Rate Control for Threads in Streaming Applications *

Hasnain A. Mandviwala | Nissim Harel
mandvi@cc.gatech.edu, nissim@cc.gatech.edu,
Umakishore Ramachandran | Kathleen Knobe *
rama@cc.gatech.edu, kath.knobe @hp.com
April 5, 2004
Abstract

A large emerging class of interactive multimedia streaming applications can be represented
as a coarse-grain, pipelined, dataflow graph. Such applications are ideal candidates for exe-
cution on a high-performance cluster. Each node in the graph represents a task component
of the streaming application, where each task is consuming data from preceding stages, and
producing data for subsequent stages. The amount of data computation performed by a task,
is dependent on a multitude of design issues such as task algorithm latency, data dependency,
resource availability etzc.One common characteristic of these applications is the use of current
data: A task would obtain the latest data from preceding stages, skipping over older data if
necessary to perform its computation. Such applications when parallelized, waste resources
in terms of processing and memory on data that is eventually dropped from the application
pipeline. To overcome this problem, we have designed and implemented a distributed Rate
Control algorithm that dynamically adjusts the processing rate of each thread to meet appli-
cation requirements. Optimizations incorporating application-level knowledge such as data-
dependencies between producers and consumers, further improve performance. A color-based
people tracker application is used to explore the performance benefits of the proposed Rate
Control algorithm. We show that Rate Control reduces the application’s memory footprint by
80% when compared to our previously published results. Optimizations further increase the
application’s throughput by 226%, and reduce latency by 40.5%.

*Submitted to ICPP 2004; The work has been funded in part by an NSF ITR grant CCR-01-21638, NSF grant CCR-
99-72216, the Yamacraw project of the State of Georgia, and the Georgia Tech Broadband Institute. The equipment
used in the experimental studies is funded in part by an NSF Research Infrastructure award EIA-99-72872, and Intel
Corp.

fCollege of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, Georgia

YHP Labs - Cambridge Research Laboratory, One Cambridge Center, Cambridge, Massachusetts

1 Introduction

Low-fi Low-fi
tracker records
D D
rames
records

Camera Display
High-fi
tracker

Figure 1: Vision Application pipeline.

There is an emerging class of streaming multimedia applications that are highly parallel and
require system support and higher-level abstractions for improved performance and programming
ease. Figure 1 illustrates an example of such a streaming vision application pipeline. The pipeline
consists of independent tasks implemented by a single thread or a group of threads. These tasks
are generally designed to contain a loop, where data is first consumed from a buffer, processed or
mutated, and then emitted before allowing the task to loop again on new input (see figure 2). The
structure of each task typically consists of repeatedly getting data from input buffers, processing
the data, and producing data as a result of the processing (see figure 2). The tasks are independent
of one another except for the input data dependencies pre-programmed in the task-graph, leading to
differential production rates for the different tasks depending on the complexity of the processing.

To alleviate the problem of variable production/consumption rate along with the problem of
non-FIFO and out-of-order access to items sometimes required in such application pipelines, tasks
are connected by efficient, globally accessible, buffered communication abstractions. For example,
Stampede [9, 11, 10] provides Channels and Queues, and APIs for performing I/O on these data
abstractions.

Since tasks in successive pipeline stages do not have the same rate of consumption/production,
a task may at times have to drop or skip-over stale data to access the most recent data from its input
buffers. Consuming fresh data helps ensure the production of fresh output, a necessary condition
for interactive multimedia pipelines. To enable such behavior, systems such as Stampede provide
tasks the ability to get the latest [9] item from an input channel.

Skipping of data may be important to keep the interactive nature of applications, but it is in-
directly responsible for the performance degradation of applications. Since computation is used
to produce all data, unused data reflects on computations wasted on producing it. The occurrence
of wasted computation especially in a computationally demanding vision application is a cause of
poor use of scarce resources, which in-turn causes a reduced application performance.

The best solution would be to never produced wasted items in the first place, saving both pro-
cessing and memory resources. However, static determination of unneeded items cannot be made
due to the interactive nature of such applications. The only way to eliminate wasteful resource
consumption is by dynamically controlling the rate at which each task produces data. Such rate-
control conserves resources and further improves application performance in resource-constrained
environments.

