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Abstract
The advances in wireless communication and decreasing
costs of mobile devices have enabled users to access desired
information at any time. Coupled with positioning technolo-
gies like GPS, this opens up an exciting domain of location
based services, allowing a mobile user to query for objects
based on its current position. Main bottlenecks in such in-
frastructures are the draining of power of the mobile devices
and the limited network bandwidth available. To alleviate
these problems, broadcasting spatial information about rele-
vant objects has been widely accepted as an efficient mecha-
nism. An important class of queries for such an infrastructure
is the k-nearest neighbor (kNN) queries, in which users are
interested in k closest objects to their position. Most of the
research in kNN queries, use unconventional broadcast in-
dexes and provide only approximate kNN search [30, 15]. In
this paper, we describe mechanisms to perform exact kNN
search on conventional sequential-access R-trees, and opti-
mize established kNN search algorithms. We also propose
a novel use of histograms for guiding the search and derive
analytical results on maximum queue size and node access
count. In addition, we discuss the effects of different broad-
cast organizations on search performance and challenge the
traditional use of Depth-First (dfs) organization. We also ex-
tend our mechanisms to support kNN search with non-spatial
constraints. While we demonstrate our ideas using a broad-
cast index, they are equally applicable to any kind of sequen-
tial access medium like tertiary tape storage. We validate our
mechanims through an extensive experimental analysis and
present our findings.

1 Introduction
With the coming era of ubiquitous computing, the popular-
ity of mobile communications and emergence of positioning
technologies like GPS have laid a strong foundation for loca-
tion based services [6, 21]. Location based services provide
users with information that is specialized to their location,

for example, the nearest gas station or the five closest restau-
rants.

In such mobile wireless environments, services are ac-
cessed through a common wireless channel, which connects
the users to the service provider. There are two impor-
tant constraints of such mobile wireless environments: (i)
Limited network bandwidth, and (ii) Power constrained user
devices (mobile units). Efficient mechanisms to overcome
these constraints will eventually play a pivotal role in pro-
viding such location based services.

One straight-forward solution is to let each mobile unit
query a server by establishing a one-to-one connection and
the server replying to that mobile unit on per-query basis.
However, this on-demand model has few important draw-
backs. First it requires more bandwidth due to large number
of users that need access to the service. Second, transmitting
and receiving data to and from the wireless medium is asym-
metric in energy consumption, with transmission being much
more expensive than receiving. As a result on-demand query-
ing can drain the mobile unit’s power supply fairly quickly.
Thirdly, it fails to exploit the similarity of content desired by
all users.

Another way of providing information services is us-
ing the broadcast model, in which information is contin-
uously broadcasted on the wireless medium and each mo-
bile unit tunes-in to the broadcast and reads relevant in-
formation whenever a query is issued. This prevents the
costly transmission of queries by individual mobile devices,
thus reducing their energy consumption and also preventing
bandwidth bottlenecks. The broadcast model is considered
bandwidth-wise and energy-wise much more efficient than
the on-demand access model and has been an important topic
of interest in the research community [13, 5, 26, 2, 3, 29, 12].
An important challenge in this model of access is to devise
efficient indexing and searching mechanisms for energy effi-
cient querying of location based data.

One of the essential classes of queries is the k-nearest
neighbor queries, often categorized as the “kNN Search on

1



the Air” problem [30] in the current context. In totality, it
can be described as broadcasting location dependent data,
together with a spatial index on the wireless medium and
searching this broadcast to answer kNN queries in an en-
ergy efficient manner. To illustrate the problem, consider a
battlefield scenario where several mobile units ranging from
soldiers to tanks, report their positions to a central server
through a wireless channel. The server builds a spatial in-
dex on this position information and securely broadcasts it
to the battlefield. Then the mobile devices can tune in and
process the broadcast to answer spatial queries on the broad-
casted position information. One such query can be posed
by a tank as: “Give me the positions and names of the 10
nearest friendly units”. In a different scenario, taking place
in a commercial setting, the server can broadcast locations
of various restaurants and a car driver can pose a query like:
“Give me the positions of the 5 nearest restaurants”.

In this paper, we study the problem of exact kNN search
on R-trees [8] in wireless broadcast environments. Our re-
sults also apply for kNN search on serialized R-trees for any
sequential access medium. We chose R-trees as the basis of
our work because of its two primary advantages. First, it
can be used to support other important kinds of queries, like
range queries. This prevents developing exclusive, incom-
patible solutions for each class of queries. Second, it is well
studied and established as an efficient indexing mechanism.

Our main technical contributions are as follows:

– We develop an algorithm, called w-opt, which intro-
duces revisions and optimizations over well established
kNN search algorithms, and provides better perfor-
mance on wireless mediums.

– We describe the effects of different broadcast organiza-
tions on search performance and show that commonly
employed depth first serialization of the tree, under cer-
tain conditions, results in reading many nodes that do
not contribute to the query result, thus causing higher
energy consumption.

– We propose the use of histograms for guiding the
search, and develop an associated algorithm, called w-
hist algorithm. It uses simple equi-spaced grid his-
tograms to supplement the index and achieve further
pruning of nodes, resulting in lower number of node ac-
cesses and smaller memory requirements.

– We also derive analytical results on maximum queue
size and node access count, for uniform data distribu-
tions. Furthermore, we show how to extend the use of
histograms for supporting kNN search with non-spatial
constraints (we only consider equality constraints on
types).

– We provide experimental results to evaluate the in-
troduced mechanisms and understand the tradeoffs in-

volved in using them. In our experiments, we use both
synthetically generated uniform data and real data with
skewed distribution.

