% of IPC
obtained with ideal MAC tree and sequence number caches.
The performance of 8KB caches and no cache are 94% and
74% respectively.

Figure 13: Authentication Performance under Dif-
ferent North Bridge Cache Resources, Processors=4



Figure 14: Cache-to-Cache vs. Memory-to-Cache
Access

Figure 15: Memory Encryption/Decryption Perfor-
mance

4.3.2 Encryption Performance
The protection scheme supports information stored in the
RAM optionally encrypted. However, the latency overhead
is un-balanced. For cache-to-cache access, the overhead is
very small because the data is encrypted and decrypted by
two XOR operations given the stream key is pre-computed.
For memory-to-cache access, the overhead is bigger because
the stream key can not be pre-computed (it can be done
under pre-fetch but in this paper, we don’t assume the ex-
istence of pre-fetch). However, the memory controller can
start computing of the stream key as soon as the request is
received and the associated sequence number is cached in
the sequence number cache. Figure 14 gives results showing
categorizations of L2 misses. As suggested by the data, most
of the SPLASH/SPLASH2 benchmarks except for a few like
”radix” show more cache-to-cache accesses than memory ac-
cesses. The behavior of the ”radix” benchmark may be ex-
plained by the fact that it actually does a radix sort on a
huge array of non negative numbers. The huge number of
memory accesses in ”radix” may be explained as capacity
misses for the large array. We may also observe from the
figure that cache to cache accesses for a four processor sys-
tem is larger than for a two processor system. This may be
explained by considering the fact that for a four processor
system there is more data in the caches which causes more
communication among them.

Since sequence number cache plays a critical role in deter-
mining latency of encrypted memory data, we evaluated en-
cryption protection performance under different sequence
number cache sizes, no sequence number cache, 8K, 32K,
and ideal. Each cache line of the sequence number cache is
64bytes long and holds 8 64bit sequence numbers. Figure 15
shows normalized IPC results.

Figure 16: Memory Encryption/Decryption Perfor-
mance Under Higher Clock-rate, Processors=4

As the results indicated, using encryption will slow down
the performance significantly for some benchmarks. With
any caches, the averaged performance is about 45% of the
baseline. Sequence number cache can hide some of the la-
tency overhead. Larger sequence number cache has better
IPC results. One way to reduce the overhead of encryption
is to run the north bridge at higher clock rate. We evalu-
ated this option by running the encryption logic at 400Mhz.
Normalized IPC results are shown in figure 16. Under the
assumption of ideal MAC tree and sequence number caches,
the slow down is about 40%. Intergrading the north bridge
with the processor chip has the same effect with the north
bridge operates at the processor clock rate.

5. CONCLUSIONS
This paper proposed a unified hardware scheme of memory
protection for both uni-processor and multiprocessor plat-
forms. It is the first paper to address the issue protecting
memory shared in a MP system. The scheme is not only able
to protect memory integrity but also confidentiality of MP
shared memory. Different from the previous endeavors on
uni-processor memory protection, our scheme achieves mem-
ory security in a platform distributed manner and relies on
a light weighted secure processor implementation. Unlike
previous approach that trades security for performance, the
novel authentication speculative execution (ASE) is both se-
cure to be combined with one-time-pad (OTP) based mem-
ory protection and efficient to hide authentication latency.
Results using rsim and splash2 benchmarks show only 5%
overhead in performance on a quad processor platform and
80% improvement over AIOE.
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