In this paper, we propose a distributed Rate Control algorithm for threads in interactive stream-
ing multimedia applications. The algorithm uses the dynamic production rate of each stage of the
pipeline to give feedback to earlier stages. This feedback helps each stage adapt its own produc-

tion rate to suit the dynamic needs of the application. Optimizations incorporating application-
level knowledge such as data-dependencies between consumers and producers further improve
application performance in terms of throughput and latency. We use a color-based people tracker
application to explore the performance benefits of the proposed Rate Control algorithm. We show
that Rate Control reduces the memory footprint by 80% ! for this application compared to our
previously published results. Further, we show that the optimizations increase the throughput by
226%, and reduce the latency by 40.5% .

In section 2 we review related work and compare them with Rate Control. In section 3 we
describe the run-time instrumentation that enables the Rate Control optimization. In section 4 we
explain our performance evaluation methodology. We present comparative results in section 5, and
conclusions in section 6.

2 Related Work

The Rate Control mechanism we propose strives to optimize available resources to best meet ap-
plication needs. Prima facie, this mechanism seems similar to the notion of guaranteed Quality of
Service (QoS) in multimedia systems. However, there are some important differences. Most QoS
provisioning systems work at the level of the operating system, e.g.,reserving network bandwidth
for an application or impacting the scheduling of threads. Our Rate Control mechanism, requires
only minimal instrumentation in the programming runtime environment above the OS-level. QoS
provisioning typically requires the application writer to understand, and in many cases specify, the
application’s behavior for different levels of service (see [15, 1, 13, 7]). However, Rate Control
requires little involvement by the application writer even at the application-level. Rate Control
also exploits the periodic nature of streaming applications, and simplifies the application adapta-
tion to incorporate changes in resources availability. Functionally, Rate Control does not guarantee
a specific level of quality of service. Instead, it makes sure that application task components ex-
ecute at an equilibrium rate such that resources are not wasted on computations producing data
that are eventually thrown away. Theoretically, we consider Rate Control to be orthogonal to QoS
provisioning.

The Rate Control mechanism is complementary to the problem of Garbage Collection (GC)
[14, 3] in general, and GC in streaming applications [8, 2, 6] in particular. Both Rate Control
and GC are similar in that they are dynamic in nature, and have the common goal of freeing
resources that are not needed by an application. But, while GC algorithms deal with resource
reclamation, Rate Control directs the pace of data production to match available system resources
and application pipeline constraints. It should be noted, however, that the rate control mechanism
does not eliminate the need to deal with garbage created during execution, although it reduces the
magnitude of the problem.

3 Rate Control

In this section we present our distributed Rate Control algorithm.

'On a resource constrained environment where all application threads were run on single physical node.

3.1 Factors Determining Rate of Tasks

Pipelined streaming applications such as the one illustrated in figure 1, have similarities with sys-
tolic architectures [5]. It is therefore useful to talk about a rate of execution for the entire pipeline.
This is the rate at which a processed output is emitted from the right end of the pipeline as fresh
input is being provided from the left end. Ideally, every pipeline stage should operate at the same
rate such that no resources are wasted at any stage. However, in contrast to a systolic architecture,
the rate is different at each pipeline stage of a streaming application. Intrinsically, the rate of each
pipeline stage is determined by the changing size of the input data, and the amount of processing
required on it. Since computation is data-dependent (for example, looking for a specific object
in a video frame), the execution time of a task for each loop iteration depicted in figure 2 may
vary. Additionally, the actual task execution time is subject to the vagaries of OS scheduling and
computational load on the machine. Unfortunately, these parameters are fully known only at run
time.

