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Abstract
This paper describes a motion adaptive indexing scheme for ef-
ficient evaluation of moving queries (MQs) over moving objects.
It uses the concept of motion-sensitive bounding boxes to model
the dynamic behavior of both moving objects and moving queries.
Instead of indexing frequently changing object positions, we in-
dex less frequently changing motion sensitive bounding boxes to-
gether with the motion functions of the objects. This significantly
decreases the number of update operations performed on the in-
dexes. We use predictive query results to optimistically precalcu-
late query results, thus decreasing the number of search operations
performed on the indexes. More importantly, we propose a motion
adaptive indexing method. Instead of using fixed parameters for
motion sensitive bounding boxes, we automatically adapt the sizes
of the motion sensitive bounding boxes to the dynamic motion be-
haviors of the corresponding individual objects. As a result, the
moving queries can be evaluated faster by performing fewer IOs.
Furthermore, we introduce the concept of guaranteed safe radius
and optimistic safe radius to extend our motion adaptive indexing
scheme to evaluating moving continual k-nearest neighbor (kNN)
queries. Our experiments show that the proposed motion adaptive
indexing scheme is efficient for evaluation of both moving contin-
ual range queries and moving continual kNN queries.

1 Introduction
With the emergence of positioning technologies like GPS [16],
and the continued advances of mobile computing industry, loca-
tion management has become an active area of research. Sev-
eral research efforts have been made to address the problem of
indexing moving objects or moving object trajectories to support
efficient evaluation of continual spatial queries. Moving queries
over moving objects (MQs for short) are moving continual spa-
tial queries over moving object positions. Efficient evaluation of
moving queries over moving objects is an important issue in both
mobile systems and moving object tracking systems. There are two
major types of MQs − moving range queries and moving k-Nearest
Neighbor queries (kNN).

Research on evaluating range queries over moving object posi-
tions has so far focused on static continual range queries [18, 9,
19, 3]. A static continual range query specifies a spatial range to-
gether with a time interval and tracks the set of objects that locate
within this spatial region over the given time period. The result of
the query changes as the objects being queried move over time. Al-
though similar, a moving range query exhibits some fundamental
difference when compared to a static range query. A moving range
query has an associated moving object, called the focal object of
the query [8]; the spatial region of the query moves continuously

as the query’s focal object moves. Moving queries introduce a new
challenge in indexing, mainly due to the highly dynamic nature of
the system elements.

MQs have different applications such as environmental aware-
ness, object tracking and monitoring, location-based services, vir-
tual environments and computer games to name a few. Here is
an example moving query MQ1: “Give me the positions of those
customers who are looking for taxi and are within 5 miles (of my
location at each instance of time or at an interval of every minute)
during the next 20 minutes”, posted by a taxi driver marching on
the road. The focal object of MQ1 is the taxi on the road.

Different specializations of MQs can result in interesting and use-
ful classes of MQs. One is called moving queries over static ob-
jects, where the target objects are still objects in the query region.
An example of such a query is MQ2: “Give me the locations and
names of the gas stations offering gasoline for less than $1.2 per
gallon within 10 miles, during the next half an hour” posted by a
driver of a moving car, where the focal object of the query is the
car on the move and the target objects are buildings within 10 miles
with respect to the location of the car on the move. Another inter-
esting specialization is so called static query over moving objects,
where the queries are posed with static focal objects or without fo-
cal objects. An example query is MQ3: “Give me the list of AAA
vehicles that are currently on service call in downtown Atlanta (or
5 miles from my office location), during the next hour”.

Traditional indexing mechanisms do not work well for indexing
moving object positions due to the frequent updates required on the
index structures [18, 9]. In order to tackle this problem, recently
several researchers have introduced indexing mechanisms based
on indexing the parameters of the motion functions of the moving
objects [11, 19, 1]. This approach alleviates the problem of fre-
quent updates to the index, as the index needs to be updated only
when the motion function of an object changes. However this kind
of indexing, mostly based on R-tree like structures, produces time
parameterized minimum bounding rectangles that enlarge contin-
uously and result in the deterioration of the search performance
over time. As a result, most of these index structures are used for a
certain interval after which they have to be reconstructed [18, 19].

In this paper, we describe a motion-adaptive indexing scheme
for efficient processing of moving queries over moving objects.
It uses the concept of motion-sensitive bounding boxes to model
the dynamic behavior of both moving objects and moving queries.
Instead of indexing frequently changing object positions, we index
less frequently changing motion sensitive bounding boxes together
with the motion functions of the objects. This significantly de-
creases the number of update operations performed on the indexes.
We provide two techniques to address the problem of increased
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search cost on such indexes. First, we optimistically precalculate
query results and maintain such predictive query results under the
presence of object motion changes. Second, we support motion
adaptive indexing. Instead of using fixed size of motion sensitive
bounding boxes, we automatically adapt the sizes of the motion
sensitive bounding boxes to the changing movement behaviors of
the corresponding individual objects. By adapting to moving ob-
ject behavior at the granularity of individual objects, the moving
queries can be evaluated faster by performing fewer IOs. Further-
more, we introduce the concept of guaranteed safe radius and opti-
mistic safe radius to extend our motion adaptive indexing scheme
to the evaluation of moving continual k-nearest neighbor queries.

Our experimental results show that the motion adaptive indexing
scheme is efficient for evaluation of both moving continual range
queries and moving continual k-nearest neighbor (kNN) queries.
The proposed motion-adaptive indexing scheme is independent of
the underlying spatial index structures by design. In the experi-
ments reported in this paper, we use both R∗-trees and statically
partitioned grids for measuring the performance of our indexing
scheme. We report a series of experimental performance results
for different workloads including scenarios based on skewed ob-
ject and query distribution, and demonstrate the effectiveness of
our motion adaptive indexing scheme through comparisons with
other alternative indexing mechanisms. It should be mentioned
that the moving queries, as we formalize them in this paper, are dif-
ferent from moving queries with a predefined path [19]. To some
extent, our moving query definition is close to dynamic queries in
[12]. There are, however, some important differences. Dynamic
queries are defined as temporally ordered set of snapshot queries.
Instead of using a procedural level definition, the concept of mov-
ing queries is defined declaratively from a users perspective [8].

The rest of the paper is organized as follows. Section 2 gives an
overview of the basic concepts and the system model. Section 3
describes the motion-adaptive indexing scheme for efficient eval-
uation of moving range queries. Section 4 extends the solution
to efficient evaluation of moving kNN queries. Section 5 reports
various performance results to illustrate the effectiveness of the
proposed approach. We discuss the previous work in the litera-
ture related to querying and indexing moving object positions in
Section 6, and conclude with a summary in Section 7.

2 The System Model

The basic elements of our system model are a set of moving or
still objects and a set of moving or static continual (range or kNN)
queries. A fundamental challenge we address in this paper is to
study what kind of indexing scheme can efficiently answer the
moving queries. Fast evaluation is critical for processing moving
queries, as it not only improves the freshness of the query results by
enabling more frequent re-evaluation, but also increases the scala-
bility of the system by enabling timely evaluation of large number
of moving queries over large number of objects.