The rest of the paper is structured as follows. Related work
is discussed in Section 2 and an overview of kNN search on
R-trees is presented in Section 3. Section 4 introduces tech-
niques to optimize kNN search on serialized R-trees and Sec-
tion 5 studies the index organization tradeoffs. In Section 6,
the use of histograms is explained in the context of kNN
search on the air and analytical results are derived for max-
imum queue size and node access count. Queries with type
constraints are discussed in Section 7. Section 8 presents ex-
perimental results and Section 9 concludes the paper.

2 Related Work
In this section we list three different areas of related research.
The first two, R-tree indexes and indexing on the air, es-
tablish the basis of our work. The last one, spatial index
broadcast, consists of work closely related to ours, which has
considered energy efficient search on spatial data in wireless
broadcast environments.

R-tree Indexes: R-trees [8] are spatial index structures
widely used to index n-dimensional points or rectangles.
Due to practicality of implementing them on secondary stor-
age and their good search performance in low-dimensional
spaces, R-trees have enjoyed wide deployment. R-trees can
be thought of as the multidimensional version of B+-trees.
An R-tree node consists of (i) a minimum bounding rectan-
gle (mbr) which encompasses mbrs of all nodes under its
branch, (ii) mbrs of its children nodes, and (iii) pointers to
its children nodes. A node at the leaf level contains mbrs
of data objects and pointers to data objects, instead of child
mbrs and pointers. Figure 1 shows an example R-tree struc-
ture at the top and the set of indexed points together with the
node mbrs at the bottom.

The research on R-trees is still active, especially in the
field of mobile object indexing [16, 23]. Several variations
of R-trees exist including R∗-trees [4] and R+-trees [25].
R∗-trees have been shown to work well for various data and
query distributions and in this paper we use R∗-trees for per-
formance evaluation.

Indexing on the Air: In wireless broadcast, it is crucial that
energy is conserved on the mobile unit side when answering
queries on the broadcasted data. To alleviate the vast energy
consumption problem of searching un-indexed data, air in-
dexes were introduced in [13]. Air indexes trade latency in
order to reduce energy consumption. Using the index, the
mobile unit can selectively tune-in only to the relevant por-
tion of the broadcast and thus optimize its energy consump-
tion. However, the inclusion of the index increases the total
size of the broadcast cycle and thus increases latency. This
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Figure 1: Illustration of an R-tree index

latency involved in searching broadcasted data is measured
as access latency, which is defined as the time difference be-
tween the point at which a query is posed and the point at
which result of the query is fully computed. The energy con-
sumption is measured as tune-in time, which is defined as the
total time during which the mobile unit was listening to data
from the wireless medium. Both access latency and tune-
in time are measured in terms of number of packets, where
a packet corresponds to the physical unit of access on the
broadcast medium, similar to disk blocks. Similar to [13],
our work also assumes that a single index node corresponds
to a single packet.

Air indexing strives to decrease tune-in time while keep-
ing the increase in access latency due to the broadcast of
extra index information minimal. The (1, m) indexing ap-
proach [13], widely adopted by many other researchers, in-
terleaves data and index on the medium for the purpose of
improving the access latency. The (1, m) indexing approach
can be applied to most of the tree based indexes, including
ours. Hence, in our work, we only concentrate on improving
the tune-in time associated with index search in broadcast
environments.

Broadcast disks [2] is another commonly used [3, 29, 12]
technique for efficient data access. Broadcast disks build a
memory hierarchy through the use of repetitive broadcasts
by adjusting the occurrence frequency of data items based on
their popularity. We do not consider broadcast disks, since
our focus in this paper is on spatial data broadcast and air
indexes form an ideal framework for our work.

Spatial Index Broadcast: Recently, researchers have con-
sidered energy efficient query evaluation over location de-
pendent data in wireless broadcast environments [30, 10, 28,

15]. In [28], authors have discussed processing of nearest
neighbor (k = 1) queries on location dependent data. Their
approach is based on building a voronoi diagram [18] and
broadcasting it with the use of a new index structure called
D-tree. However their approach does not extend to k nearest
neighbor search. In addition, the indexing structures are ex-
clusive to this class of queries. In [10], authors have studied
the problem of answering range queries over location depen-
dent data for memory limited devices, but their techniques
are not extendable to nearest neighbor queries. In [30], au-
thors have studied processing of k nearest neighbor queries
on location dependent data. However, they only provide ap-
proximate search techniques. Moreover, [30] favors a list
based structure in place of R-trees for small values of k.
Also, their experimental comparison is based on R-trees, not
R∗-tree variants, which are known to be more efficient. In
our work, instead of introducing yet another indexing struc-
ture, we describe techniques to adapt and revise kNN search
on R-tree family for wireless broadcast and more importantly
also provide exact results.

3 Background
In this section we give a brief overview of kNN search on R-
trees. The description is based on Roussopoulos et. al’s [22]
algorithm for kNN search on R-trees. Before describing the
algorithm, we give definitions of three measures that are es-
sential for the description of the algorithm and will be used
in the rest of the paper. For a given query point P , a node N ,
and an object O,

• MINDIST(N,P ) is the minimum distance from P to
N ’s mbr. MINDIST(O,P ) is the minimum distance
from P to O’s mbr (in case O is a point, O’s mbr re-
duces to its position).

• MAXDIST(N,P ) is the maximum distance from P
to N ’s mbr, where MAXDIST(O,P ) is equal to
MINDIST(O,P ).

• MINMAXDIST(N,P ) is the maximum possible
minimum-distance between P and the mbr of closest
object residing in N ’s mbr. MINMAXDIST(O,P ) is
equal to MINDIST(O,P ).

Note that, the first two definitions imply that, no ob-
ject residing under node N ’s mbr can have a MINDIST
value for point P less than MINDIST(N,P ) or larger than
MAXDIST(N,P ). The third definition implies that, the ob-
ject which resides under node N ’s mbr and has the smallest
MINDIST value for point P , has a MINDIST value of at
most MINMAXDIST(N,P ).