3.2 Eliminating Wasted Resources

As discussed earlier, skipping over unwanted data may allow an application to keep up with its in-
teractive requirements, but it does not allow savings on computations already executed to produce
such data. We use the term wasted computation to denote task executions that produce data even-
tually unused by downstream threads. Unfortunately, a priori knowledge of parameters described
earlier (section 3.1) is required to eliminate wasted computation. Even though the future cannot
be determined at any point in time, virtual time (VT) systems such as Stampede, allow inferences
to be made about the future local virtual time using task-graph topology. This technique is used
to eliminate irrelevant resource usage. Systems such as Stampede associate a notion of virtual
time with each thread in a pipelined application. Furthermore, data produced by each thread is
tagged with a virtual timestamp. In our earlier work [2], we proposed algorithms for eliminating
upstream computations using the virtual times of timestamped data requests made by downstream
threads. However, such techniques have shown limited success [2]. The cause described is such
that in many interactive application pipelines, upstream threads (such as a digitizer) are quicker
than downstream threads (such as an image tracker). As a result, it generally becomes too late
to eliminate upstream computations based on local virtual time knowledge. This earlier work did
not make use of the processing rate of threads. If the processing rate of downstream stages were
made available to the runtime system, it would become possible to control the rate of production
of timestamped items in earlier stages. This would retroactively eliminate unwanted computation
before data production. Essentially, the Rate Control algorithm proposed here does just that by
creating a balanced processing pipeline by the judicious use of computational resources.

The Rate Control mechanism we describe next is in the context of the Stampede programming
system that provides abstractions called channels and queues that hold timestamped data items.
Stampede provides put/get API calls for accessing data items in these abstractions. The reader is
referred to earlier publications [10] for further details.

3.3 Distributed Rate Control

We now describe a distributed algorithm whereby tasks constantly exchange local information to
change their rate of data item production.

Start Loop Execution {

Code executed

Thread Blocks, Waits for Data
3

Code executed J

} F¥ End Loop Execution */

Figure 2: Measuring the Sustainable Thread Period (STP)

3.3.1 Sustainable Thread Period

We define sustainable thread period (STP) as the time it takes to execute one iteration of a thread
loop. STP is dynamically computed locally by a thread with clock readings taken at the end of
each loop iteration (see figure 2). Since the STP is measured at runtime, it captures all factors
(see section 3.1) affecting the execution time of a thread. It is important to note that blocking
time (i.e.,time spent waiting for an upstream stage to produce data) is not included in the STP. In
essence, a current STP value captures the minimum time required to produce an item given present
load conditions. This STP value is used to compute the summary STP value described below,
which is in-turn propagated back upstream to other tasks in the pipeline.

3.3.2 Computation of Summary STP and Backward Propagation

For generality in the Rate Control algorithm, a node may either be a thread, channel, or a queue.
Each node has a backwardSTP vector that contains STPs received from downstream nodes (see
figure 3). Using this vector, along with the STP generated by the node itself (if this is a thread
node), each node computes a summary STP value that is then propagated to upstream nodes on
every put/get operation.

The summary STP value computation at a node can be a min or a max operation>. In the
example shown in figure 3, node A has output connections to nodes B-F. The downstream nodes
B-F report STP values of 337, 139, 273, 544, and 420, respectively. Consider the pipeline depicted

2A user-defined function can also be used here. It can be constructed with the knowledge of the application
topology but is bounded in performance by the min and max functions

273

544

420

backwardSTPVec

Thread A

Figure 3: STP propagation in the pipeline (left) using the backwardSTP Vec (right)

e QUEOUE

=r oUtput

......................... - Output

output

- QUtput

e QUEPUL

Figure 4: Min (left) and Max (right) operators

in the left half of figure 4, in which nodes B-F are end points of the computation. In this case,
Node A uses a min operation to compute the summary STP to sustain the fastest consumer (C) that
has the smallest STP. Consider the pipeline shown in the right half of figure 4. In this case, A is
a thread connected to data abstractions represented by nodes B-F. Node A uses a max operation
on its own STP value and those in the backwardSTPVec to compute the summary STP value for
propagation.

Once the summary STP value is computed, it is propagated to upstream nodes. Source threads,
i.e.,threads on the left of the pipeline in figure 1, use the propagated summary information to adjust
their rate of data item production. This cascading effect indirectly adjusts the production rate of all
upstream threads.

Both the computation and propagation of STP values occur in a distributed manner in the
pipeline, i.e.,the summary STP computation is completely local to a node, and STPs are exchanged
with neighboring nodes by piggy-backing them on every put/get operation made to channels and
queues.

3.4 Discussion

The Rate Control algorithm is predicated on the following two assumptions:

e Threads always request the latest item from its input sources; and

e To achieve optimal performance, the application task graph is made available to the runtime
system.