2.1 Basic Concepts and Problem Statement

We denote the set of moving or still objects as O, where O =
Om∪Os and Om∩Os = ∅. Om denotes the set of moving objects
and Os denotes the set of still objects. We denote the set of moving
or static queries as Q, where Q = Qm ∪ Qs and Qm ∩ Qs = ∅.
Qm denotes the set of moving range queries and Qs denotes the

set of static range queries.

Moving Objects. We describe a moving object om ∈ Om by
a quadruple: 〈oid, pos, vel, {props}〉. Here, oid is the unique
object identifier, pos is the current position of the moving ob-
ject, vel = (velx, vely) is the current velocity vector of the ob-
ject, where velx is its velocity in the x-dimension and vely is
its velocity in the y-dimension, and {props} is a set of proper-
ties about the object. A still object can be modeled as a special
case of moving objects where the velocity vector is set to zero,
∀os ∈ Os, os.vel = (0, 0).

Moving Queries. We describe a moving query qm ∈ Qm by
a quadruple: 〈qid, oid, region, filter〉. Here, qid is the unique
query identifier, oid is the object identifier of the focal object of the
query, region defines the shape of the spatial query region bound
to the focal object of the query, and filter is a Boolean predi-
cate defined over the properties ({props}) of the target objects of
the query. Note that, region can be described by a closed shape
description such as a rectangle or a circle. This closed shape de-
scription also specifies a binding point, through which it is bound
to the focal object of the query. In the rest of the paper we assume
that a moving continual query specifies a circle as its range with
its center serving as the binding point. A static spatial continual
range query can be described as a special case where the queries
either have no focal objects or the focal object is a still object. I.e.,
∀qs ∈ Qs, qs.oid = null ∨ qs.oid ∈ Os.

Before we describe the motion modeling basics, we first re-
view three basic types of indexing techniques for evaluating range
queries over moving objects and discuss their advantages and in-
herent weaknesses. The three indexing mechanisms we consider
are Object-only Indexing (OI), Query-only Indexing (QI) and Ob-
ject and Query Indexing (OQI). To simplify the discussion with-
out loss of generality, we consider these indexes in their simplest
forms and we assume that we are fed with a stream of object po-
sition updates, where an update is received at each time step from
every object that has moved since the last time step. We comment
on whether a particular indexing approach is open to optimizations
but will not consider specific optimizations in the discussion.

Object-only Indexing (OI). In the object-only indexing approach
a spatial index is built on the object positions. Each time a new ob-
ject position is received, the object index is updated. At each query
evaluation step, all queries are evaluated against the object index.
An inherent drawback of the basic object-only indexing approach
is the re-evaluation of all queries against the object index regardless
of whether we have a static or moving query and whether the object
position changes are of interest to the query or not. Object-only in-
dexing is open to optimizations that can decrease the number or
cost of the updates on the object index (see velocity constrained
indexing in [18] and time parameterized R-trees in [19]).

Query-only Indexing (QI). In the query-only indexing approach
a spatial index is built on the spatial regions of the queries. Each
time a new query position (the position of the query’s focal object)
is received, the query index is updated. At each query evaluation
step, each object position is evaluated against the query index and
the queries that contain the object’s position are determined. Note
that this has to be done for every object as opposed to doing it
only for objects that have moved since the last query evaluation
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step. This is due to the fact that underlying queries are potentially
moving. This significantly decreases the effectiveness of query-
only indexing approach, although in the context of static continual
range queries it has been shown that a query index may improve
performance significantly [18].

Object and Query Indexing (OQI). In the object and query in-
dexing approach two spatial indexes are built, one for the object
positions and another for the spatial regions of the queries. Each
time an object position is received, the object index is updated.
Similarly, each time a new query position (the position of a query’s
focal object) is received, the query index is updated. At each query
evaluation step, each new object position is evaluated against the
query index and the queries that contain the object’s position are
determined. Then the query results are updated differentially. Sim-
ilarly at each query evaluation step, each new query position is
evaluated against the object index and the new result of the query
is determined. The object and query indexing approach evaluates
object positions against the query index only for the objects that
have changed their positions since the last query evaluation step as
opposed to query-only indexing which has to do it for all objects. It
also evaluates the queries against the object index only for queries
that have moved since the last query evaluation step, as opposed to
object-only indexing which has to do it for all queries. Although
the object and query indexing approach incurs higher cost due to
maintenance of an additional index structure, it is possible to em-
ploy a larger range of optimizations to reduce the additional cost
incurred and it does not have certain restrictions of object-only in-
dexing or query-only indexing.

2.2 Overview of the Solution Approach

Bearing in mind the pros and cons of the above three basic in-
dexing schemes, we propose a motion-adaptive indexing scheme
for efficient processing of moving queries over moving objects.
A motion adaptive index is defined as an index of parameterized
motion-sensitive bounding boxes. We use the concept of motion-
sensitive bounding boxes to model the dynamic behavior of both
moving objects and moving queries. Such bounding boxes are not
updated unless the position of a moving object or the spatial re-
gion of a moving query exceeds the borders of its bounding box.
Instead of indexing frequently changing object positions or spa-
tial regions of moving queries, we index less frequently changing
motion sensitive bounding boxes together with the motion func-
tions of the objects. This significantly decreases the number of
update operations performed on the indexes. Our indexing scheme
maintains both an index of object-based motion sensitive bounding
boxes (denoted as Indexmsb

o ) and an index of query-based motion
sensitive bounding boxes (denoted as Indexmsb

q ).
To address the problem of increased search cost due to querying

both Indexmsb
o and Indexmsb

q , we employ two optimization tech-
niques: the predictive query results, which optimistically precom-
putes the query results in the presence of object motion changes,
and the motion adaptive indexing, which dynamically adapts the
sizes of the motion sensitive bounding boxes to the changing mo-
tion behaviors at the granularity of individual objects, allowing
moving queries to be evaluated faster by performing fewer IOs.
In the rest of this section we describe the motion modeling and
motion update generation, which provides the foundation for mo-
tion sensitive bounding boxes and predictive query results.

Motion Modeling
Modeling motions of the moving objects for predicting their po-
sitions is a commonly used method in moving object index-
ing [26, 11]. In reality a moving object moves and changes its
velocity vector continuously. Motion modeling uses approxima-
tion for prediction. Concretely, instead of reporting their position
updates each time they move, moving objects report their veloc-
ity vector and position updates only when their velocity vectors
change and this change is significant enough 1. In order to evaluate
moving queries in between the last update reporting and the next
update reporting, the positions of the moving objects are predicted
using a simple linear function of time. Given that the last received
velocity vector of an object is vel, its position is pos and the time
its velocity update was recorded is t, the future position of the ob-
ject at time t + ∆t can be predicted as pos + ∆t ∗ vel. We use a
linear motion function in this paper, since it is the commonly used
model in moving object databases. We refer readers to [1] for a
study of non-linear motion modeling for moving object indexing.