The conventional kNN search algorithm keeps two data
structures to guide its operations. These are ItemQueue
and ResultQueue. Both of them store either node or object
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identifiers together with their mbrs. ItemQueue is sorted
on the MINDIST measure and does not have a predefined
size. On the other hand, ResultQueue is sorted on the MIN-
MAXDIST measure and can have at most k entries. We de-
fine the variable kthdist such that it takes the value ∞ if
there are less than k entries in ResultQueue, otherwise it
takes the value of MINMAXDIST measure for the kth item
in ResultQueue.

The algorithm works iteratively. Initially ItemQueue
contains only the root node. At each iteration, the topmost
item in ItemQueue is popped. If the item is a node (say
N ) entry, then the node is read from the medium. Entries
for the children nodes of N , whose MINDIST values from
the query point are smaller than the kthdist, are added to
ItemQueue and ResultQueue, and N ’s entry is removed
from ResultQueue if it is there. If the initially popped
item is an object, then it is added only to ResultQueue and
the termination condition is checked. In case all entries in
ResultQueue refer to objects then the search halts. Algo-
rithm 1 gives the pseudo code of kNN search on R-trees.

4 kNN Search for Wireless Medium
While searching a serialized R-tree in the wireless broad-
cast scenario, using Algorithm 1 as a base, it is not possi-
ble to sort ItemQueue on the MINDIST measure. Since
the MINDIST ordering of tree nodes is not consistent with
their order of appearance in the broadcast, reading a node
from the medium based on the topmost item in the MINDIST
sorted ItemQueue may result in leaving behind other tree
nodes that have entries in ItemQueue. As these other nodes
are left behind on the medium, accessing them in the future
steps of the algorithm will require a wait until the next index
broadcast, which is prohibitive in terms of access latency. As
a result, the items in ItemQueue have to be sorted based
on their appearance order on the medium. In accordance
with this observation, previous work [30, 15] on this topic
have considered searching serialized R-trees for k nearest
neighbors using queues sorted on appearance order. Further-
more, when an item is popped from ItemQueue, we can first
check whether the MINDIST value of the item is larger than
kthdist. If so, it is safe to prune the item and proceed with
the next iteration1. It is also important to mention that the
stop condition in Algorithm 1 (lines 7-8) is no more valid as
it is not guaranteed that the rest of the items in ItemQueue
cannot generate an object closer than the current k, since the
queue is no more sorted on MINDIST measure. As a result,
the search halts when the ItemQueue becomes empty. Al-
gorithm 2 gives the pseudo code of kNN search on R-trees
adapted for wireless medium.

The adapted version of kNN search for wireless medium is
obviously far from being optimal due to its almost unguided

1Notice that this pruning condition is never satisfied when ItemQueue
is sorted on the MINDIST measure.

Algorithm 1 R-tree kNN search
1: ItemQueue ← {rootNode}// sorted by MINDIST
2: ResultQueue ← Ø // sorted by MINMAXDIST, max size = k
3: while ItemQueue �= Ø do
4: item = ItemQueue.pop()
5: if item is an object then
6: ResultQueue.add(item)
7: if all items in ResultQueue are objects then
8: return ResultQueue
9: end if
10: else if item is a node then
11: Read item from the medium
12: for all citem in item.childrenList do
13: if MINDIST(citem, P ) > kthdist then
14: continue
15: end if
16: ItemQueue.add(citem)
17: ResultQueue.add(citem)
18: end for
19: ResultQueue.remove(item)
20: end if
21: end while

Algorithm 2 R-tree kNN search adapted for wireless
1: ItemQueue ← {rootNode}// sorted by node appearance order
2: ResultQueue ← Ø // sorted by MINMAXDIST, max size = k
3: while ItemQueue �= Ø do
4: item = ItemQueue.pop()
5: if MINDIST(item, P ) > kthdist then
6: continue
7: else if item is an object then
8: ResultQueue.add(item)
9: else if item is a node then
10: Read item from the medium
11: for all citem in item.childrenList do
12: if MINDIST(citem, P ) > kthdist then
13: continue
14: end if
15: ItemQueue.add(citem)
16: ResultQueue.add(citem)
17: end for
18: ResultQueue.remove(item)
19: end if
20: end while

exploration of the nodes. The efficiency of the search, in
terms of tune-in time, relies on the pruning capabilities of
the algorithm and the organization of the index. Next, we
illustrate that some cases that do not occur in the original
version of the algorithm, but appear in the adapted version
can be pruned by a simple yet effective optimization.

4.1 The w-opt Algorithm

In this section, we describe the w-opt algorithm and how it
improves kNN search performance on wireless medium. Be-
fore giving the details, we first illustrate a particular ineffi-
ciency of the adapted algorithm with an example. This forms
the bases of our improved algorithm.

Consider searching the tree depicted in Figure 2 for two
nearest neighbors. Clearly, the candidates for the two near-
est neighbors should come only from nodes under w, since its
mbr covers at least two objects (one at distance 5 and another
at distance 10) closer than any other object under node u and
v. Now, assume that nodes u, v and w are organized on the
medium such that u appears before v and v before w. As a re-
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Figure 2: The topmost two levels of an example tree

sult, after the root node is processed, node u’s entry appears
on top of ItemQueue since the queue is sorted by appear-
ance order. ResultQueue on the other hand is sorted based
on MINMAXDIST, thus consists of entries of w and v in or-
der and kthdist is equal to the MINMAXDIST of v, which is
14. Next, u’s entry is popped from the queue and is discarded
since its MINDIST is larger than the kthdist (15 > 14). In
the next iteration of the algorithm, v’s entry is popped from
the queue and the node v is read from the medium as it does
not satisfy the pruning constraint, its MINDIST, which is 11,
is smaller than the kthdist, which is 14. This is an important
pitfall of the adapted algorithm. Node v is read even when
it will not contribute to the result! The original algorithm
would have explored w before v because the ItemQueue is
sorted by MINDIST. In fact, the original algorithm will ex-
amine several other nodes (with MINDIST values less than
node v’s), until the node v’s entry comes to the front of the
queue. Then v will have a much higher chance of being dis-
carded. This is because kthdist will improve as better and
better nodes are explored.

