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Abstract 
 
For real-time system -on-a-chip (SoC) network applications, high-speed and low-
latency network I/O is the key to achieve predictable execution  and high performance. 
Existing network I/O approaches are either not directly suited to SoC applications, or 
too complicated and expensive. This paper introduces a novel approach, referred to 
as shared address space I/O , for real-time SoC network applications. This approach 
facilitates build ing of heterogeneous multiprocessor systems with application 
intensive processors (main processor) and I/O intensive processors (I/O processor), 
where network I/O processing can be offloaded to a specialized  I/O processor. With 
the shared address space I/O approach, in such a system, communication and 
synchronization between main and I/O processors can be implemented with a shared 
address space. This approach is realized through Atalanta, a heterogeneous real-time 
SoC operating system we have developed. In this paper, we demonstrate that shared 
address space I/O can provide high-speed and low-latency network I/O for SoC 
network applications. 
 

1 Introduction 
 

1.1 Motivation for problem 
 
The shared address space I/O approach was inspired by three factors. 
 
First, real-time applications demand high-speed and low -latency I/O. I/O-caused 
interrupts are a major impediment to real-time processing. Existing approaches for I/O 
with DMA capability involve interruption of the main processor when an I/O 
operation occurs. These approaches require main processor intervention for every I/O 
operation and can increase I/O latency due to excessive copying of data. When 
considering real-time threads executing on the same processor that is interrupted for 
I/O, these approaches also make it difficult to achieve predictable execution or to 
guarantee the worst-case execution time. 
 
Second, traditionally, the processing of network protocols is accomplished by 
software running on the central processor of system. Recently, the growth of network, 
especially Ethernet with TCP/IP protocol stack, has surpassed the growth of 
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microprocessor performance. This causes network I/O to become a major bottleneck 
for many network applications. Therefore, it is becoming common to offload network 
I/O, including TCP/IP protocol processing, from host processors to other processors 
or specialized ASICs.  
 
Another factor is that, based on our prior research, for heterogeneous multiprocessor 
applications, processors can directly share the address space rather than using DMA 
or other means (such as shared memory based message -passing approach) to transfer 
data. This is a great convenience of our shared address space I/O approach. Since 
processors in a SoC system can use a shared address space , it allows I/O processors to 
do true zero-copy I/O by depositing incoming data directly into the final application 
buffer or copying directly from the source application buffer with absolutely no 
involvement from the main processor . The shared address space approach also 
provides a simple and standard programming model to be used for I/O processors. 
 

1.2 Basic idea 
 
The basic idea of shared address space I/O is to offload network I/O, including 
TCP/IP protocol processes, from main processors (application intensive processor) to 
I/O processors (interrupt intensive processor) and use shared address space to 
implement communication and synchronization between main processors and I/O 
processors [1]. Figure 1 depicts the differences between shared address space I/O 
approach and a uni-processor I/O approach. 
 

 
Figure 1: Uni-processor I/O approach vs. shared address space I/O approach. 

 
Here, the network I/O not only includes servicing interrupts, reading/writing hardware 
ports, etc., but also includes all of the processing of TCP/IP protocols, such as 
connection establishment, data transform/reception, connection tear -down, error 
handling, etc.  
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The I/O processor could be a general purpose microprocessor, but a specialized 
interrupt intensive network processor is more reasonable. These kinds of processors 
provide fast I/O throughput for optimal performance. On the other hand, the main 
processor could be a general purpose microprocessor. 
 
For SoC applications, it is relative easy to build a heterogeneous multiprocessor 
hardware platform w ith shared memory. The byte ordering, alignment, cache 
coherence and other problems that used to be important are no longer significant 
because of advances in microprocessor design and compiler technology. For example, 
more and more processors support both big-endian and little -endian byte orderings , 
and most commercial compilers support different alignments. 
 