Prediction-based motion modeling decreases the amount of in-
formation sent to the query processing engine by reducing the
frequency of position reporting from each moving object. Fur-
thermore, it allows the system to optimistically precompute future
query results. We below briefly describe how the moving objects
generate and send their motion updates to the server where the
query evaluation is performed.

Motion Update Generation
In order for the moving objects to decide when to report their ve-
locity vector and position updates, they need to periodically com-
pute if their velocity vectors have changed significantly. Con-
cretely, at each time step a moving object samples its current po-
sition and calculates the difference between its current position
and its position as predicted based on the last motion update it
reported to the server. In case this difference is larger than a spec-
ified threshold, say ∆D, the new motion function parameters are
relayed to the server.

3 Efficient Evaluation of Moving Range Queries

3.1 Motion Sensitive Bounding Boxes

Motion sensitive bounding boxes (MSBs) can be defined for both
moving queries and moving objects. Given a moving object om,
its associated MSB is calculated by extending the position of the
object along each dimension by α(om) times the velocity of the
object in that direction. Given a moving query qm, MSB of the
moving query is calculated by extending the minimum bounding
box of the query along each dimension by β(qm) times the velocity
of the focal object of the query in that direction (See Figure 1 for
illustrations).

Let Rect(l, m) denote a rectangle with l and m as any two end
points of the rectangle that are on the same diagonal. Let sign(x)
denote a function over a vector x, which replaces each entry in x
with its sign (+1 or -1). Then we define the MSB for a moving
object o and the MSB for a moving query q with focal object of

as follows:

1This technique is known as dead reckoning [6].
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Figure 1: Motion sensitive bounding boxes
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∀o ∈ Om, MSB(o) = Rect(o.pos, o.pos + α(o) ∗ o.vel)

∀q ∈ Qm, MSB(q) = Rect(of .pos − q.radius ∗ sign(q.vel),

of .pos + β(q) ∗ q.vel + q.radius ∗ sign(q.vel))

For each moving query, its MSB is calculated and used in place of
the query’s spatial region in the query-based MSB index, referred
to as the Indexmsb

q . Similarly, for each moving object, its MSB
is calculated and used in place of the object’s position and we refer
to such an object-based MSB index as the Indexmsb

o .
An important feature of indexing motion sensitive boxes of mov-

ing objects and moving queries is the fact that an MSB is not
updated unless the query’s spatial region or the object’s position
exceeds the borders of its motion sensitive bounding box. When
this happens, we need to invalidate the MSB. As a result, a new
MSB is calculated and the Indexmsb

q or the Indexmsb
o is up-

dated. This approach significantly reduces the number of update
operations performed on the spatial indexes and thus decreases
the overall cost of updating the spatial indexes (Indexmsb

o and
Indexmsb

q ).
Although maintaining MSB indexes increase the cost of search-

ing the index due to higher overlap of spatial objects (MBRs) be-
ing indexed, it is important to note that for appropriate values of
the α and β parameters, the gain of using MSB indexes is signif-
icant. Therefore, we need not only mechanisms for reducing the
cost of search operations in the MSB indexes, but also mecha-
nisms for dynamically determining the most appropriate values of
the α and β parameters based on the motion behavior of moving
objects and moving queries. It is also crucial to note that, using
MSBs does not introduce any inaccuracy in the query results, as
we store the motion function of the object or the query together
with its MSB inside the spatial index2. Furthermore, MSBs pro-
vide the following two advantages: (1) As opposed to approaches
that alter the implementation of traditional spatial indexes for de-
creasing the update cost [19, 18], motion sensitive bounding boxes
require almost no significant change to the underlying spatial in-
dex implementation. (2) Motion sensitive bounding boxes perform
size adaptation at the granularity of individual objects, leading to
significant reduction of IO cost (See Section 3.5 for further detail).

3.2 Predictive Query Results on Per Object Base

It is well known that one way of saving IO and improving effi-
ciency of evaluating moving queries is to precalculate future results
of the continual queries. This approach has been successfully used

2The inaccuracy due to motion modeling is not considered here. See [27] for a
discussion of motion update policies and their tradeoffs.

in the context of continuous moving kNN queries over static ob-
jects [21]. Most of existing approaches to precaculating query re-
sults associate a time interval to each query that specifies the valid
time for the precalculated results. One problem with per query
based prediction in the context of moving queries over moving ob-
jects is the fact that a change on the motion function of anyone of
the moving objects may cause the invalidation of some of the pre-
calculated results. This motivates us to introduce predictive query
results where the prediction is conducted on per-object base.

Given a query, its predictive query result differs from a regular
query result in the sense that each object in the predictive query
result has an associated time interval indicating the time period in
which the object is expected to be included in the query result. We
denote the predictive query result of query q ∈ Q by PQR(q).
Each entry in a predictive query result takes the form 〈o, [ts, te]〉.
We call the entry associated with object o ∈ O in PQR(q) the
predictive query result entry of object o with regard to query q,
and the interval [ts, te] associated with object o the valid prediction
time interval of the predictive query result entry.

Calculating the valid prediction time intervals is done as follows.
Given a static continual range query and a moving object with
its motion function, it is straight forward to calculate the inter-
section points of the query’s spatial region and the ray formed by
the moving object’s trajectory (See case I in Figure 2). Similarly,
to calculate the intersection point of a moving query and a mov-
ing or non-moving object (assuming that we only consider mov-
ing queries with circle shaped spatial regions), we need to solve
a quadratic function of time. Formally, let q ∈ Q be a query
with focal object of ∈ Om, and o ∈ O be an object, and let
Dist(a, b) denote the Euclidian distance between the two points a
and b. We can calculate the time interval in which the object o is
expected to be in the result set of query q by solving the formula:
Dist(of .pos + t ∗ of .vel, o.pos + t ∗ o.vel) ≤ qm.radius. Fig-
ure 2 illustrates three different cases that arise in the calculation of
prediction time interval for each per-object based predictive query
result entry.

The predictive query results are precalculated on per object base
and predictive query result entries are correct unless the motion
function of the focal object of a query or the motion function of the
moving object associated with the query result entry have changed
within the valid prediction time interval. As a result, there are two
key questions to answer in order to effectively use the predictive
query results in evaluating moving queries:

Prediction − For each moving query, should we perform predic-
tion on all moving objects? If not, how to determine for which
objects we should do prediction?
Obviously we should not perform prediction for objects that are far
away from the spatial region of the query within a period of time,
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Figure 3: An illustration of temporal query results and how it integrates with motion sensitive
bounding boxes

as the predicted results are less likely to hold until those objects
reach to the proximity of the query, e.g., entering the motion sen-
sitive bounding box of the query.

Invalidation − When and how to update the predictive results?
This can be referred to as the invalidation policy for per-object
based prediction. The predictive query results may be invalid and
thus need to be updated when the motion function of a moving
query or the motion function of a moving object changes. In ad-
dition, the predictive results may require to be refreshed when the
objects in the predictive query results have moved away from the
proximity of the query or when the objects that did not participate
in the prediction have entered the proximity of the query.