In Figure 2, it is indeed possible to prevent node v from
being read from the medium by the adapted algorithm. If
the minimum fanout of the tree is fmin, then we know that
there are at least f l−1

min objects under node w’s mbr (assum-
ing the leaf nodes are at level 1 and the root node is at level
l). Given this knowledge, at the time when we add w’s en-
try to ItemQueue, we can say that there is one object at
most MINDIST(w,P ) away from the query point and at least
f l−1

min − 1 objects at most MAXDIST(w,P ) away from the
query point, where P is the query point. Returning back to
the figure, this means there is one object at most 5 unit away
from the query point and f l−1

min − 1 ≥ 1 objects at most 10
units away from the query point. This information allows us
to discard v in the next iteration since its MINDIST is 11 and
we already know there exists an object at most 5 units away
and another object at most 10 units away from the query
point. It is important to notice that the additional informa-
tion employed, which uses the MAXDIST measure and the
existence of f i

min objects under a node at level i, helps us

u

.   .   .

. 

.

.

. 

.

.

r
P
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u.mbr

Figure 3: Example illustrating the downside of dfs organization

to cut down the number of nodes read from the medium, be-
cause it suppresses the unguided node exploration nature of
the adapted algorithm.

Utilizing the above observation, we improve the adapted
kNN search algorithm as follows:

• While adding a node entry, say node N at level i, with
its MINMAXDIST measure to ResultQueue, we also
insert f i

min − 1 additional entries with the MAXDIST
measure of node N . ResultQueue is sorted on the as-
sociated measures of the entries. When we explicitly
remove a node from ResultQueue, we remove all en-
tries associated with that node.

In the rest of the paper we refer to the R-tree kNN search
algorithm designed for a random access medium as the con-
ventional algorithm, adaptation of the conventional algo-
rithm to wireless broadcast medium as the wireless conven-
tional algorithm (w-conv for short) and the improved version
of the adapted algorithm as the optimized wireless algorithm
(w-opt for short).

5 DFS vs. BFS
The way a spatial index is organized on the broadcast
medium impacts the number of index nodes read by the
kNN search algorithm, thus affecting the tune-in time. Pre-
vious work on range and kNN search in broadcast environ-
ments [28, 10, 30, 15] that has considered using R-trees,
used a depth first search (dfs) order serialization of the tree,
mostly because the conventional algorithm is based on a
heuristically guided dfs. We present an argument in favor of
serializing the tree based on breadth first search (bfs) order
and in Section 8 we experimentally show that bfs is actually
the better choice.

For a given query point P , let QP,k denote the position of
kth nearest neighbor of point P . A kNN search algorithm on
R-trees is said to be optimal if it only accesses nodes whose
mbr’s intersect with the circle centered at P with radius equal
to the distance between P and QP,k [24]. Figure 3 shows a
query point P and the circle formed around it using its dis-
tance from its kth nearest neighbour. Let us call this circle
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result circle of the query point. Since the kNN search on
wireless medium is not optimal, it is possible to read a node
from the medium such that the mbr of the node does not inter-
sect with the result circle of the query point. Figure 3 shows
one such example tree node u. If tree is serialized on dfs or-
der, then the algorithm will access several other nodes (from
the nodes of the tree under the area A in Figure 3) under node
u until the algorithm is done with the branch rooted at node
u without contributing any objects to the result. In fact, we
have the following result,

Theorem 1 For a dfs serialized tree, if the w-opt kNN
search algorithm reads a node Ni at level i (the leaf nodes
are at level 1) whose MINMAXDIST is smaller than the
kthdist, then it must read at least i nodes from the branch
rooted at node Ni irrespective of whether Ni intersects with
result circle or not.

Proof: Since the algorithm visits nodes in dfs order on the
broadcast medium, only the nodes under Ni’s branch can be
accessed until the branch has totally passed on the medium.
Let O be the closest object under Ni’s mbr to the query point.
Since Ni’s MINMAXDIST is smaller than the kthdist, O’s
distance to the query point is smaller than the value of
kthdist at the time Ni is popped from the queue. Further-
more, no node under Ni’s branch can have a MINMAXDIST
value smaller than O’s distance to the query point. (This fol-
lows since otherwise we’ll have another object under Ni’s
mbr that is closer to the query point than O, which is a con-
tradiction.) As a result, kthdist cannot have a value smaller
than O’s distance to the query point, at any time before the
algorithm leaves Ni’s branch behind. It directly follows that
any node under Ni’s branch whose mbr contains O must be
read, since its MINDIST can be at most equal to O’s dis-
tance to the query point which cannot be larger than kthdist.
There are at least i nodes whose mbrs contain O under Ni’s
branch since Ni is at level i. Thus the result is proved. �

The bfs ordering clearly does not share the same prob-
lem. This is because the nodes are serialized level by level
and there is no recursive containment relationship between
successive nodes within a level. However, bfs serialization
may have a larger memory requirement due to the growth in
ItemQueue. We investigate this issue analytically in Sec-
tion 6 and experimentally in Section 8.