1.3 Brief mention of results 
 
The shared address space I/O approach has been implemented in the Atalanta RTOS 
developed at Georgia Tech [3] and tested using the Mentor Graphics Seamless® Co-
Verification Environment (Seamless CVE) [7]. We evaluate d our approach with a set 
of applications running on a heterogeneous multiprocessor SoC hardware platform to 
compare against a uni-processor I/O approach. We evaluate these applications under 
different workload conditions (applications, network I/O, and system overhead). Our 
evaluation results show that, in balanced and heavy workload conditions (applications 
that occupy 70-80% of main processor resources, where network I/O occupies 20-
30% of main pr ocessor resources), the shared address space I/O approach show better 
performance than a uni-processor approach. 
 

2 Related Work 
 
There are some researches concerning I/O bottleneck, especially network I/O 
bottleneck problem. The most interesting works include the I2OTM Architecture [5] 
from I2O Special Interest Group (I2O SIGTM) led by Intel. Their main idea is that an 
I/O processor is dedicated to handling I/O requests, and to test, support unique drivers 
for every combination of I/O device and OS on the market. They pay more attention 
to increasing network server performance and reducing total-cost-of-ownership 
(TCO).  
 
TCP/IP Offload Engine (TOE) [6] is another interesting topic. The idea is to offload 
the processing of TCP/IP protocols from the host processor to the hardware on the 
adapter or in the system. Their main purpose is to address new markets, such as iSCSI 
storage area networks (SANs) and high-performance network-attached storage (NAS) 
applications.  
 
These approaches both face the communication bottleneck between main processors 
and I/O processors. In order to eliminate  the communication bottleneck, some 
implementations suggest implementing inter-processor communication and 
synchronization protoc ols using specialized hardware. It obviously increases the cost 
and complexity of systems, and does not utilize the features of SoC architectures. 
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Our shared address space I/O approach adopts the main idea of the I2OTM Architecture 
approach and TOE approach to offload network I/O processing from main processor 
to I/O processor. At same time, our approach utilizes the feature of supporting shared 
address space of SoC architectures to implement inter-processor communication and 
synchronization. It avoids the side effect of offloading network I/O. 
 
To our knowledge, there has been no research about optimizing network I/O for real-
time SoC network applications similar to the shared address space I/O approach. 
 

3. Atalanta RTOS 
 
Atalanta RTOS is an embedded RTOS designed at Georgia Tech [3]. It provides key 
RTOS features including multitasking capabilities; event-driven, priority-based 
preemptive scheduling; precise timers; and inter-task communication and 
synchronization. Atalanta also supports special features such as priority inheritance 
and user configurability. Atalanta’s small, compact, deterministic, modular and 
library-based architecture is important for multiprocessor SoC applications. Atalanta 
has been designed with support for heterogeneous processors as a primary goal since 
the target architecture assumes mixed systems involving RISC processors, DSP 
processors, and perhaps other specialized processors. Atalanta provides both “pure” 
message -passing approach and shared address space based message -passing (shared 
message) approach for inter -processor communication and synchronization. The 
shared message approach is a key to support shared address space I/O as described in 
this paper. The shared message approach allows much better use of shared memory, 
thereby providing greatly increased performance as compared to a “pure” message-
passing approach.  
 
Traditionally, general purpose heterogeneous RTOS rely primarily on message-
passing approach for communication and synchronization between tasks on different 
processors. This was necessary because it is very difficult to implement closely 
coupled general communication architectures for broad processor families. 
Furthermore, the message-passing approach provides a clean separation between tasks 
because communication between tasks is loosely coupled and asynchronous. In 
traditional implementations of the message-passing approach, most messages are 
copied twice as they go from a sender task to a recipient task. The first copy is from 
the sender’s preparation area to an RTOS-owned memory (usually size-fixed). The 
second copy is from the RTOS memory to the recipient task’s reception area. When 
the messages are large, the copying overhead can be substantial. 
 
For SoC applications, it is relative easy to implement a shared address space. As a 
result, a more efficient message-passing approach, called the shared message 
approach, is implemented in Atalanta RTOS. This approach simply transfers a pointer 
of the message from the sender task to the recipient task. The payload never actually 
moves, remaining in its original location in shared memory. In Atalanta, a task 
allocates messages from the kernel's shared memory pool. The allocated message is 
owned by the allocating task that uses memory as desired. When the task is ready to 
send the message, it submits the message address and specifies a queue. The address 
of the message is placed in the queue. The ownership of the message is given to the 
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destination task upon receipt of the message. When a task is ready to receive a 
message, it specifies from which queue to receive. When a message is available, the 
address of the message is returned and the ownership of the message is transferred to 
the receiving task, which can then use or modify the message contents as needed. The 
message can then be sent to another task or returned to the shared memory pool. 
 