3.3 Determining Predictive Query Results Using MSBs

In addition to serving as an optimization technique to minimize
the update cost on the spatial indexes, MSBs can be used to ef-
fectively determine for which objects we should perform result
prediction with respect to a query (answering the first question
listed in Section 3.2). Concretely, for a given query, objects whose
MSBs intersect with the query’s MSB are considered as poten-
tial candidates of the query’s predictive result. Figure 3 gives an
illustration of how predictive query results integrate with motion
sensitive bounding boxes. Consider the moving query q1 with its
query MSB and four moving objects o1, o2, o3 and o4 as shown
in Figure 3. In the figure, o1 is the focal object of query q1 and the
other three moving objects o2, o3 and o4 are associated with their
object MSBs. At time t0 only objects o2 and o3 are subject to
query q1’s predictive query result, as their MSBs intersect with
the query’s MSB. However the valid prediction time interval of
object o3 with regard to query q1 is empty because there is no such
time interval during which object o3 is expected to be inside the
query result of query q1. Thus object o3 should not be included in
the predictive result of query q1. At some later time t1, object o2

and query q1 remain inside their MSBs. However objects o3 and
o4 have changed their MSBs. As a result, objects o2 and o4 be-
come potential candidates of query q1’s predictive result at time t1.
Since o2 has not changed its MSB, it remains included in query
q1’s predictive result. By applying the valid prediction time inter-
val test on o4, we obtain a non-empty time interval with respect to
query q1, during which o4 is expected to be included in the query
result. Thus o4 is added into the predictive result of query q1.

3.4 Setting α and β Values

The α and β parameters used for calculating MSBs can be set
based on the motion behavior of the objects, in order to achieve

more efficient query evaluation. There are two important charac-
teristics of object motions: (a) the speed of the object and (b) the
period of constant motion of the object (i.e. the length of the time
period it takes for the motion function to change). For instance, for
a query whose focal object changes its motion function frequently,
it may not be a good idea to perform too much prediction, thus β
value for this query’s MSB should be kept smaller. However, for
an object with high speed, a small α value may not be appropriate,
as it may cause frequent MSB invalidations.

In order to choose appropriate α and β values for each MSB,
it is important to design a motion-adaptive method that can set the
values of α and β parameters adaptively. A common approach to
runtime parameter settings is to develop an analytical model and
use the analytical results to guide the runtime selection of the best
parameter settings. We develop an analytical model for estimating
the IO cost of performing query evaluation (see Appendix for de-
tails). This model is used as the guide to build an off-line computed
αβTable, giving the best α and β values for different value pairs
of speed and period of constant movement of a moving object. We
will discuss details of α and β value selection in Section 3.6.

3.5 Motion Adaptive Indexing

We have described the main ideas and mechanisms used in our
motion-adaptive indexing scheme. In this subsection we describe
motion-adaptive indexing as a query evaluation technique that in-
tegrates the ideas and mechanisms presented so far for efficient
processing of moving queries over moving objects.

3.5.1 Processing Moving Queries: An Overview

The evaluation of moving queries is performed through multiple
query evaluation steps executed periodically with regular time in-
tervals of Ps (scan period) seconds. We build two spatial MSB
indexes, Indexmsb

o for the objects and Indexmsb
q for the queries.

Indexmsb
o stores MSBs of the objects accompanied by the asso-

ciated motion functions as data. Static objects have point MSBs.
Similarly, Indexmsb

q stores the MSBs of the queries accompa-
nied by the associated motion functions of the focal objects of the
queries and their radiuses as data. Static queries have MSBs equal
to their minimum bounding rectangles and they do not have asso-
ciated motion functions.

We create and maintain two tables, a moving object table and a
moving query table. They store information regarding the moving
objects and moving queries. The static queries and static objects
are included in the spatial MSB indexes but not in the two tables.
The periodic evaluation is performed by scanning these tables at
each query evaluation step and performing updates and searches
on the spatial indexes as needed in order to maintain the query re-
sults as objects and the spatial regions of the queries move. The
detailed description of the two tables is given below:

Moving Object Table (MOT ): An MOT entry is described as
(oid, qid, pos, vel, time, box, Pcm, Vch) and stores information
regarding a moving object. Here, oid is the moving object iden-
tifier, qid is the query identifier of the moving query whose focal
object’s identifier is oid, qid is null if no such moving query ex-
ists, pos is the last received position, vel is the last received ve-
locity vector of the moving object, time is the timestamp of the
motion updates (pos and vel) received from the moving object,
box is the MSB of the moving object, Pcm is an estimate on the
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Algorithm 1: Motion Update Received r = 〈oid, pos, vel, time〉
eo = 〈oid, qid, pos, vel, time, box, Pcm, Vch〉 ∈ MOT

where eo.oid = r.oid
eo.Pcm ← γ ∗ (r.time− eo.time) + (1− γ) ∗ eo.Pcm
eo.pos← r.pos
eo.vel← r.vel
eo.time← r.time
eo.Vch ← true
if eo.qid �= null then

eq = 〈qid, pos, vel, radius, time, box, Pcm, Vch〉 ∈ MQT
where eq.qid = eo.qid

eq.Pcm = γ ∗ (r.time− eq.time) + (1− γ) ∗ eq.Pcm
eq.pos← r.pos
eq.vel← r.vel
eq.time← r.time
eq.Vch ← true

end if

period of constant motion of the object and Vch is a Boolean vari-
able indicating whether the moving object has changed its motion
function since the last query evaluation step.

Moving Query Table (MQT ): An MQT entry is described as
(qid, pos, vel, radius, time, box, Pcm, Vch) and stores informa-
tion regarding a moving query. Here, qid is the moving query
identifier, pos and vel are the last received position and the last
received velocity vector of the query’s focal object respectively,
time is the timestamp of the motion updates (pos and vel) re-
ceived from the focal object, radius is the radius of the moving
query’s spatial region, box is the MSB of the moving query, Pcm

is an estimate on the period of constant motion of the object and
Vch is a Boolean variable indicating whether the focal object has
changed its motion function since the last query evaluation step or
not. Note that the information in MQT is to some extent redun-
dant with respect to MOT . However the redundant information
is required during the moving query table scan. Without redun-
dancy we will need to look them up from the moving object table,
which is quite costly. The MOT and MQT table entries are up-
dated whenever new motion updates are received from the moving
objects. The Pcm entries are updated using a simple weighted run-
ning average. The details are given in Algorithm 1. The effect
of a motion update is reflected on the query results when the next
periodic query evaluation step is performed. Assuming that mov-
ing objects decide whether they should send new motion updates
or not at every Pmu seconds (called the motion update time pe-
riod), one of our aims is to perform a single query evaluation step
in less that Pmu seconds in order to provide fresh query results, i.e.
having Ps ≤ Pmu. At each query evaluation step, we need to per-
form query table scan and object table scan. The scan algorithms
presented in the next subsection describe how these two tasks are
performed.

3.5.2 The Scan Algorithms

At each query evaluation step, two scans are performed. The first
scan is on the moving object table, MOT , and the second scan
is on the moving query table, MQT . The aim of the MOT scan
is to update the Indexmsb

o and to differentially update some of the
query results by performing searches on the Indexmsb

q . The aim of
the MQT scan is to update the Indexmsb

q and to recalculate some
of the query results by performing searches on the Indexmsb

o .

