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Abstract— The recent popularity of 3D IC technology stems
from its enhanced performance capabilities and reduced wiring
length. However, wire congestion and thermal issues are exacer-
bated due to the compact nature of these layered technologies.
In this paper, we develop techniques to reduce global the
temperature gradient and local and global congestions of 3D
circuit designs without compromising total intra-layer wirelength
or inter-layer via count. Our approach consists of two phases.
First, we use a multilevel min-cut based approach with a modified
gain function in order to minimize the local wire congestion
and power dissipation. Then, we perform simulated annealing
with a full-length thermal analysis to reduce the circuit’s global
congestion and thermal gradient. Experimental results show that
when compared to the standard mincut approach, our thermal
gradient and local congestion are reduced by 25% each, global
congestion is reduced by over 7%. Moreover, we only see a 10%
increase in the wiring length and the number of vias required.

I. INTRODUCTION

With the recent advent of three-dimensional Integrated
Circuit technologies, there has been a positive impact on the
performance and wiring length of these ICs. Typically, the
layered placement of transistors in multiple planes (i.e. 2.5D
placement) allows for a more compact chip with inherently
better performance than one fabricated with traditional 2D
placement techniques. However, the stacked nature of these
circuits induces and aggravates problems of non-uniform ther-
mal dissipation as well as local and global wire congestion.
Simultaneously, it is necessary to minimize the wiring in single
layers as well as the interconnect among different layers so as
to maintain routability.

Previous work in the area of 2.5D placement [1], [2], [3],
[4], [5] has focused on minimizing the intra-layer wirelength
and the number of interlayer connections, or vias. The results
of [6] indicate an improvement in overall wirelength when im-
plementing the 2.5D layered placement framework instead of
equivalent traditional 2D placement. Other work has employed
stochastic methods to determine the wirelength distributions,
trends in power consumption, and performance capabilities of
2.5D ICs [7]. The conclusions derived from stochastic analysis
confirm that 2.5D chips will provide better performance with
larger compaction, but do not predict the amount of routing
congestion that could be present.

In this paper, we provide a technique to reduce both local
and global congestion in a 2.5D chip in order to increase
the routability of the chip. We also improve the tempera-
ture profile of the circuit using state-of-the-art thermal ADI

Fig. 1. 3D physical design automation

methodologies. Our approach involves a two-stage refinement
procedure: Initially, we use a multilevel min-cut based method
to minimize the congestion and power dissipation within
confined areas of the chip. This is followed by a simulated
annealing-based technique that serves to minimize the amount
of congestion created from global wires as well as improve
the temperature distribution of the circuit. We show that our
congestion and thermal gradient minimization does not have
any significant negative impact on the inter-layer wirelength
or the number of intra-layer vias.

We provide data to establish that these objectives are
pairwise independent in the sense that minimizing the thermal
gradient, for example, does not necessarily have a positive
impact on total wirelength or wire congestion. Our contribu-
tions include a flexible multi-objective optimization technique
for 3D VLSI circuits, the incorporation of accurate full-length
thermal analysis at the global placement phase in the design
process, and a thorough analysis of the correlations among
local congestion, global congestion, and thermal quality.

The rest of this paper is organized as follows. Section 2
provides preliminaries of our approach. Section 3 discusses
our min-cut based approach to reduce local wire congestion.



Section 4 explains our simulated annealing approach aimed
for global wire congestion. Section 5 provides experimental
results. Section 6 concludes our paper and describes the
ongoing research in this field.

II. PROBLEM FORMULATION

Given a sequential gate-level netlist �������
	��� , let � de-
note cells consisting of gates and flip-flops, and � denote nets
that connect the cells. The purpose of the 3D Global Placement
Problem (3D-GP) is to assign cells in ��� to a given �������
�
slots in a 3D while satisfying the prescribed area constraints.
Given a 3D-GP solution � , our primary objective is to
minimize local/global wire congestion and maximum thermal
gradient. As secondary objectives, we minimize wirelength
and via induced by � . The formal definition of the problem
is as follows.