6 The w-hist Algorithm
In this section we introduce the w-hist algorithm, which im-
proves the pruning capabilities of wireless kNN search algo-
rithms with the use of simple histograms. Histograms have
been profoundly used in databases for the purpose of selec-
tivity estimation of range queries [20, 14, 17, 9]. Although
various types of histograms have been introduced in the lit-
erature, we employ a grid like histogram that stores the num-
ber of objects located under each cell. Since our aim is to
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2 2 0 2 4 1 5
3 3 3 2 3 5 1

0 0 3 2 3 3 1
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r+

a

b

c

d

e

f

Figure 4: Example illustrating the usage of an histogram for k = 4

reduce the tune-in time, the histogram itself should be small
enough not to increase the tune-in time, as it has to be read
in order to extract useful information from it. Using complex
histograms will not allow this.

The histograms can be used to obtain an upper bound on
size of the result circle of a kNN query. Let A denote the area
of the square region which contains all objects. We denote a
histogram with cell size c as Hc. Hc partitions the area of
interest as an equi-spaced grid with cell size equal to c. Hc

has �√A/c�2 square cells of size c × c. A cell is denoted
as Hc{i, j}, where i and j are cell indices. Each cell stores
the number of objects that lie under the cell’s boundaries2,
denoted as Hc[i, j].Figure 4 illustrates an example 7x7 his-
togram.

Note that given a query point P and any subset of k ob-
jects from the object set, the distance between P and the far-
thest object in the subset is larger than the radius of the result
circle. As a result, any circle centered at point P that cov-
ers some set of histogram cells such that the total number of
objects located under these histogram cells is larger than k,
covers the result circle. More formally, let C(P, r) denote a
circle centered at point P with radius r and let r∗ denote the
radius of the result circle for k nearest neighbors of point P .
Then we can state:

If ∃Q s.t. (1)∑
(i,j)∈Q

Hc[i, j] ≥ k, and

∀(i, j) ∈ Q, Hc{i, j} ⊂ C(P, r)

Then r ≥ r∗.

Consider that the histogram cells are sorted based on their
distance from the query point P and are organized into a list.
Then we define Q+ to be the set of non-empty histogram
cells (Hc[i, j] > 0) formed by picking cells from the sorted
list until the sum of the cell contents reach or exceed k. Now
we define the pruning circle, denoted as PC, which is used
to prune nodes during the kNN search. The PC satisfies the
left-side of (1) and is defined as follows: Pruning circle is the
smallest circle centered at point P that covers the histogram

2We assume objects are points, otherwise the center of each object can
be used to determine which grid cell it belongs.
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cells in Q+. The radius of the pruning circle is denoted as
r+.

The radius of the pruning circle, r+, can be calculated by
a linear scan of the histogram cells, by keeping only O(k)
state. This is simply because the set Q+ can be of at most
size k. The closest k cells to the query point can be stored
and maintained during the scan and this set can be pruned
at the end of the scan to get Q+. Once we have Q+, the
maximum of maximum-distances of cells in Q+ to the query
point P gives r+.

Figure 4 illustrates how r+ is calculated for an example
histogram and query point with k = 4. For the histogram and
the query point in Figure 4, the four closest non-empty cells
are the ones marked as c, b, e, and f (The first six cells, which
yield four non-empty cells, according to their closeness to the
query point are a, b, c, d, e, and f ). The object count of the
cell c (which is 1) and the sum of the object counts for the
cells c and b (which is 3), are both smaller than 4. However,
the sum reaches 5 when we add the cell e to the list. Thus
we have Q+ = {c, b, e}. The maximum distance of e to the
query point is the largest among the cells in Q+. As a result
it gives the value of r+.

Utilizing the histogram and the pruning circle extracted
from it for a given query point, we can modify the wireless
kNN search algorithm by adding the following pruning con-
dition:

• When a newly discovered node is to be added to
ItemQueue, say node N , it can be discarded if its
mbr does not intersect with the pruning circle, i.e. if
N.mbr ∩ PC = ∅.

We name the optimized wireless algorithm which also uses
the histograms as the histogram supported optimized wireless
algorithm, w-hist for short.

In Section 8 we experimentally show that histograms are
really effective in improving the tune-in time and decreasing
the maximum size of the ItemQueue. We also examine the
sensitiveness of different index serialization approaches to
the use of histograms. In the rest of this section, we derive
upper bounds on the expected size of ItemQueue and the
expected number of total nodes accessed by the kNN search
algorithm, when searching trees organized in bfs manner.
The notations used in the rest of the section are summarized
in Table 1.

6.1 Queue Size
For devices with scarce memory, like sensor devices [11], the
memory requirement of the kNN search algorithm may be-
come a restriction. In the context of spatial broadcast, work
presented in [10] studied methods to bound the memory re-
quirement for range searches on serialized spatial broadcast
indexes. In our wireless kNN search algorithm, only struc-
ture that does not have a fixed size is ItemQueue. However,

by using arbitrarily fine grained histograms we can limit the
queue size. Theoretically, at one extreme case, the maximum
queue size will take its minimum possible value, which is
achieved when the pruning circle becomes identical to the re-
sult circle. We have the following upper bound for expected
value of the queue size:

Theorem 2 Assuming a uniform data and query distribu-
tion, an upper bound on the expected maximum size (in terms
of nodes) of the ItemQueue for a bfs serialized tree is given
as a function of n, A, c, f , k as follows:

E[QSmax] < maxi∈[1..l]
(
f

i ∗ sl−i
2 + π ∗ δ2 + 4 ∗ δ ∗ sl−i

sl
2 + π ∗ δ2 + 4 ∗ δ ∗ sl

)
,

where l = 1 + �logf

n

f
�, δ = 2 ∗

√
(c2 ∗ � k ∗ A

n ∗ c2
�)/π,

and sj =
√

A/n ∗ (
√

fj − 1)