The shared message approach simplifies inter-processor communication and 
synchronization, and eases programming while enhancing performance for 
applications. It is especially  fit for stream-based applications that do not need to cross-
access data at the same time. 
 

4 Description of Approach 
 
We assume that the target applications are real-time SoC network applications  and 
propose the concept of shared address space I/O as a mechanism to achieve high 
performance and low -latency network I/O for  such applications. 
 
For real-time applications, I/O-caused interrupts are a major impediment to achieve 
predictable execution since I/O interrupts are unpredictable and handling interrupt 
requests always takes priority over application tasks. DMA-capable devices free 
processors from involvement with the data transfer, but do not eliminate interrupts. 
For a uni-processor I/O approach, real-time threads are running on the same processor 
that processes I/O, each I/O operation will generate an interrupt that will cause real-
time threads to be suspended for an unpredictable interval. It is difficult to obtain 
predictable execution or assure the worst-case execution time under these conditions. 
 
Ethernet has become the most popular network protocol for local area networks. Since 
the rapid growth of Ethernet transmission speed, network I/O is becoming a major 
bottleneck in delivering high performance for almost all of network applications. The 
main reason for the bottleneck is that the processing of TCP/IP  protocols  consumes 
more and more processor resources. Reassembling out-of-order packets and resource-
intensive memory copies put a high workload on the host processor. Although in a 
well-designed real-time s ystem, processing of TCP/IP protocols should not influence 
predictability of execution, it obviously affects performance. In some applications 
using a uni-processor I/O approach that we have evaluated, the host processor has to 
allocate  more than 20% of its resources to handle the network processing. 
 
We propose the shared address space I/O approach to offload as much as possible 
network I/O from main processor to I/O processor , and to eliminate I/O interrupts and 
TCP/IP overhead as mentioned above. Since network I/O is completely removed from 
main processor, I/O-caus ed interrupts are eliminated. This enable s real-time threads to 
execute in a much more predictable and guaranteed manner. In addition to achieving 
predictable execution, a great amount of resources that used to be consumed by the 
processing of TCP/IP protocols is saved and system performance is improved. 
 
Although offloading network I/O from host processors can eliminate interference 
from I/O interrupts and reduce the resources occupied by network I/O, it sometimes 
may cause more resources to be consumed in other ways. Communication and 
synchronization between the processors that process network I/O and the processors 
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that run applications might become a new bottleneck of system performance. Our 
simulation results present in Section 5 show that this overhead is minimal on a 
number of representative I/O micro-bench programs. 
 
Recently, the design of processors has become more and more specialize d. Some 
processors are designed as application intensive processors, and others are designed as 
interrupt intensive processors. This makes system designs  more complicated. In order 
to get best application and I/O performance, we would use application intensive 
processors as main processors to deal with applications, and interrupt intensive 
processors as I/O processors to deal with I/O operation. Processors communicate with 
each other by some kind of inter-processor communication and synchronization 
mechanisms. The problem is, in these kinds of heterogeneous multiprocessor 
architectures, the design of efficient inter-processor communication between 
processors is an extremely difficult job. Normally, message-passing approach is used 
with additional resource occupation. Some vendors design specialized hardware to 
implement communication protocols to improve communication performance. It 
obviously increases the complexity and cost of systems. It also does not fit well with 
embedded SoC designs. 
 
In the shared address space I/O approach, we propose to structure systems with one or 
more application processors and one or more I/O processors as shared memory 
heterogeneous multiprocessor systems. One I/O processor is responsible for one or 
more DMA-capable I/O devices in the system. All processors in a system, including 
main processors and I/O processors, access the sha red memory using a shared address 
space. We assume that hardware and firmware provide cache-coherence for shared 
memory. In [4], we describe a simple but effective approach to achieving cache 
coherence in heterogeneous multiprocessor systems. Since each processor in a system 
supports cache coherence, and the number of processors is limited, the shared 
memory architecture does not detract from system performance. With this kind of 
hardware model (see Figure 2) , we can expect best application and I/O performa nce. 
 