Definition 1: 3D Global Placement (3D-GP) Problem
Given a netlist ������
	��� , a set of ��������������� slots� �  �"! �$# ! 	�% ! 	�& ! �'	 �)( �*# ( 	+% ( 	�& ( �,	.-.-/-0	 �01 �*# 1 	+% 1 	�& 1 �'2
with

�0354 � , and area constraints 6 = ( � 3 , 7 3 ) for 8:9�;<9=�
has a solution �?>@�BA �

, where each cell in � is assigned
to a unique slot. � is optimal if it satisfies the following
conditions; (1) � 3 9DC �)3 CE9F7 3 for 8G9H;B9H� , (2)� !JI � (KI -/-.- I � 1 �L� , (3)

�03NME�PO �LQ for all ;SR�UT ,
(4) wire congestion and thermal gradient are minimized.

A. Thermal and Congestion Objectives

Let V��*WX� denote the temperature of a block W . Then, the
maximum temperature gradient of the entire 3D-GP solution
is defined as follows:

V�YZ�\[^]`_P aV��*W 3 �5bSV���W O �c2d	e8f9�;c	�T^9g�
Given a block W from the 3D-GP problem, we define the local
wiring congestion cost �h�i��Wj� as:

�h�i�*WX�<� klnmporq lpsnteuv0w C �<Cxbg8
This value corresponds to the minimum number of wires
required to construct the tree representation of a net of sizeC �<C . Then, the local congestion of the entire solution is given
by:

�y�z�\[i]`_{ a�h�i��W 3 �5b|�h�i�*W O �c2d	e8f9�;c	�T^9g�
For any two adjacent blocks W 3 , W O from the 3D-GP solution,} 3~O

denotes a set of all hyperedges having cells in bothW 3 and W O . Then, the global congestion at the boundary� W 3 	�W O,� , denoted Y��i�*W 3 	�W O , is simply C } 3~O C . Then, the
global congestion of the entire solution is given by:

Y��Z��[i]`_P xY��i�*W 3 	�W O ��bSY��i��W
�n	�W����c2
where W 3 and W O are adjacent and W � and W � in the given
3D grid.

Fig. 2. 3D thermal modeling

B. Wirelength and Via Objective

We model the netlist ��� using a hypergraph
} ������	��K�:� ,

where the vertex set � represents cells, and the hyperedge set�J� represents nets in ��� . Each hyperedge is a non-empty
subset of � . The x-span of hyperedge � , denoted �{� , is the
maximum distance between any x-coordinates of cells in � .
The y-span of hyperedge � , denoted �{� , is the based on the
y-coordinates. Then the wirelength of a hyperedge � , denoted�J� is simply � ��� �P� . The wirelength of the entire 3D-GP
solution is: � ����k� mpor� �J�
The via cost of a hyperedge � is the z-span of � , denoted � � ,
is the maximum distance between any z-coordinates of cells
in � . Then, the via cost of the entire 3D-GP solution is:����6���k� mpor� � �

III. 3D THERMAL ANALYSIS

A high-speed thermal simulator was implemented based
on the three dimensional Alternate Direction Implicit Method
(3D-ADI) [8]. The simulator has a linear runtime, and memory
requirement. The motivation for a thermal driven partitioning
was to maximize the efficiency of heat transfer to the environ-
ment, and thereby reduce the maximum temperature gradient.
A brief explanation of the 3D-ADI method is provided in this
section.

The temperature profile of a design is governed by the
following partial differential equation for heat conduction:� ����� V��,�� 	��+�� � ��� - � ¡ �,�� 	+VK���jV��,�� 	+�+� � �E¢ �,�� 	��+� (1)

where � is the density of the material, �<� is the specific heat
of the material,

¡
is the thermal conductivity of the material, V

is the time dependent temperature, and ¢ is the heat generation
rate. The solution for this equation is set the by the following
boundary condition equation:¡ �,�� 	�VK� � V��,�� 	��+�� � 3 � � 3 V��,�� 	+�+�h��£ 3 �,��x¤¦¥ 	+�+�
where � 3 is the heat transfer coefficient, and £ 3 is an arbitrary
function on the boundary surface.