No additional application information is needed for the Rate Control algorithm. It is possible
that application defined functions for computing the summary STP values for each pipeline stage
may lead to better performance and/or resource usage. However providing such knobs to the
application increases programming complexity and hence is not considered in this study.

Note that the computation of summary STP values in a distributed manner has no implication
on application correctness. It simply impacts the performance and usage of resources. The dis-
parity between an optimal usage of resources predicted by an oracle and the actual achieved by
the Rate Control algorithm depends on how quickly the summary STP values are propagated to
neighbors. At the same time, it is essential in such interactive applications that the performance
(e.g.,delivered frame rate in a vision pipeline) is maximized commensurate with resource availabil-
ity. For example, a temporary increase in load may result in a large STP for a particular stage of
the pipeline. So it is imperative that communication of STP values among neighbors happen often
enough that the performance does not become sub-optimal. However, aggressive communication
of STP values leads to overhead that can also hurt performance.

In our Rate Control algorithm, we assume that propagation only occurs on put/get operations.
Thus resource usage and performance are expected to be slightly worse than in an optimal situation
which can be discerned by an oracle.

4 Implementation and Performance Evaluation

We have used the Stampede distributed programming environment as the test-bed for our Rate
Control algorithm deployment. Implemented in C, Stampede is available as a cluster program-

7

LEGEND :

O Computation Thread Ch M - Cs
= 5

[Stampede Channel ange otion Target Model 1

ci Detection Mask c Detection Location

- Video e C% Model 1

Digitizer
Frame r/ \c 9
N C8
. Histogram

Histogram V) Target Model 2
& Model c7 Detection Location

Model 2

Figure 5: Color-based People Tracker application pipeline

ming library for a variety of platforms including x86-Linux and x86-WIN-NT. We modified the
Stampede runtime to compute and piggy-back STP values on API calls to channels and queues.

A color-based people tracker application (figure 5) developed at Compaq CRL [12] is used to
evaluate the performance benefit of the Rate Control algorithm. The tracker has five tasks that
are interconnected via Stampede channels. Each task is executed by a Stampede thread. The
application consists of (1) a Digitizer task that outputs digitized frames; (2) a Background task that
computes the difference between the background and the current image frame; (3) a Histogram task
that constructs color histogram of the current image; (4) a Target-Detection task that analyzes each
image for an object of interest using a color model; and (5) a GUI task that continually displays the
tracking result. Note that there are two target-detection threads in figure 5 where each thread tracks
a specific color model. The color-based people tracker application with its fairly sophisticated task-
graph provides a realistic environment to explore the resource-savings made possible by the Rate
Control algorithm.

The performance of the application is measured using the following metrics: latency, through-
put, and jitter. Latency measures the time for an image to make a trip through the entire pipeline.
Throughput is the number of successful frames processed every second. Jitter, a metric specifically
suited for streaming applications, indicates the time difference between successive output frames.
The average jitter and standard deviation are measures of the smoothness of the output frame rate.

The resource usage of the application is measured using the following metrics: memory foot-
print, percentage wasted memory, and percentage wasted computation. Memory footprint provides
a measure of the memory pressure generated by the application. Intuitively, it is the integral over
the application memory footprint graph (Figure 9). Mean memory footprint is the memory occu-
pancy for all the items in various stages of processing in the different channels of the application
pipeline averaged over time. The mean memory footprint is computed as:

MU, = S(MUy,,, X (tiz1 —t3))/(ty — to)

Standard deviation of the memory footprint metric is a good indicator of the “smoothness”
of the total memory consumption; the higher the deviation the higher the expected peak memory
consumption by the application. This metric is computed as:

MUy = \JS((MU, = MU,)2 % (ti1 = 1)) (ty = to)

Total computation is simply the work done by all the stages of the entire pipeline; it is simply
the cumulative execution times of all the pipeline stages the application (excluding sleep time).
Correspondingly, wasted computation is the cumulative execution times on items that did not make

8

their way through the entire pipeline. Therefore, the percentage wasted computation is a ratio
between the wasted computation and the total computation. Similarly, the percentage memory
wasted represents the ratio between the wasted memory (integrated over time just as mean memory
footprint) and the total memory usage of the application. These percentages are a direct measure
of efficient resource usage in the application.