 
Figure 2: Hardware model for the shared address space I/O approach. 

 



 7 

In order to solve the communication problem, we view I/O processors and main 
processors as a shared-memory multiprocessor. With this view of a system, I/O 
processors can directly execute code that shares data with application threads 
executing on main processors. This mechanism is implemented using a shared address 
space approach. From user’s point of view, the programs running on main processors 
and I/O processors can access the same data structures, and we do not need additional 
data copying between a local buffer and a shared system buffer as required in shared 
memory message-passing approaches. This allows I/O processors to communicate 
directly with application memory without main processor intervention. Hence, data 
coming from an I/O device can be deposited directly by the I/O processors into the 
appropriate location in application memory without any main processor control. This 
approach eases communication bottlenecks that drive up latencies of I/O operations.  
 
There is currently no commercial embedded RTOS that supports shared address space 
approach for heterogeneous SoC applications. It is partly because of the variety of 
embedded processors and embedded applications. We have implemented an 
embedded RTOS, known as Atalanta [3] , which supports shared address space 
approach for heterogeneous multiprocessor architectures. Our development of 
Atalanta together with the simulation results in the next section prove that a shared 
address space approach is feasible, and provides better performance than a shared 
memory message-passing approach for SoC applications. 
 
The shared address space I/O approach offers the potential for applications to interact 
directly with I/O interfaces without any involvement from main processor and to 
provide predictable and guaranteed execution of real-time threads. In addition to 
improving I/O performance, the shared address space I/O approach also provide 
tremendous flexibility in I/O processing. For example, it is an easy way for 
applications to push processing to I/O processors by specifying their own custom 
threads that are tailored to their particular I/O requirements. 
 

5 Simulation Environment 
 
The shared address space I/O approach has been implemented in the Atalanta RTOS 
and tested using the Mentor Graphics Seamless® Co-Verification Environment. 
 

5.1 Seamless CVE 
 
Seamless® Co-Verification Environment (Seamless CVE) [7] is an interactive 
hardware and software co-simulation tool provided by Mentor Graphics. It can create  
a virtual prototype of SoC system. By executing software on simulated hardware, it 
allows us to fully verify the hardware/software design without a physical prototype. 
 

5.2 Hardware model 
 
The hardware model tested under Seamless CVE uses a standard 10 Mbps Ethernet 
interface, a 100 MHz PowerPC MPC755 main processor, and a 50 MHz ARM 
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ARM920T for network I/O, and is shown in Figure 3. This architecture was tested 
using the Atalanta RTOS with a shared address space approach and no special 
hardware for communication between processor s. This architecture and programming 
model are compared against a standard uni-processor architecture with DMA 
capability in which the main processor is responsible for network I/O processing.  
 

 
Figure 3: Evaluated hardware model. 

 

5.3 Software Model 
 
The software model used for evaluation includes a n application task running on the 
main processor, and an I/O thread executing a TCP/IP stack on the I/O processor . The 
communication and synchronization between processors is implemented by shared 
address space. The application task runs a set of stream-based decoding applications, 
and the I/O thread is in charge of network I/O and directly deposits incoming data into 
application buffer, then informs the application task using system services provided 
by the Atalanta RTOS. 
 

6 Simulation Results 
 
We evaluate the shared address space I/O approach using a set of stream-based 
decoding applications running on the software/hardware models describe d in Section 
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4.3 and 4.4 to compare against a uni-processor I/O approach. These applications 
contain various decoding operations on streams of data, including CRC, MD5, DES 
and Huffman decoding. We ran every application for fixed amount of time (1000ms) 
and measured the total number of packets that main processor processed. For the uni-
processor approach, we also measured the percentage of processor cycles used by I/O 
processing. In order to study the effect of workload, we tested these applications 
under different workload conditions (application, network I/O, and system overhead). 
 