In order to solve Equation 1 using the finite difference
method, it has to be discretized in the time as well as
space domain. Assuming that the material is homogenous,
and the thermal conductivity

¡
independent of temperature,

the divergence of the product of thermal conductivity and
temperature gradient can be rewritten as:

� V��*#�	+%{	�&@	��+�� � ��§j¨'� ( V��$#"	+%{	�&P	+�+�� # ( � � ( V��$#"	+%{	�&P	+�+�� % ( �
� ( V��$#"	+%{	�&P	+�+�� & ( © � 8�nª ¢ �$#"	+%{	�&P	+�+�

where §�� ¡¬« � � � . The second order partial differential terms
in the above equation can be approximated according to central
finite difference method. For example, the second order partial
derivative with respect to x can be approximated as

� ( V� # ( C
l3 q O q �: V l3¯® ! q O q � bE°±V l3 q O q � � V l3*² ! q O q ���³�#{� ( �µ´ (� V l��³j#¬� (

Following this step, the average of an explicit and implicit
update, also known as the Crank-Nicholson method, is applied.
After applying these updates to the previous equation, we have

V l ® ! b�V l³j� ��§j¨ ´ (� V l ® ! � ´ (� V l°@��³j#¬� ( � ´ (� V l ® ! � ´ (� V l°@��³j%¶� ( �
´ (· V l ® ! � ´ (· V l°¶��³X&n� ( © � 8� � �

In order to improve the run time, an Alternate Direction
Implicit (ADI) scheme developed by Douglas and Gunn is
used. Hence, the equation for x-direction is

V l ® !+¸�¹ bSV l � � � ´ (�° �$V l ® !+¸�¹ � V l � �� � ´ (� V l � � · ´ (· V l � ³j�� ��� ¢
the equation for y-direction is

V l ® (�¸�¹ bSV l � � � ´ (�° �$V l ® !+¸�¹ � V l � �� � ´ (�° �$V l ® (c¸�¹ � V l � � � · ´ (· V l � ³j�� ��� ¢
the equation for z-direction is

V l ® ! b�V l � � � ´ (�° �*V l ® !�¸�¹ � V l � �� � ´ (�° �$V l ® (c¸�¹ � V l � � � · ´ (·° �*V l ® ! � V l � � ³j�� � � ¢
The above equation is then solved iteratively for several
iterations until a steady state temperature has been achieved.

The 3D-ADI algorithm is shown in Figure 3. Each time
step is split into three equal smaller time steps, with only one
direction implicit in each step. Since each of the equations
in ADI method can be represented as a tridiagonal system
of equations, and hence be solved using the Thomas algo-
rithm, run time is linearly proportional to the number of

============================================
Algorithm: 3D THERMAL ADI
Input: BN,dx, dy, dz, dt, L, M, N, Tamb
output: Ti,j,k
--------------------------------------------
read physical parameters from tech-file;
read x, y, z dicretization size L, M, N
read x, y, z, and time discretization size:

dx, dy, dz, dt
read block info BN and build material matrix
build temperature matrix with all temp
nodes assigned to ambient temperature Tamb
for all T(i,j,k)

compute g, rho, and Cp in the x,y,z dir;
for all T(i,j,k)

compute rx, ry, and rz in the x,y,z dir;
do

x-ADI for all i,j,k
y-ADI for all i,j,k
z-ADI for all i,j,k

while (T.(n+1)(i,j,k) - T.n(i,j,k) != 0)
return Ti,j,k;
============================================

Fig. 3. 3D-ADI thermal simulation algorithm

temperature nodes. Once a steady state temperature profile has
been achieved, various physical parameters such as maximum
temperture, temperture gradient, and average temperture are
calculated.

IV. LOCAL WIRE CONGESTION MINIMIZATION

The purpose of this algorithm is to balance the amount of
local congestion while maintaining wirelength and via results
comparable to those of pure mincut-based techniques. The
approach involves modifying the gain function of a multi-level
cutsize based partitioner to reduce local congestion.