We have an elaborate measurement infrastructure for recording these statistics in the Stampede
runtime. A post mortem analysis program uses these statistics to derive the metrics of interest
presented in this paper.

A number of garbage collection and scheduling strategies have been implemented and experi-
mented with in Stampede [8, 2, 4]. Among these techniques, the most resource saving is found in
the Dead Timestamp Garbage Collector (DGC) [2]. DGC is based on dead timestamp identifica-
tion, a unifying concept that simultaneously identifies both dead items (memory) and unnecessary
computations (processing). We use DGC as the baseline and add Rate Control to that scheme to
understand the performance improvement due to Rate Control.

In an earlier work [6], we introduced an Ideal Garbage Collector (IGC) [6]. IGC gives a
theoretical lower limit for the memory footprint by performing a post mortem analysis of the
execution to eliminating all unnecessary computations (i.e.,computations on frames that do not
make it all the way through the pipeline) and associated memory usage. Needless to say, IGC is
not realizable in practice. To determine how close the results are to the ideal, the Rate Control
algorithm is compared to IGC.

S Experimental Results

The hardware platform is a cluster of 8-way SMPs (500MHz Intel Pentium III Xeon processors)
running Redhat Linux (Linux Kernel 2.4.20). The machines are interconnected by gigabit Ether-
net. Two different configurations were used for mapping application tasks to physical nodes. In
configuration 1, all tasks were mapped to a single physical node, whereas in configuration 2, all
five tasks were mapped to distinct physical nodes. Each item emitted by the different pipeline
stages are of the following sizes: Digitizer 738 kB, Background 246 kB, Histogram 981 kB and
Target-Detection 68 Bytes.

5.1 Application Performance

Config 1: 1 node Config 2: 5 nodes
Latency | Latency | Throughput Latency | Latency | Throughput
(usec) (usec) | (frames/sec) (usec) (usec) | (frames/sec)
mean STD mean mean STD mean
DGC w/o RC 671,721 | 57,665 2.71 940,529 | 207,917 3.37
DGC w/ RC — min | 665,607 | 78,967 2.84 951,509 | 106,250 3.46
DGC w/ RC — max | 272,145 2,731 6.13 1,000,886 | 120,230 3.19

Figure 6: Latency and Throughput of the Color-based People tracker application.

Latency and Throughput: Figure 6 summarizes the latency and throughput results for the
tracker. For single node configuration (configuration 1), the max operator applied at each node of
the task graph results in the best average latency. The min operator does not significantly help in
reducing the average latency compared to the baseline DGC. The throughput more than doubles
with the max operator compared to the baseline DGC. Note that each node is an 8-way SMP.
Thus in principle, one could assume that each task would get its own processor to execute on.
Thus the improvement in latency and throughput is mostly from lessening the load on the memory
subsystem due to the Rate Control mechanism.

The 5-node configuration (configuration 2) does not offer any advantage to the Rate Control
algorithm 3. The reason is quite simple: As can be seen from figure 6, the baseline DGC perfor-
mance for the 5-node configuration is slightly worse compared to the 1-node version. This increase
is due to the network communication costs when the tasks are distributed to different nodes. There
is adequate processing and memory bandwidth in each node since only a single task is mapped to
each node. The bottleneck for the pipeline is the tracker task with the data in and out of that task
across the network. Thus quenching some of the eager tasks (such as the digitizer) from producing
more items does not help either the latency or throughput. This experiment demonstrates that as far
as latency and throughput are concerned, Rate Control is meaningful only in a resource constrained
setting.

Config 1: 1 node Config 2: 5 nodes
Jitter Jitter Jitter Jitter
(usec/ frame) | (usec/frame) || (usec/frame) | (usec/frame)
mean STD mean STD
DGC w/o RC 368,149 30,423 319,281 197,497
DGC w/ RC — min 349,578 43,632 286,581 10,707
DGC w/ RC — max 162,578 3,497 293,999 11,360

Figure 7: Jitter of the Color-based People tracker application. Jitter is the time difference between two successful
output frames.

Jitter: Figure 7 shows the jitter results for the application. The Standard Deviation (STD) is
dramatically reduced for the max-operator in both configurations. This illustrates the effectiveness
of Rate Control for smoothening the flow of stream data.