For light application workload (CRC and MD5 in Figure 4), the main processor has 
enough resource to process both I/O and application. The bottleneck is the I/O 
capability of the processors. We used the MPC755 in the uni-processor approach. It is 
faster than ARM920T that we used as the I/O processor for I/O thread in the shared 
address space I/O approach. In this situation, the uni-processor approach has better 
performance than the shared address space I/O approach can provide. For high 
application workloads (DES and HUFFMAN in Figure 4, 5 and 6), I/O only occupies 
less than 10% of the main processor resource s. Since shared address space I/O  
approach has to do inter-processor communication and synchronization, we might 
expect shared address space I/O approach to perform worse than the uni-processor 
approach. In fact, the two approaches get almost identical results in this situation. 
 

Only I/O Processing
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Figure 4: Simple applications for shared address space I/O approach vs. uni-processor approach. 

 
It is difficult to find a real application consuming a certain percentage of processor 
resources. For example, it is difficult, if not impossible to find an application 
consuming exact 70% of processor resources compared to I/O operation occupying 
30% of processor resources. So, we studied two ways to achieve applications 
consuming greater percentages of processor resources. One method is doubling the 
application processing. Every packet is processed twice instead of only once. Another 
method is adding an additional application with high priority running on the main 
processor. This additional application does nothing but increases a counter. Since the 
counter variable is cached, these additions only consume main processor resources 
and do not cause any side effect. In every million second, this application does 1000 
times addition operations then suspends itself until the next time interrupt wakes it up. 
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It consumes about 25% of main processor resources. In these two ways, we can 
achieve tight control of workload. 
 
For heavy and balanced workloads, where applications occupy 70-80% of main 
processor resources and I/O occupies 20-30% of the resources (CRC and MD5 in 
Figure 5 and Figure 6), the shared address space I/O approach show better 
performance than the uni-processor approach.  
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Figure 5: Double processing applications for shared address space I/O approach vs. uni-

processor approach. 

 
For CRC decoding, in the double packet processing test, the shared address space I/O 
approach was 19.5% better than the uni-processor approach. In the test with an 
additional application, the shared address space I/O approach performed 8.8% better 
than the uni-processor approach. For MD5 decoding, in the double packet processing 
test, the shared address space I/O approach were 32.6% better than the uni-processor 
approach. In the test with an additional application, the shared address space I/O 
approach performed 31.2% better than the uni-processor approach. The improved 
performance of the shared address space I/O approach in this situation is due to the 
fact that the I/O processor is no longer a bottleneck. For the uni-processor approach, 
and CRC and MD5 applications, I/O consumes about 27% of the main processor 
resources. The cost of increasing inter-processor communication and synchronization 
is less than the savings of offloading the I/O for the shared address space I/O 
approach.  
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I/O Processing with Additional Application
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Figure 6: With additional application for shared address space I/O vs. uni-processor approach. 

 
For I/O processing with an additional application, one more task runs on the main 
processor. The system overhead is increased more significantly for the shared address 
space I/O approach than for the uni-processor I/O approach. So, the difference 
between shared address space I/O approach and uni-processor approach for double  
I/O processing is more obvious than for I/O processing with an additional application. 
 
We also should mention that the performance of shared address space I/O  is worse 
than it could be because cache coherence has not been implemented. 
 
From our evaluation results, we can say that, for balanced and heavy load conditions 
(applications occupying 70-80% of main processor resources, and network I/O 
occupying 20-30% of main processor resources.), the shared address space I/O 
approach’s performance is better than the uni-processor I/O approach. 
 

7 Conclusions 
 
The shared address space I/O approach described in this paper, adopts the main idea 
of the I2OTM Architecture approach and TOE approach to offload network I/O 
processing from main processor to I/O processor. It utilizes the support of shared 
address space of SoC architectures, without any additional hardware to implement 
inter-processor communication and synchronization, and provides high-speed and 
low-latency network I/O for SoC network applications. Our simulation results show 
that, for balanced and heavy load conditions, shared address space I/O perform better 
than the traditional uni-processor I/O approaches. 
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