Our cut sequence is an extension of the two cut sequence
techniques used in [6]. Their first method performs via-
minimizing interlayer cuts (z cuts) before performing intra-
layer cuts �$#"	+%¶� to minimize the 2D wirelength. Their second
cut sequence does the opposite, making all �$#�	�%¶� cuts first be-
fore performing z-cuts to achieve minimal wirelength. For the
purposes of maintaining a balanced combination of via count
and wirelength during our algorithm, we devise a new cut
sequence, �*&P	+#�	�%{	�&P	+#�	�%{	.-.-/-+� . We experimentally determined
that the best results in terms of balanced wirelength and via
count were produced by this new cut sequence.

Instead of focusing only on wirelength and via minimization
while making cell moves, LC-CUT reduces the overall local
congestion as necessary. The necessity of congestion-driven
moves is determined by a variable called thresh, which con-
trols the nature of gain computations. Figure 3 shows a pseu-
docode representation of this algorithm, which is explained in
detail below.

A. Initialization Phase

The first stage of the LC-CUT algorithm involves the
initialization of a bucket structure, which stores the weighted
gains of all cells in C. First, all cells in the netlist are



============================================
Algorithm: LC-BICUT
Input: netlist, area constraint, threshold T
output: bipartitioning result
--------------------------------------------
g_c: cutsize gain
g_l: local wire congestion gain

[Bi,Bj] = initial_partition();
compute g_c and g_l for all cells;
compute LC(Bi) and LC(Bj);
old = LC(Bi) - LC(Bj);
while (there exists a free cell)

c = maximum gain cell;
update g_c for neighbors of c;
if (cong_mode)

update g_l for neighbors of c;
new = LC’(Bi) - LC’(Bj);
if (new < T)

cong_mode = TRUE;
if (|old| > T & |new| > T & old*new < 0)

recalculate g_l;
else if (|old| <= T < |new|)

recalculate g_l;
else if (|new| <= T < |old|)

g_l = 0 for all cells;
old = new;

return Bi and Bj;
============================================

Fig. 4. algorithm

inserted into either W 3 or W O such that the area constraints are
satisfied. Each cell will have the opportunity to move from
its current block to a neighboring block in the later stages of
the algorithm. Next we perform the computation of ¢nº � ª � , the
cutsize gain. Additionally, the local congestion gain (defined
below) is also computed. For a given cell c, moved from Bi
to Bj, the change in congestion for block W 3 , denoted ´ 3 , is
computed as follows:

´ 3 ���h�i��W 3 �5bS�y�i�*W 3 b� ª 2±�
´ O is computed using �y�i�*W O � . Finally, the local congestion
gain of moving ª from its current block W 3 to a neighboring
block W O is given by:

¢ �0�BC �y�i�*W 3 �5b|�h�i��W O �/C±b\C �y�i�*W 3 �NbE�h�i��W O � � ´ 3 � ´ O C
The local congestion values for the two blocks Bi and Bj are

calculated. We then perform the initialization of two important
variables that will determine the frequency of congestion-
driven moves. The first is a threshold value V , for which the
maximum cell degree must be a lower bound. We use this
lower bound value plus 4% of �h�i�*W 3 � � �y�i�*W O � . This is
to ensure the accuracy of congestion gain computations. The
second is cong mode, a boolean which, if true, will initiate
local congestion-driven cell moves. Otherwise, the moves will
be made purely on the basis of ¢nº , the cutsize gain. Then, the
difference between the local congestions of the two blocks is
stored.

B
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Fig. 5. (a) Optimization mode for LC-CUT, (b) example for local wire
congestion computation.

B. Cell Movement Phase

The second stage of the LC-CUT algorithm continuously
moves cells of maximum gain until there is no more positive
gain left. The cell of maximum gain, c, is extracted from the
bucket. Then, we make sure that moving c will not result in
an area constraint violation. We update W 3 and WgbiT , making
the cell move, and updates ¢ º for all neighbors of ª . Then, we
check to see if the balance gain computations are necessary,
and if so, updates all ¢ � for all neighbors of ª , according to
the above equation. These updates for local congestion gain
can be done incrementally since the values of � � for each
block are stored after every move and the calculations for ´ 3and ´ O are trivial.

The overall gain is calculated as a weighted cost function
of ¢�º and ¢ � . If this gain value is less than zero, then the loop
is exited and W 3 and W O are returned. Otherwise, the values
of �h� are updated, and �0» � becomes �h�i��W 3 �¼b½�h�i��W O � . As
shown in Figure 2, the magnitude of the difference between�h�i��W 3 � and �h�i�*W O � determines whether or not congestion-
based moves are made.