5.2 Resources Usage

Next we analyze the resource usage of the Rate Control mechanism in comparison to the baseline
DGC as well as IGC.

Memory Footprint: Figure 8 shows the mean memory footprint in bytes when Rate Control
is applied to baseline DGC. Recall that the mean memory footprint is the amount of memory
consumed by all items in the various channels in the pipeline averaged over the occupancy time
for the items. The IGC row shows the theoretical limit for mean memory footprint with an ideal
garbage collector. Figure 9 shows the same data in a graphical form as a function of time. By

3 Actually, the min operator does slightly better than the baseline DGC, and the max operator slightly worse than
the baseline.

10

Config 1: 1 node Config 2: 5 nodes
Memory % Memory Memory % Memory
usage (B) | w.rt. | usage (B) || Usage (B) | w.rt. | usage (B)
mean 1GC STD mean IGC STD
DGC wjo RC 10,027,447 | 715 | 2,474,005 || 41,678,704 | 371 | 17,069,621
DGC w/ RC —min | 4,335,774 | 162 | 733,551 | 17,432,479 | 155 | 2,290,592
DGC w/ RC —max | 3,717,205 139 480, 643 17,243,738 | 153 2,091,459
I1GC 2,662, 321 100 927,039 11,219,351 100 2,406, 524

Figure 8: Memory Footprint Statistics for the Color-based People tracker application using Rate Control in
comparison with memory footprint performance with the Ideal Garbage Collector (IGC).

g} T2 i3 T4 be 03 T i 12 T3 T4 ba 05 1 gl T2 i3 T4 be 03 T i
Time in fme] it Timo n] et Time in me] g Timo nms]

Figure 9: Memory Footprint (Top: single node config 1, Bottom: five node config 2) The four graphs represent the
memory footprint of the application under different runtime implementations. (left to right)(a) Ideal Garbage Collector
(IGC), (b) DGC with Rate Control - Max Operator, (c) DGC with Rate Control - Min Operator, (d) Dead Timestamp
Garbage Collector (DGC) . All graphs have the same scale, with the y-axis showing memory use (bytes x 107), and
the x-axis representing time (microseconds).

11

eliminating wasted computations, Rate Control dramatically reduces the memory footprint needed
for this application in both the 1-node and 5-node configurations. In fact, the results for the max
operator are quite close to the ideal garbage collector. For example, for 1-node configuration, Rate
Control with the max operator reduces the mean memory footprint by 80.5% compared to baseline
DGC; and the memory footprint is just 39% over IGC.

Percentage of Wasted Resources: Figure 10 shows the amount of wasted memory and com-
putation with and without Rate Control over the baseline DGC. For baseline DGC, nearly 85% of
the memory footprint is wasted for the 1-node configuration; contrast this with the max operator
Rate Control where only 5.4% is wasted. Similar spectacular savings are accrued for the com-
putation resource as well. Thus the Rate Control mechanism succeeded in directing most of the
resources towards useful work.

Config 1: 1 node Config 2: 5 nodes
%of %o f %o f %of
Memory | Computation || Memory | Computation
Wasted Wasted Wasted Wasted
DGC w/o RC 84.94 37.85 73.20 32.63
DGC w/ RC — min 13.30 3.10 6.35 2.11
DGC w/ RC — max 5.39 1.37 1.97 0.77

Figure 10: Wasted Memory Footprint and Computation Statistics for the Color-based People tracker application
using Rate Control.

6 Conclusion

Interactive multimedia applications are computationally intensive and are good candidates for ex-
ecution on high performance computing engines. Such applications can usually be represented as
a coarse-grain dataflow pipeline. To ensure the production of fresh output, these applications are
designed to drop data when resources become insufficient. Dynamic adjustment of data production
rate is a better approach than dropping data, since it is less wasteful of computational resources,
and in-turn leads to better performance. We have presented a dynamic distributed Rate Control
algorithm for dealing with the variances in application processing times as well as the vagaries
of operating system scheduling. We have implemented this algorithm in the Stampede cluster
programming framework. Using a color-based people tracker application, we show that the Rate
Control algorithm achieves significant reduction in wasted resources in terms of both computation
and memory.