MOT Scan. During the MOT scan, when processing an entry we
first check whether the associated object of the entry has invali-
dated its MSB or changed its motion function since the last query
evaluation period. If none of these has happened, we proceed to the
next entry without performing any operation on the spatial MSB

indexes. Otherwise we first update the Indexmsb
o . In case there

is an MSB invalidation, a new MSB is calculated for the object
and the Indexmsb

o is updated. The α value used for calculating
the new MSB is selected adaptively (See Section 3.6 for further
details). If there has been a motion function change, the data as-
sociated with the entry of the object’s MSB in the Indexmsb

o is
also updated. Once the Indexmsb

o is updated, two searches are
performed on the Indexmsb

q . First, using the old MSB of the ob-
ject, the Indexmsb

q is searched and all the queries whose MSBs
intersect with the old MSB of the object are retrieved. The object
is then removed from the results of those queries (if it is already
in). Then a second search is performed with the newly calculated
MSB of the object and all queries whose MSBs intersect with
the new MSB of the object are retrieved. For all those queries,
result prediction is performed against the object. Lastly, the query
result entries obtained from the prediction with non-empty time in-
tervals are added into their associated query results. Algorithm 2
gives the pseudo code for the MOT scan.

MQT Scan. During the MQT scan, when processing a query en-
try we first check whether the associated query of the entry has
invalidated its MSB or its focal object has changed its motion
function since the last query evaluation step. If none of these has
happened, we proceed to the next entry without performing any
operation on the spatial indexes. Otherwise we first update the
Indexmsb

q . In case there is an MSB invalidation, a new MSB
is calculated for the query and the Indexmsb

q is updated. The β
value used for calculating the new MSB is selected adaptively
(See Section 3.6 for details). If there has been a motion function
change, the data associated with the entry of the query’s MSB in
the Indexmsb

q is also updated. Once the Indexmsb
q is updated, a

single search is performed on the Indexmsb
o with the newly calcu-

lated MSB of the query. All objects whose MSBs intersect with
the new query MSB are retrieved. For all those objects, result
prediction is performed against the query. The predictive query re-
sult entries with non-empty time intervals are added into the query
result and all old query results are removed. Algorithm 3 gives the
pseudo code for the MQT scan.

Note that after the MOT scan all results are correct for the
queries whose MSBs are not invalidated and their focal objects
have not changed their motion function. For queries that have in-
validated their MSBs or whose focal objects have changed their
motion functions, the query results are recalculated during the
MQT scan. Therefore, all of the query results are up to date af-
ter the MQT scan, given that MOT scan is performed first. The
order of the scans can be reversed with some minor modifications.

3.6 αβTable and Adaptive Parameter Selection

The cost function developed in Appendix has a global minimum
that optimizes the IO cost of the query evaluation. We build an
off-line computed αβTable, which gives the optimal α and β val-
ues for different value pairs of object speed and period of constant
motion, calculated using the cost function we have developed. We
implement the αβTable as a 2D matrix, whose rows correspond
to different object speeds and columns correspond to different pe-
riods of constant motion and the entries are optimal (α, β) pairs.
Recall Section 3.5, when we calculate the MSBs of moving ob-
jects and moving queries, we already have the estimates on periods
of constant motion and speeds of all moving objects including the
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Algorithm 2: Moving Object Table Scan
1: for all e = 〈oid, qid, pos, vel, time, box, Pcm, Vch〉 ∈ MOT do
2: ctime← current time
3: e.pos← e.pos + (ctime− e.time) ∗ e.vel
4: e.time← ctime
5: boxInvalid← cpos �∈ e.box
6: if¬boxInvalid ∧ ¬e.Vch then
7: continue
8: end if
9: oldBox← e.box
10: if e.Vch then
11: e.Vch ← false
12: if¬boxInvalid then
13: {Update the data associated with e.oid in the Indexmsb

o }
14: oidx.updateData(oid, 〈e.pos, e.vel, e.time〉)
15: end if
16: end if
17: if boxInvalid then
18: α← αβTable.lookup(|e.vel|, e.Pcm)
19: e.box← Rect(e.pos, e.pos + α ∗ e.vel)

20: {Update the entry associated with e.oid in the Indexmsb
o }

21: oidx.update(oid, e.box, 〈e.pos, e.vel, e.time〉)
22: end if
23: oldQids← qidx.query(oldBox)
24: newResults← qidx.query(e.box, e.pos, e.vel, e.time)
25: for all r = 〈qid, itv = 〈itvs, itve〉〉 ∈ newResults do
26: result← results.get(r.qid)
27: result.put(e.oid, itv)
28: oldQids.remove(r.qid)
29: end for
30: for all qid ∈ oldQids do
31: result← results.get(r.qid)
32: result.remove(e.oid)
33: end for
34: end for

Algorithm 3: Moving Query Table Scan
1: for all e = 〈qid, pos, vel, radius, time, box, Pcm, Vch〉 ∈ MQT do
2: ctime← current time
3: e.pos← e.pos + (ctime− e.time) ∗ e.vel
4: e.time← ctime
5: boxInvalid← cpos �∈ e.box
6: if¬boxInvalid ∧ ¬e.Vch then
7: continue
8: end if
9: if e.Vch then
10: e.Vch ← false
11: if¬boxInvalid then
12: {Update the data associated with e.qid in the Indexmsb

q }
13: qidx.updateData(qid, 〈e.pos, e.vel, e.radius, e.time〉)
14: end if
15: end if
16: if boxInvalid then
17: β ← αβTable.lookup(|e.vel|, e.Pcm)
18: fpos← e.pos + β ∗ e.vel
19: e.box ← Rect(e.pos − sign(e.vel) ∗ e.radius, fpos + sign(e.vel) ∗

e.radius)

20: {Update the entry associated with e.qid in the Indexmsb
q }

21: qidx.update(qid, e.box, 〈e.pos, e.vel, e.radius, e.time〉)
22: end if
23: result← results.get(e.qid)
24: result.removeAll()
25: newResults← oidx.query(e.box, e.pos, e.vel, e.radius, e.time)
26: for all r = 〈oid, itv = 〈itvs, itve〉〉 ∈ newResults do
27: result.put(r.oid, itv)
28: end for
29: end for
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Figure 5: Optimal α and β values

focal objects of the moving queries. We can decide the best α and
β values to use during MSB calculation by performing a single
lookup from the off-line computed αβTable.

The graph on the left in Figure 4 plots the average time it takes
to perform one complete query evaluation step (labelled as total
query evaluation time) as a function of α and β. These values are
from the actual implementation of motion adaptive indexing. The
graph on the right in Figure 4 plots the analytical node IO count
estimate of performing one query evaluation step as a function of α
and β. Two important observations can be obtained by comparing
these graphs. First, it shows that the IO cost is dominant on the
time it takes to perform query evaluation, as the node IO count
graph highly determines the shape of the query evaluation time
graph. Second, the optimal values of α and β calculated using the
analytical cost function indeed results in faster query evaluation.