During the next portion of the algorithm, the values of ¢ � � ª �
are updated if necessary. Figure 2 shows the four regions of
possible values for local wire congestion balance ³ : 6 , W ,� and ¾ . When ³ is in W or � , the congestions in W 3
and W O are relatively equal. However, when ³ is in 6 or¾ , one block is significantly more locally congested than the
other. For this reason, local congestion is considered when ³
is in 6 or ¾ , and it is ignored when ³ is in W or � . This
serves to improve runtime since congestion gain calculations
are unnecessary when ³ is in

� beVJ	�V � .
Certain moves that cause ³ to shift from one particular

region to another will necessitate a bucket re-initialization.
The moves 6zA ¾ and ¾ A¿6 result in the re-computation
of g (c) for every cell c and a bucket reset. This is necessary
since the sign of ³ has changed, and according to the equation
above, ¢ � � ª � will change. The algorithm checks for a cell move
from  aWÀ	��j2 to  a6�	 ¾ 2 . For this case, local congestion must



again be considered, so ¢ � is computed and the bucket is reset.
We check for a transition of ³ from  a6�	 ¾ 2 to  aWÀ	��j2 . In
this situation, the local congestion gains for all cells are set
to zero and the bucket is reset, and therefore contains only
cutsize gain information.

Figure 4 depicts an example of a stage in LC-CUT where
the highlighted cell � is the one to be moved. Currently,�h�i�*W 3 �Á��Â and �h�i��W O �Ã��Ä . Therefore, ³Å��° . Then,¢ º.�����\�Æ8ÀbÇ8½b�8��Èb:8 , ´ 3 �Èb�° and ´ O �È8 . So,¢ � �*�����BC Â�b|ÄPCab\C Â�bSÄfbS° � 8dCp��8 . After moving cell � ,�h�i�*W 3 �<��Ä and �y�i�*W O �<��É . Then, ³Ç�Êb:8 . Additionally,
the cell gains for 6 , W , � , ¾ , � and

}
must be updated

before the next cell move is made.

V. GLOBAL WIRE CONGESTION AND THERMAL
OPTIMIZATION

A. Overview of the Approach

We use a simulated annealing-based block movement tech-
nique for minimization of global wirelength, via count, global
wire congestion and maximum thermal gradient of the place-
ment solution obtained above. Since local pair-wise conges-
tion, 2D wirelength and via count have already been mini-
mized, it is sufficient to swap entire blocks (rather than indi-
vidual gates, or clusters of gates) and check for improvements
over the previous solutions. We use the min-cut results as
the initial solution and compute initial temperature T0. The
temperature is then decremented in a standard one-parameter
exponential format ( V 3Ë® ! ��Ì^-±V 3 	�ÌEÍÎ8a� . We let �Ï�*VK� be
the number of random block swaps made at every temperature
T. The cost � of a global placement solution is defined as
follows:���\Ì ! -a����6 � Ì ( - � � � Ì ¹ -.Y�� � ÌdÐJ-.V�Y
where ����6 ,

� � , Y�� , and V�Y respectively denote the via,
wirelength, global wire congestion, and maximum thermal
gradient cost as discussed in Section II. As is standard with all
annealing algorithms, improvements are guaranteed only at a
significant runtime expense. In order to make the procedure as
efficient as possible, it becomes necessary to perform highly
optimized incremental evaluation, which is described in detail
below.

B. Incremental Global Wire Congestion Computation

Recall the global congestion metric: Given a boundary� W 3 	�W O � between neighboring blocks W 3 and W O , we defined
the boundary congestion to be the number of hyperedges
crossing that boundary, denoted by C } 3~O C . That is: Y�� 3~O �C } 3~O C . Consider such a hyperedge � in

} 3ÑO
. Let its bounding

box lie between �*#¬Ò 3 l 	+%pÒ 3 l 	�&xÒ 3 l � and �$#¬ÒeÓ'�¶	�%pÒeÓ'�¶	�&aÒeÓ'���
as shown in Figure 5 below.