7 Acknowledgments

A number of people have contributed to the Stampede project. Rishiyur Nikhil and Jim Rehg con-
tributed to the space-time memory abstraction. Bert Halstead, Chris Jeorg, Leonidas Kontothanas-
sis, and Jamey Hicks contributed during the early stages of the project. Members of the “Ubiq-
uitous Presence” group at Georgia Tech continue to contribute to the project. Sameer Adhikari,

12

Arnab Paul, Rajnish Kumar, Bikash Agarwalla, Matt Wolenetz, Phil Hutto, Namgeun Jeong, Jun-
suk Shin, Yavor Angelov, and Xiang Song deserve special mention. Ansley Post, Durga Devi
Mannaru, Russ Keldorph and Anand Lakshminarayanan participated in aspects of the Stampede
project during their tenure at Georgia Tech.

References

[1] P. Ackermann. Direct manipulation of temporal structures in a multimedia application frame-

work. In Proceedings of the second ACM international conference on Multimedia, pages
51-58. ACM Press, 1994.

[2] N. Harel, H. A. Mandviwala, K. Knobe, and U. Ramachandran. Dead timestamp identifica-
tion in stampede. In The 2002 International Conference on Parallel Processing (ICPP-02),
Vancouver, BC, Canada, August 2002.

[3] R. Jones and R. Lins. Garbage Collection : Algorithms for Automatic Dynamic Memory
Management. John Wiley, August 1996. ISBN: 0471941484.

[4] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and U. Ramachandran. Scheduling con-
strained dynamic applications on clusters. In Proc. SC99: High Performance Networking
and Computing Conf., Portland, OR, November 1999. Technical paper.

[5] H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37-46, 1982.

[6] H. A. Mandviwala, N. Harel, K. Knobe, and U. Ramachandran. A comparative study of
stampede garbage collection algorithms. In The 15th Workshop on Languages and Compilers
for Parallel Computing, College Park, MD, July 2002.

[7] C. Mourlas. A framework for creating and playing distributed multimedia information sys-
tems with qos requirements. In Proceedings of the 2000 ACM symposium on Applied com-
puting, pages 598—600. ACM Press, 2000.

[8] R.S.Nikhil and U. Ramachandran. Garbage Collection of Timestamped Data in Stampede. In
Proc. Nineteenth Annual Symposium on Principles of Distributed Computing (PODC 2000),
Portlan, Oregon, July 2000.

[9] R. S. Nikhil, U. Ramachandran, J. M. Rehg, R. H. Halstead, Jr., C. F. Joerg, and L. Kon-
tothanassis. Stampede: A programming system for emerging scalable interactive multimedia
applications. In Proc. Eleventh Intl. Wkshp. on Languages and Compilers for Parallel Com-
puting (LCPC 98), Chapel Hill, NC, August 7-9 1998.

[10] U. Ramachandran, R. Nikhil, J. M. Rehg, Y. Angelov, S. Adhikari, K. Mackenzie, N. Harel,
and K. Knobe. Stampede: A cluster programming middleware for interactive stream-oriented
applications. IEEE Transactions on Parallel and Distributed Systems, 2003. To Appear.

[11] U. Ramachandran, R. S. Nikhil, N. Harel, J. M. Rehg, and K. Knobe. Space-Time Mem-
ory: A Parallel Programming Abstraction for Interactive Multimedia Applications. In Proc.
Principles and Practice of Parallel Programming (PPoPP’99), Atlanta, GA, May 1999.

13

[12] J. M. Rehg, M. Loughlin, and K. Waters. Vision for a Smart Kiosk. In Computer Vision and
Pattern Recognition, pages 690-696, San Juan, Puerto Rico, June 17-19 1997.

[13] V. Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni, and H. Vin. Application performance
in the glinux multimedia operating system. In Proceedings of the eighth ACM international
conference on Multimedia, pages 127-136. ACM Press, 2000.

[14] P. R. Wilson. Uniprocessor garbage collection techniques, Yves Bekkers and Jacques Cohen
(eds.). In Intl. Wkshp. on Memory Management (IWMM 92), pages 1-42, St. Malo, France,
September 1992.

[15] D.K. Y. Yau and S. S. Lam. Adaptive rate-controlled scheduling for multimedia applications.
IEEE/ACM Transactions on Networking (TON), 5(4):475-488, 1997.

14