The graph on the left in Figure 5 plots the optimal α and β values
calculated by the analytical cost estimate (using the right y-axis),
as a function of period of constant motion. The node IO count is
also shown in the graph as an area chart (using the left y-axis).
Note that as the period of constant motion increases, the object
movements are more predictable. For small values of the period of
constant motion, the optimal β value turns out to be small. This is
because large β values will result in more prediction, which is not

desirable when the period of constant motion is small (predictabil-
ity is poor).

The graph on the right in Figure 5 plots the optimal α and β
values calculated by the analytical cost estimate (using the right y-
axis), as a function of object speeds. The node IO is also shown in
the graph as an area chart (using the left y-axis). The graph shows
that for high speeds the α and β parameters should be kept small,
in order to avoid large MSBs which will cause high overlap and
increase the cost of spatial index operations.

More experiments on the effect of adaptive parameter selection
will be provided in Section 5.

4 Evaluating Moving kNN Queries
Moving continual k-nearest neighbor (kNN) queries over moving
objects can be evaluated using the main mechanisms employed for
moving range query evaluation. A moving kNN query is defined
similar to a moving range query, except that instead of a range, the
parameter k is specified for retrieving the k nearest neighbors of
the focal object of the query.

A unique feature of our motion adaptive indexing scheme is its
ability to efficiently process both continual moving range queries
and continual moving kNN queries.

In order to extend the motion adaptive indexing developed for
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evaluating moving range queries to the evaluation of moving kNN
queries, we introduce the concept of safe radius and two mech-
anisms − guaranteed safe radius and optimistic safe radius. To
evaluate kNN queries with the use of safe radiuses, we need to
make the following three changes:

a. Instead of storing time intervals in query result entries, we
store the distance of the objects from the focal object of the
query as a function of time.

b. During the MQT table scan, when a query invalidates its
MSB or changes its motion function, we calculate a safe
radius which is guaranteed to contain at least k moving ob-
jects until the next time the safe radius is calculated (β is an
upper bound for this time). Then the kNN query is installed
as a standard MQ with its range equal to the safe radius.

c. At the end of each query evaluation step, results are sorted
based on their distances to their associated focal objects by
using the distance functions stored within the query result en-
tries. The top k result entries are then marked as the current
results.

The important step here is to calculate a safe radius, that will
make sure that at least k objects will be contained within the safe
radius during the next t time units. We propose two different ap-
proaches to tackle this problem: the guaranteed safe radius (GSR)
and the optimistic safe radius (OSR).

The guaranteed safe radius approach retrieves the current k near-
est neighbors, and for each object in the list calculates the maxi-
mum possible distance between the object and the focal object of
the query at the end of the t time units. This can be calculated us-
ing the focal object’s motion function and the upper bounds on the
maximum speeds of these k nearest neighbor objects. The maxi-
mum of these k calculated distances will give the safe radius. How-
ever, there are two problems. First, it requires us to know the upper
bounds on the speeds of moving objects. Second, the calculated
safe radius may become too large.

The optimistic safe radius approach retrieves the current k near-
est neighbors, and for each object in the list calculates the maxi-
mum distance between the object and the focal object of the query
throughout the next t time units. For each of the k objects, this
calculation can be done using the current motion function of the
object and the motion function of the query’s focal object. The
maximum of these k calculated distances will give the safe radius.
This approach guarantees that k objects will be contained within
the safe radius during the next t time units under the assumption
that the initial set of k nearest neighbors do not change their mo-
tion functions during this period. When using this approach, if
the number of objects in the result of a kNN query turns out to be
smaller than k, we fall back to the traditional spatial index kNN
search plan for that query until the next time a new safe radius is
calculated.

5 Experimental Results
This section describes five sets of implementation based experi-
ments, which are used to evaluate our solution. The first set of
experiments compares the performance of motion adaptive index-
ing against various existing approaches. The second set of exper-
iments illustrates the advantages of adaptive parameter selection

Parameter Default value

area of the region of interest 500000 square miles
number of objects 50000
percentage of moving objects 50%
number of queries 5000
percentage of moving queries 50%
moving query range distribution {5, 4, 3, 2, 1} miles with Zipf param 0.6
static query side range distribution {8, 7, 5, 4, 2} miles with Zipf param 0.6
period of constant motion mean 10 minutes geometrically distributed
moving object speed between 0-160 miles/hour uniformly random
scan period 30 seconds
motion update time period 30 seconds

Table 1: System Parameters

over fixed parameter setting. The third set of experiments studies
the effect of skewed data and query distribution on query evalua-
tion performance. The fourth set of experiments analyzes the scal-
ability of the proposed approach with respect to queries with vary-
ing sizes of spatial regions, varying percentages of moving queries,
and varying number of objects. Finally the fifth set of experiments
present the effectiveness of the motion adaptive approach to eval-
uating moving continual kNN queries over moving objects.

5.1 System Parameters and Setup

We list the set of parameters used in the experiment in Table 1.
In all of the experiments presented in the rest of the paper, the
parameters take their default values if not specified otherwise.
The default object density is taken in accordance with previous
work [18, 19]. Objects and queries are randomly distributed in the
area of interest, except in Section 5.4 where we consider skewed
distributions. Objects that belong to different classes with strictly
varying movement behaviors are considered in Section 5.3. The
paths followed by the objects are random, i.e. each time a motion
function update occurs, a random direction and a random speed are
chosen.

For R∗-trees a 101 node LRU buffer is used with 4KB page size.
Branching factor of the internal tree nodes is 100 and the fill factor
is 0.5. All experiments are performed using R∗-trees, except that
in Section 5.4 a static grid based spatial index implementation is
used for comparison purposes.

5.2 Performance Comparison

We compare the performance of motion adaptive indexing against
various existing approaches, in terms of query evaluation time
and node IO counts. The approaches used for comparison are:
Brute Force (BF ), Object-only Indexing (OI), Query-only Index-
ing (QI), Object and Query Indexing (OQI), Motion Adaptive In-
dexing (MAI), and Object Indexing with MSBs (OIB). The
Brute Force calculation is performed by scanning through the ob-
jects. During the scan, all queries are considered against each ob-
ject in order to calculate the results. Object Indexing with MSBs
is similar to pure object-only indexing, except that the motion sen-
sitive boxes are used in the place of objects in the spatial index
(without the predictive query results).

Figure 6 plots the total query evaluation time for fixed number
of objects (50K) with varying number of queries (2.5K to 20K).
The horizontal line in the figure represents the scan period. We
consider a query evaluation scheme as acceptable when the total
query evaluation time is less than the scan period. Note that the
scan period, Ps, is set to be equal to the motion update time period
Pmu in this set of experiments. Figure 7 plots the query evaluation
node IO count for the same setup. The node IO is divided into four
different components. These are: (a) node IO due to object index
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update, (b) node IO due to object index search, (c) node IO due
to query index update and (d) node IO due to query index search.
Each component is depicted with a different color in Figure 7. Sev-
eral observations can be obtained from Figure 6 and Figure 7.