Note that when two blocks are swapped, boundaries need
to be updated only for nets in Hij. This property allows us
to conveniently ignore all nets that are not incident upon the
two blocks central to the current move, thereby achieving
remarkable improvements in overall runtime. We now define

L1

L1

L1

L1

L1
Bi

Bj

Fig. 6. Incremental maze routing

acyclic paths between the source and destination blocks of h
(say W � ¤ and W �xÔ ) as finite sequences of boundaries:�^���P���� xÕx8�	�Õ,°¶	.-/-.-¬	�Õc�52d	�Õx8
Ö×W � ¤ 	�Õ'�Ö×W �xÔ 	�Õc;JR��ÕØT
The boundary congestion of a path is simply defined to be the
sum of individual congestions of its component boundaries.
Once Bi and Bj have been randomly selected for the Ith
move, the boundary congestion contribution of all nets h in the
corresponding Hij is computed. Then, we perform incremental
maze routing on h within the bounding box. During this
process, we use Dijkstra’s algorithm to compute the path of
least boundary congestion for every such h. The difference in
global congestions of the solutions before and after the move
is measured, and ³i�i�*�n� is updated.

Given W 3 and W O , the blocks to be swapped for the i-
th move at temperature V , we only update �{� and � � , the
wirelength and via contributions of every hyperedge � in

} 3ÑO
.

Thus, ���d6 and

� � can be incrementally updated at relatively
low runtime costs.

C. Thermal Analysis

Though the 3D-ADI thermal simulator has a linear runtime
and memory requirement, and is unconditionally stable, it is
still too expensive from a runtime point of view to call a full
thermal simulation at every move in simulated annealing. A
less accurate yet faster alternative approach that was adopted
to solve this problem was to call a full thermal simulation
every ’K’ moves, where ’K’ is dependent on the circuit
being analyzed. A brief synopsis is provided in the following
paragraph.

In the beginning, a full thermal simulation is called at
the beginning of simulated annealing. Following this, ’K’
moves are made without any thermal simulation. These ’K’
solutions are evaluated and compared to each other using
the cost function which is dependent on global congestion,
and wire length. The best solution determined within these
K moves is thermally simulated and is compared to previous
fully simulated solution on the basis of global congestion, wire
length, as a well as thermal profile. The better solution is
then set as the best current solution, and simulated annealing
continues on this solution. This process is repeated for ’K’
moves, after which a full thermal simulation is called on the
best solution among the latest ’K’ moves. This solution is



again compared with the previous best solution based on local
congestion, wirelength, and thermal. The simulated annealing
process is repeated until the cost is brought below the desired
amount.

VI. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++/STL, compiled
with gcc v2.96 with -O3, and run on Pentium III 746 MHz
machines. The benchmark set consisted of six circuits from
ISCAS89 and five circuits from ITC99 suites. The relevant
statistical information of the benchmark circuits is shown in
Table 1. We ran our experiments using 8 x 8 x 4 block
placement. The pure mincut method was implemented using
our own multilevel recursive bipartitioning with a (z,x,y)
cut sequence, which is a balanced combination of the two
techniques suggested in [6]. The LC-CUT algorithm was run
under the same framework as the aforementioned.

Four flavors of LC-CUT were used on the benchmark
set, with suitably modified gain functions. The results are
presented here in Table 1. The first flavor defined gain purely
in terms of reduction in local wirelength and via numbers,
the second focused on local congestion, the third restricted
gain to power optimization, and the fourth balanced all these
objectives. The results reveal that minimizing along only
one of these variables is unlikely to improve the remaining
parameters in the solution space, and that the best way to
ensure balanced improvement in all objectives is to select
appropriate nonzero weights for all terms in the gain function.

Furthermore, our second simulated-annealing based phase
provides uniform improvement over the LC-CUT results, as
seen in Table 2. Again, four cost functions were tried, and
uniform improvement was achieved by using experimentally
determined balanced weights. Local congestion is not reported
here; since no changes are made below the block-level at this
stage, local wire congestion remains unchanged from LC-CUT.