Proof: Let us denote the number of items in the queue after
all nodes at level l − i + 1 are processed as QSi. Then the
queue size can be considered as a branching process. Initially
we have,

E[QS0] = 1

To get an upper bound on the queue size, we will only con-
sider pruning due to the pruning circle PC, thus we have:

E[QSi] < f ∗ P{Ni.child.mbr ∩ PC �= ∅ | Ni.mbr ∩ PC �= ∅}
∗E[QSi − 1], for i ∈ [1..l]

We have P{Ni.child.mbr ∩PC �= ∅ | Ni.mbr ∩PC �= ∅}
= P{Ni.child.mbr∩PC �=∅}

P{Ni.mbr∩PC �=∅} =
si−1

2+π∗r2
++4∗r+∗si−1

si
2+π∗r2

++4∗r+∗si
. Figure 5

shows that for a fixed mbr, the query point should lie inside
the shaded area in order for PC to intersect with the mbr.
Then the derivation follows, as the probability that a ran-
domly located circle with radius r intersects with a randomly
located square of side length si is approximately3 equal to
(si

2 + π ∗ r2 + 4 ∗ r ∗ si)/A. From induction we have,

E[QSi] < f
i ∗ sl−i

2 + π ∗ r2
+ + 4 ∗ r+ ∗ sl−i

sl
2 + π ∗ r2

+ + 4 ∗ r+ ∗ sl

, for i ∈ [1..l] (2)

We have l = 1 + �logf
n
f � ([7]) and si ≈

√
A/n ∗ (

√
f i −

1) ([27]). Average size of Q+ is � k∗A
n∗c2 � and we leave it to

the reader to verify that r+ < δ = 2 ∗
√

(c2 ∗ � k∗A
n∗c2 �)/π.

Integrating these into (2) proves the result. �

6.2 Tune-in Time
Histograms can also be used to derive an upper bound on the
number of nodes read by the algorithm, i.e. tune-in time in
terms of packets. Similar to the result on maximum queue
size, we have:

3boundary conditions are not considered
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n Number of objects
A Area of the square region covering all objects
c Histogram cell size

PC Pruning circle
r+ Radius of PC
Ni Tree node at level i
l Height of the tree
f Minimum fanout of the tree
si Average side length of a node mbr at level i
k number of NNs searched

QSmax Maximum size of ItemQueue during the search
ACtot Number of nodes/packets accessed i.e. tune-in time

Table 1: Notations used

area = A

s(i)
r

area = si
2

area =  si
2 + π*r2 + 4*r*si

Figure 5: Node mbr at level i intersecting with the
pruning circle with radius r

Theorem 3 Assuming a uniform data and query distribu-
tion, an upper bound on the expected number of pack-
ets/nodes read by the algorithm is given as follows:

E[ACtot] < hsize +

l−1∑
i=0

(
f

i ∗ sl−i
2 + π ∗ δ2 + 4 ∗ δ ∗ sl−i

sl
2 + π ∗ δ2 + 4 ∗ δ ∗ sl

)
,

where hsize = �4 ∗ �
√

A/c�2/packet size� (3)

Proof: Assuming each cell of the histogram stores a
4byte integer and packet size denotes the size of pack-
ets in bytes, size of the histogram is given by �4 ∗
�√A/c�2/packet size�. The second term in the equation
is derived in a similar way to Theorem 2, by assuming that
only the pruning circle is used for pruning nodes of the tree
during the search. �

Note that increasing the histogram size may result in in-
creasing the tune-in time as the histogram itself has to be read
from the medium. In fact, using a histogram cell size smaller
than the cell size that minimizes equation 3 will increase the
tune-in time.

While the analytical results in this section are based on
uniform data distribution, we evaluate real-life skewed data
in our experimental results in Section-8.

7 Search with Non-spatial Predicates
The objects indexed by a spatial index can have non-spatial
attributes that may need to be taken into account when an-
swering queries [19]. For instance, going back to our exam-
ple scenario in Section 1, the query can ask only for k near-
est Chinese restaurants instead of general restaurants. In this
section we consider how to answer kNN queries that may
specify an optional constraint on a single attribute, namely
the type of the objects being queried.

We denote the number of distinct types as t, where out of
n objects ni of them belong to type i, thus

∑t
i=1 ni = n.

In this paper we only consider two types of kNN queries,
(1) queries that do not specify a type and (2) queries that
specify a single type. In order to support queries with type
constraints, we need to modify both the search algorithm and
the index organization. We look into two different methods:

i) t-index
In t-index method, we use t separate spatial indexes each
indexing only its associated type. There is also a lookup
structure that has pointers for each type pointing to the
beginning of the index associated with that type. Although
this is really efficient for queries with type constrains, for
queries without constraints on types, it will require to lookup
all indexes. In order to improve the performance of queries
without type constraints, the order of the indexes can be
selected such that an index corresponding to type i comes
before the one corresponding to j on the broadcast medium
if ni > nj . This enables us to restrict the solution space
earlier, as the types with more number of objects tend to give
a better approximation to the actual result.

ii) t-hist/1-index
In t-hist/1-index method, we use a single spatial index
which indexes all objects. Although this is really efficient
for queries without type constrains, it is not possible to
search k nearest neighbors when a type constraint is present.
To enable the processing of such queries, we also include t
histograms on the broadcast, each one built for a particular
type. There is also a lookup structure that has pointers
for each type pointing to the beginning of the histogram
associated with that type. Moreover the leaf nodes of the tree
now also mark the type of each object. Queries with type
constraints can now be processed on the index by only using
the pruning circle derived from the associated histogram
of the given type. In order to improve the performance of
queries with type constraints, we can also prune a node
whose mbr does not intersect with a non-empty cell of
the histogram of the associated type. We name this latter
optimization as t-hist/1-index/hp method. Note that it can
improve the performance especially for the types that have
small number of objects belonging to them.