First, the approaches with an object index that is updated for all
moving objects, do not perform well when the number of queries
is small. This is clear from the poor performances of OI and OQI
for 2.5K queries, as shown in Figure 6. The reason is straightfor-
ward. The cost of updating the object index dominates when the
number of queries is small. This can also be observed by the object
index update component of the OI in Figure 7.

Second, the approaches with a query index that is searched for
large number of objects, do not perform well for large number of
queries. This is clear from the poor performances of QI and OQI
for 20K queries, as shown in Figure 6. This is due to the fact that,
the cost of searching the query index dominates when the number
of queries is large. This can also be observed by the query index
search component of the QI in Figure 7.

Third, the brute force approach performs relatively good com-
pared to OQI and slightly better compared to OI , when the
number of queries is small (2.5K), as shown in Figure 6. Obvi-
ously BF does not scale with the increasing number of queries,
since the computational complexity of the brute force approach is
O(No ∗Nq) where No is the total number of objects and Nq is the
total number of queries. Although OQI seems to be a consistent
loser when compared to other indexing approaches, it is interesting
to note that the motion adaptive indexing is built on top of it and
performs better than all other approaches.

Finally, it is worth noting that only MAI manages to provide
good enough performance to satisfy Ps ≤ Pmu under all con-
ditions. MAI provides around 75-80% savings in query evalu-
ation time under all cases when compared to the best competing
approach except OIB. OIB performs reasonably well, but fails
to scale well with increasing number of queries when compared to
the proposed MAI approach.

5.3 Effect of Adaptive Parameter Selection

In order to illustrate the advantage of adaptive parameter selection,
we compare motion adaptive indexing against itself with static pa-
rameter selection. For the purpose of this experiment, we intro-
duce three different classes of moving objects with strictly differ-
ent movement behaviors. The first class of moving objects change
their motion functions frequently (avg. period of constant motion

1 minute) and move slow (max. speed 20 miles/hour). The second
class of moving objects possess the default properties described in
Section 5.1. The third class of moving objects seldom change their
motion functions (avg. period of constant motion 1 hour) and move
fast (max. speed 500 miles/hour). In order to observe the gain from
adaptive parameter selection, we set the α and β parameters to the
optimal values obtained for moving objects of the second class for
the non-adaptive case.

Figure 8 plots the time and IO cost of query evaluation for MAI
and static parameter setting version of MAI . The x-axis repre-
sents the object class distributions. Hence, 1:1:1 represents the
case where the number of objects belonging to different classes
are the same. Along the x-axis we change the number of objects
belonging to the second class. 1:0.25:1 represents the case where
the number of objects belonging to the first class and the number
objects belonging to the third class are both 4 times the number
of objects belonging to the second class. Dually, 1:4:1 represents
the case where the second class cardinality is 4 times the other
two class cardinalities. Total query evaluation times are depicted
as lines in the figure and their corresponding values are on the left
y-axis. The node IO counts are depicted as an embedded bar chart
and their corresponding values are on the right y-axis. There are
two important observations from Figure 8.

First, we notice that the adaptive parameter selection has a clear
performance advantage. This is clearly observed from Figure 8,
which shows significant improvement provided by motion adaptive
indexing over static parameter setting in both query evaluation time
and node IO count.

Second, it is important to note that the objects belonging to the
first class or the third class cannot be ignored even if their numbers
are small. Even for 1:4:1 distribution, where the second class of
objects is dominant, we see a significant improvement with MAI .
Note that objects belonging to the first and the third class are ex-
pensive to handle. The first class of objects are expensive, as they
cause frequent motion updates which in turn causes more process-
ing during MOT and MQT scans. The third class of objects are
also expensive, as they cause frequent MSB invalidation which
instigates more processing during MOT and MQT scans. The
fact that both query evaluation time and node IO count are declin-
ing along the x-axis shows that it is obviously more expensive to
handle the first and the third class of objects.
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Figure 8: Performance gain due to adaptive parameter selection
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Figure 11: Query and object distribution for Nh = 5 and Nh = 30

5.4 Effect of Data and Query Skewness

Our experiments up to now have assumed uniform object and
query distribution. In this section we conduct experiments with
skewed data and query distributions. We model skewness using
two parameters, number of hot spots (Nh) and scatter deviation
(d). We pick Nh different positions within the area of interest ran-
domly, which correspond to hot spot regions. When assigning an
initial position to an object, we first pick a random hot spot position
from the Nh different hot spots and then place the object around
the hot spot position using a normally distributed distance func-
tion on both x and y dimensions with zero mean and d standard
deviation. Scatter deviation d is set to 25 miles in all experiments
and the number of hot spots is varied to experiment with different
skewness conditions. Queries also follows the same distribution
with objects. Figure 11 shows the object and query distribution for
Nh = 5 and Nh = 30.

We also experiment with different spatial indexing mechanisms.
We have implemented a static grid based spatial index, backed up
by a B+-tree with z-ordering [7]. The optimal cell size of the
grid is determined based on the workload. The motivation for us-
ing a static grid is that, with frequently updated data it may be
more profitable to use a statically partitioned spatial index that can
be easily updated. Actually, previous work done for static range
queries over moving objects [9] has shown that using a static grid
outperforms most other well known spatial index structures for
in-memory databases. With this experiment we also investigate
whether a similar situation exists in secondary storage based in-
dexing in the context of MQs.

Figure 9 plots the total query evaluation time as a function of
number of hot spots for different spatial index structures used for
Indexmsb

o and Indexmsb
q . Note that the smaller the number of hot

spots, the more skewed the distribution is. Figure 9 shows that de-
creasing the number of hot spots exponentially increases the query
evaluation scan time. But even for Nh = 5, the query evaluation
time does not exceed the query evaluation period. Figure 9 also

shows that R∗-tree performs the best under all conditions. But dur-
ing our experiments we also observed that without using the op-
timization discussed under R*-tree implementation detail (in the
Appendix) for decreasing the update operation cost of the R∗-tree,
the results are in favor of the static grid. Put differently, our experi-
ments conclude that only a properly implemented R∗-tree with op-
timized update operation outperforms a static grid based approach.

5.5 Scalability Study

In this section we study the scalability of the proposed solution
with respect to the varying size of query ranges, the varying per-
centage of moving queries over the total number of spatial queries,
and the varying total number of objects. We first measure the im-
pact of the query range and the moving query percentage on the
query evaluation performance. We use the range factor (rf ) to
experiment with different workloads in terms of different query
ranges. The query radius and query side length parameters given
in Section 5.1 are multiplied by the range factor rf in order to alter
the size of query regions. Note that multiplying the range factor by
two in fact increases the area of the query range by four.

Figure 10 plots the total query evaluation scan time as a func-
tion of moving query percentage for different range factors. As
shown in Figure 10, the scalability in terms of moving query per-
centage is extremely good. The slope of the query evaluation time
function shows good reduction with increasing percentage of mov-
ing objects. On the other hand, increasing the range factor shows
roughly linear increase on the query evaluation time.