VII. CONCLUSIONS

Thus, we achieve thermal gradient and local congestion
improvement of 25% over the standard mincut approach,
global congestion improves by 7%, and the wirelength/via
numbers are not raised by more than 10%. The versatility
of the approach allows us to target one or more of these
design objectives and suitably alter the gain function to provide
user-specific particular results in this large solution space. We
are currently devising an adaptive approach to automatically
determine the globally optimal values of weights in the gain
function of LC-CUT.
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TABLE I
LOCAL WIRE CONGESTION AND THERMAL OPTIMIZATION RESULTS

ckts wirelength/via-driven local-congestion-driven power-driven all
name wire via l-wc ther wire via l-wc ther wire via l-wc ther wire via l-wc ther

s5378 2315 232 26 12.39 3386 418 14 11.09 2517 281 21 13.5 2374 267 19 13.5
s9234 2232 250 59 30.23 3931 476 16 19.52 2639 276 54 16.98 2726 271 36 26.24
s13207 2332 293 77 11.7 4793 618 21 27.78 2934 347 99 21.48 3139 413 63 18.23
b14 opt 5633 635 40 34.81 8204 1110 17 44.67 7045 724 39 30.95 7024 727 22 34.3
b15 opt 8478 960 40 20.86 12418 1856 18 22.04 9445 1081 41 22.66 9355 1119 39 29.42
b20 opt 8859 1039 70 19.51 15185 2184 27 23.5 10582 1057 60 20.81 11035 1123 49 17.36
b21 opt 9445 1069 86 28.95 14750 1732 27 20.54 10631 1182 62 16.31 11259 1304 56 18.92
b22 opt 11020 1410 93 25.73 19351 2847 32 16.75 12748 1346 87 18.4 12154 1321 73 19.57
s38417 3945 433 144 10.08 9560 1548 55 9.94 4234 445 135 14.2 4578 510 110 12.07
s35932 2922 323 72 45.93 7292 944 30 18.99 3951 393 80 10.47 3864 389 72 11.48
s38584 4645 407 120 16.15 10845 1021 31 20.03 5420 623 126 14.34 5524 636 84 25.75
RATIO 1.00 1.00 1.00 1.00 1.77 2.09 0.35 0.92 1.17 1.10 0.97 0.78 1.18 1.15 0.75 0.88
TIME 216 1467 844 1622

TABLE II
GLOBAL WIRE CONGESTION AND THERMAL OPTIMIZATION RESULTS

ckts wirelength/via-driven global-congestion-driven thermal-driven all
name wire via g-wc ther wire via g-wc ther wire via g-wc ther wire via g-wc ther

s5378 2095 257 27 13.40 3296 298 23 9.72 2741 299 29 13.50 2235 278 27 11.13
s9234 2068 244 30 33.18 3998 360 33 18.58 2845 301 42 15.79 2106 255 38 17.54
s13207 2357 215 31 12.85 4514 491 24 26.84 3120 355 55 20.15 2587 233 29 24.91
b14 opt 5071 649 57 37.34 8067 953 60 43.73 7641 768 84 32.79 5548 688 66 32.09
b15 opt 7491 942 100 25.39 12633 1734 82 21.10 10245 1254 108 20.81 7698 1054 98 24.17
b20 opt 8883 945 88 22.28 15076 2033 61 22.56 11598 1200 99 19.31 9056 956 72 21.63
b21 opt 9189 1034 95 30.15 13514 1576 60 19.60 12455 1278 124 16.55 9312 1154 71 15.39
b22 opt 10146 1242 102 29.58 21399 2936 92 15.81 14106 1569 146 17.56 12454 1465 103 19.21
s38417 3615 464 49 10.30 9520 1433 24 9.01 4415 455 56 13.14 3945 497 28 18.31
s35932 3059 325 38 49.98 7343 823 24 18.05 4046 416 42 9.53 3264 377 29 12.23
s38584 4628 566 54 19.71 10501 890 52 19.09 5745 667 88 12.30 4956 604 66 15.70
RATIO 1.00 1.00 1.00 1.00 1.87 1.97 0.80 0.79 1.35 1.24 1.30 0.67 1.08 1.10 0.93 0.75
TIME 2034 7936 9951 11114