In Section 8 we compare the performance of both the
methods. Note that it is only fair to compare them when
the total index size (together with histograms) occupied
by the two methods is same. In other words, we should
have t ∗ hsize + isize(n) ≈ ∑t

i=1 isize(ni), where isize

8
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Figure 6: Tune-in time and maximum ItemQueue size for
different packet sizes

1 2 3 4

x 10
4

10

15

20

25

30

35

40

45

number of objects

tu
n

e 
in

 t
im

e 
(#

 o
f 

p
ac

ke
ts

)

K = 10, psize = 1024

1 2 3 4

x 10
4

60

70

80

90

100

110

120

130

140

number of objects

m
ax

. q
u

eu
e 

si
ze

 (
n

o
d

es
)

5000 objects, K = 10

conventional
bfs/w−conv
bfs/w−opt
dfs/w−conv
dfs/w−opt

bfs/w−conv
bfs/w−opt
dfs/w−conv
dfs/w−opt

Figure 7: Tune-in time and maximum ItemQueue size for
different number of objects when k=10
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Figure 8: Tune-in time and maximum ItemQueue size for
different k’s
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Figure 9: Tune-in time and maximum ItemQueue size for
different number of objects when k=5

is size of the spatial index and is given as isize(n) =∑1+�logf
n
f �

i=1 f i−1.

8 Experiments
In this section we present our experimental results used to
evaluate the methods introduced in this paper and understand
tradeoffs involved in using them. We describe three sets of
experiments. The first set of experiments investigate the im-
provement provided by w-opt search and bfs serialization of
the index. The second set of experiments investigate the ef-
fect of using histograms on tune-in time and the sensitivity of
different serializations to the usage of histograms. The third
and final set of experiments compare t-hist/1-index and t-
index approaches for kNN queries with type constraints. We
use two types of data in our experiments, (i) uniformly dis-
tributed set of points in unit square and (ii) a skewed dataset
composed of city locations in Greece from [1] (scaled to fit
unit square). The query points are selected at uniform ran-
dom from the unit square. In all experiments, we employed
an R∗-tree [4] index.

8.1 w-opt Search and bfs Serialization

We describe experimental results with regard to effects of w-
opt search and bfs serialization on tune-in time and queue
size under three different scenarios: (1) varying packet(node)
size, (2) varying number of objects, and (3) varying k.

8.1.1 Varying Packet Size

Figure 6 plots tune-in time (in terms of packets) and maxi-
mum size of ItemQueue (in terms of nodes) as a function
of packet (node) size in bytes. In this experiment k is taken
as 10 and 5000 uniformly distributed objects are used. The
line labelled as conventional represents the kNN search al-
gorithm on a random access medium and is used as a base-
line. The results show that, w-opt algorithm shows up to
33% improvement in tune-in time for a dfs organization and
up to 30% improvement in tune-in time for a bfs organiza-
tion, when compared to w-conv. Another observation is that
bfs organization provides up to 55% improvement over dfs
organization. Also, even in the worst case the best tune-in
time achieved using the best wireless search algorithm and
organization (bfs/w-opt) is only twice the tune-in time of
the baseline. The queue size results show that bfs organi-
zation have larger memory requirement when compared to
dfs, but the w-opt algorithm helps decreasing the memory
requirement for both organizations.

The differences in both tune-in time and maximum queue
size values of different approaches vanish as the packet size
increases to large values. This is because, for very large
packet size values, the index fits into very small number of
packets and ever algorithm ends up reading all the packets to
reach appropriate nodes. If we increase the number of ob-
jects (thus the index size) in accordance with the increasing
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histogram size for uniform data
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Figure 11: Tune-in time and ItemQueue size as a function of
histogram size for city locations data
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different histogram sizes
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Figure 13: Tune-in time as a function of k for different histogram
sizes

packet size, observations for small packet sizes still hold.

8.1.2 Varying Number of Objects

Figure 7 plots tune-in time and maximum size of the
ItemQueue as a function of number of indexed objects (uni-
formly distributed). In this experiment k is taken as 10 and
packet size is fixed to 1024 bytes. Clearly, the tune-in time
will increase with increasing number of objects, since the to-
tal index size increases and there are more candidate nodes
that need to be read from the medium. Notice that w-opt al-
gorithm provides up to 40% improvement in tune-in time for
dfs organization and up to 20% improvement for bfs orga-
nization. Furthermore, as the number of objects increase, the
bfs organization shows an increasing advantage over dfs or-
ganization in terms of tune-in time (up to 53% improvement
for w-opt). This shows our claim that in many scenarios,
the bfs organization is actually a better choice. Also, Fig-
ure 7 shows that the w-opt algorithm provides up to 21%
improvement in maximum queue size for bfs organization.
The improvement in maximum queue size is marginal for dfs
organization (around 3%). Comparing amongst the two or-
ganizations with w-opt, dfs organization provides up to 45%
improvement in maximum queue size as compared to bfs.

Figure 9 plots the same measures with k set to 5. Again
similar trends are observed, w-opt search and bfs organiza-
tion prevailing over other configurations when tune-in time
is considered. However, comparing Figure 9 and Figure 7 re-
veals that the improvement in tune-in time increases with in-

creasing k. In fact one can prove that for NN search (k = 1)
w-opt reduces to w-conv.

8.1.3 Varying k

Figure 8 plots tune-in time and maximum size of the
ItemQueue as a function of k. In this experiment packet
size is fixed to 1024 bytes and 5000 uniformly distributed ob-
jects are used. From the tune-in time graph we observe that,
after k = 4 the w-opt algorithm starts to provide significant
improvement over w-conv and after k=8 w-opt performs bet-
ter than w-conv independent of the index serialization order.
Queue size results show that memory requirement of bfs or-
ganization grows fast with increasing k when w-conv is used
and significantly drops when w-opt is used. This shows that
the use of w-opt algorithm is crucial for bfs organization, if
the number of items requested is high.

8.2 Histograms and w-hist search

8.2.1 Varying Histogram Size

Figure 10 and Figure 11 plot tune-in time and maximum size
of ItemQueue as a function of histogram size (in terms of
packets). In these experiments k is taken as 10 and packet
size is fixed to 1024 bytes. Figure 10 uses 5000 uniformly
distributed objects and Figure 11 uses a data set consisting
of real city locations (5073 points). The results from Fig-
ure 10 show that even a single packet histogram improves
the tune-in time. In fact, for this experimental setup, his-
tograms with larger sizes do not provide better tune-in times
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as the additional pruning capability achieved with the fine-
graininess of the histogram cannot compensate the cost of
reading the histogram itself. More interestingly, the effect of
using a histogram is more prominent with the dfs organiza-
tion and with histograms the best performance achieved with
bfs and dfs organizations are effectively the same. Nev-
ertheless, Figure 11 shows that with skewed data the latter
observation no more holds and bfs organization with w-opt
search outperforms all alternatives. This does not indicate
that histograms are useless for skewed data sets. This is be-
cause Figure 11 also shows that a small histogram can signif-
icantly (more than 50%) decrease the queue size while only
increasing the tune-in time marginally (around 5%).

8.2.2 Varying Number of Objects and k

Figure 12 plots tune-in time as a function of number of ob-
jects for different histogram sizes. Similarly, Figure 13 plots
tune-in time as a function of k for different histogram sizes.
Both experiments use 1024 byte packets and uniformly dis-
tributed objects. k is set to 10 in Figure 12 and 5000 ob-
jects are used in Figure 13. Figure 12 shows that for larger
number of objects it is better to use larger histograms. It is
also observed that dfs organization is more sensitive to the
increase in the number of objects. As seen from the graph
corresponding to dfs, using a 4 packet histogram becomes
more efficient than using a single packet histogram as num-
ber of objects increase. And if we keep increasing the num-
ber of objects, according to the displayed trend, using an 8
packet histogram will become more efficient than using a 4
packet histogram. Although a similar phenomenon can be
observed for bfs organization, the gap between tune-in times
of approaches that use different histogram sizes change very
slowly for bfs organization (no line crossings are observed
for bfs organization in Figure 12).

8.2.3 Varying Packet Size

Figure 14 plots tune-in time and maximum size of
ItemQueue as a function of packet size for four different ap-
proaches: bfs/w-opt, dfs/w-opt, bfs/w-hist.∗ and bfs/w-

hist.∗. Here w-hist.∗ corresponds to the case in which a his-
togram whose cell size minimizes Equation 3, is used. Again
in this experiment k is taken as 10 and 5000 uniformly dis-
tributed objects are used. The figure shows that for uniform
data distributions, Equation 3 can provide a histogram size
that improves the tune-in performance.

8.3 Queries with Non-spatial Predicates

In order to compare t-hist/1-index and t-index methods for
supporting evaluation of kNN queries with type constraints,
we setup a scenario in which we have 100 different types.
The number of objects belonging to each type follows a Zipf
distribution with parameter 0.8 where the total number of ob-
jects is 5000. We perform two experiments using this sce-
nario. In the first experiment we compare tune-in times of
kNN queries with type constraints. Figure 15 plots the result
as a function of type rank. Type with rank 1 has the most
number of objects belonging to it. In the second experiment
we compare tune-in times of kNN queries without type con-
straints. Figure 16 plots the result as a function of type rank.

As expected, Figure 15 shows that t-index performs
much better for queries with type constraints. On the
other hand Figure 16 shows that t-index performs poorly
for queries without type constraints. Conversely, t-hist/1-
index performs much better for queries without type con-
straints and poorly for queries with type constraints. In spite
of t-hist/1-index’s poor performance for type constrained
queries, t-hist/1-index/hp method, which is powered by
the histogram pruning optimization described in Section 7,
achieves significant improvement in tune in-time, especially
for queries having constraints on infrequent types. Although
it does not outperform t-index for type constrained queries,
t-hist/1-index/hp shows a good balance between two types
of queries and can be a good choice for workloads that con-
tain sufficiently large number of queries without type con-
straints.
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9 Conclusions
In this paper, we explored the issue of energy efficient
kNN search on broadcasted R-tree indexes over location-
dependent data. We proposed an optimization technique
which improves the tune-in time of kNN search and dis-
cussed tradeoffs involved in organizing the index on the
broadcast medium. Furthermore, we investigated the use of
histograms as a technique to improve tune-in time and mem-
ory requirement of kNN search. We also studied the problem
of kNN search with non-spatial constraints. We showed that:

– The introduced w-opt search technique significantly de-
creases tune-in time, irrespective of how the index is or-
ganized (bfs or dfs) on the medium.

– Organizing the index in bfs manner provides consid-
erably better tune-in time but has a higher memory re-
quirement due to queue size.

– Using histograms can further improve tune-in time for
uniformly distributed data with the improvement being
more for dfs organization in comparison to bfs organi-
zation.

– On skewed data sets, histograms improve the tune-in
time for dfs organization. For bfs organization they
significantly cut the maximum queue size in return for
a minor increase in tune-in time.

– The use of histograms can be extended to support
answering kNN queries with type constraints, which
yields better performance when compared to building
separate indexes for each type, for workloads contain-
ing sufficiently large number of queries without type
constraints.

As future work, we plan to continue working on energy-
efficient spatial data broadcast on wireless environments, es-
pecially on the issues of caching and pre-fetching in the
context of continuous and adaptive kNN search for moving
points.
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