In Figure 12 we study the effect of the number of objects on the
query evaluation performance. Figure 12 plots the total query eval-
uation time as a function of number of objects for different spatial
index structures used for Indexmsb

o and Indexmsb
q . The number

of queries is set to its default value of 5K. From Figure 12 we
observe a linear increase in scan time with the increasing number
of objects, where the R∗-tree implementation of Indexmsb

o and
Indexmsb

q show better scalability with increasing number of ob-
jects than the static grid implementation for the similar reason dis-
cussed before.

5.6 Performance of Continual kNN Queries

We compare the performance of MQ based moving continual kNN
query evaluation against the object-only indexing approach. In
object-only indexing approach, the object index is updated and the
kNN queries are evaluated against the updated object index dur-
ing each query evaluation step. In this experiment 10K objects
are used with the same object density (No/A) specified in Sec-

10



50K 100K 150K 200K
5

10

15

20

25

30

35

40

45

number of objects

to
ta

l q
u

er
y 

ev
al

u
at

io
n

 t
im

e 
(s

)

R*Tree     OMSB index
R*Tree     QMSB index
StaticGrid OMSB index
R*Tree     QMSB index
R*Tree     OMSB index
StaticGrid QMSB index
StaticGrid OMSB index
StaticGrid QMSB index

Figure 12: Effect of number of objects on performance
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Figure 13: Total query evaluation time for moving continual
kNN queries
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Figure 14: Node IO count for moving continual kNN queries

tion 5.1), where 50% of the objects are moving with the default
motion parameters from Section 5.1. All queries are moving con-
tinual kNN queries and the number of queries ranges from 0.5K
to 4K. The k values of the kNN queries are selected from the list
{5, 6, 7, 8, 9, 10} using a Zipf distribution with parameter 0.6. Fig-
ure 13 plots the total query evaluation time and Figure 14 plots
the node IO count for different number objects with different ap-
proaches. The node IO count is divided into two components. The
lower part shows the node IO due to index searches, where the
upper part shows the node IO due to index updates.

Evaluating moving continual kNN queries with motion adaptive
indexing shows significant improvement over object-only index-
ing approach. Between the two variations of safe radius, OSR
(optimistic safe radius based approach) performs better than GSR
(guaranteed safe radius based approach). Object-only indexing
with MSBs (OIB) slightly outperforms GSR. However, OSR
provides 20-40% improvement in total query evaluation time over
OIB.

6 Related Work

Research on moving object indexing can be broadly divided into
two categories, (1) indexing and querying current positions of
moving objects and (2) indexing and querying trajectories of mov-
ing objects. Our work belongs to the first category. A recent
study dealing with the problem of indexing and querying mov-
ing object trajectories can be found in [17]. Continual queries
are used as a useful tool for monitoring frequently changing in-
formation [23, 14]. In the spatial databases domain, continual
queries are employed for continuously querying moving object po-
sitions. Most of the work on continual queries over moving ob-
ject positions is either on static continual queries over moving ob-
jects [18, 9, 11, 3, 19] or on moving continual queries over static
objects [21, 2, 20].

In [18], velocity constrained indexing and query indexing has
been proposed for efficient evaluation of static continual range
queries. The same problem is studied in [9], however the focus
is on in-memory structures and algorithms. In [19], TPR-tree, an
R-tree based indexing structure, is proposed for efficient evalua-
tion of spatial queries over moving object positions. TPR∗ tree,
an extension of TPR tree optimized for queries that look into fu-
ture (predictive), is described in [22]. Work on moving continual
queries over static objects focuses on continuous k-nearest neigh-
bor evaluation. An algorithm for precalculating k-nearest neigh-
bors with a line segment representing the continuous motion of an

object, is described in [21]. In [2], reverse nearest neighbors are
also discussed.

The concept of moving queries is to some extent similar to the
Dynamic Queries introduced in [12]. A dynamic query is defined
as a temporally ordered set of snapshot queries in [12]. This is a
low level definition as opposed to our definition of moving queries
which is more declarative and is defined from users’ perspective.
The work done in [12] indexes the trajectories of the moving ob-
jects and describes how to efficiently evaluate dynamic queries that
represent predictable or non-predictable movement of an observer.
They also describe how new trajectories can be added when a dy-
namic query is actively running. Their assumptions are in line with
their motivating scenario, which is to support rendering of objects
in virtual tour-like applications. Our work focuses on real-time
evaluation of moving queries in real-world settings, where the tra-
jectories of the moving objects are unpredictable and the queries
can potentially be associated with moving objects inside the sys-
tem. An important feature of our approach is its motion adaptive-
ness, allowing the query evaluation to be optimized according to
dynamic motion behavior of the moving objects involved.

7 Conclusion

We have presented a system and a motion-adaptive indexing
scheme for efficient processing of moving queries over moving
objects. Our approach has three unique features. First, we use
the concept of motion-sensitive bounding boxes (MSBs) to model
the dynamic motion behavior of both moving objects and moving
queries, and promote to index less frequently changing MSBs to-
gether with the motion functions of the objects, instead of indexing
frequently changing object positions. This significantly decreases
the number of update operations performed on the indexes. Sec-
ond, we propose to use motion adaptive indexing in the sense that
the sizes of the MSBs can be dynamically adapted to the moving
object behavior at the granularity of individual objects. Concretely,
we develop a model for estimating the cost of moving query eval-
uation, and use the analytical model to guide the setting and the
adaptation of several system parameters dynamically. As a result,
the moving queries can be evaluated faster by performing fewer
IOs. Finally, we advocate the use of predictive query results to
reduce the number of search operations to be performed on the
spatial indexes. Other important characteristics of our approach in-
clude the extension of the motion adaptive indexing scheme to the
evaluation of moving continual kNN queries through the concept
of guaranteed safe radius and optimistic safe radius. We report a
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series of experimental performance results for different workloads,
including scenarios based on skewed object and query distribution,
and demonstrate the effectiveness of our motion adaptive index-
ing scheme through comparisons with other alternative indexing
mechanisms. We have shown that the proposed motion adaptive
indexing scheme is efficient for evaluation of both moving contin-
ual range queries and moving continual kNN queries.
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Ps scan period Rmq average moving query radius
Pcm period of constant motion Lsq average static query side length
No number of objects Smo average moving object speed
Nmo number of moving objects A area of the region of interest
Nq number of queries α MSB parameter for objects
Nmq number of moving queries β MSB parameter for queries

Table 2: Symbols and their meanings

APPENDIX - Analytical Model for IO Estimation
and αβ Setting
In this section we develop an analytical model for estimating the
IO cost of performing query evaluation and describe how we use
this model to set α and β parameters adaptively based on the dy-
namic motion behavior of the moving objects or moving queries.
Although our approach is spatial index independent, the discussion
on the analytical model is based on R∗-trees.

R∗-tree Implementation Details
We have used an R∗-tree implementation which can store both spa-
tial objects and their associated data (motion functions in our case)
at the leaf level. The only modification we have performed is on the
update operation. For moving object indexing, performing an up-
date as a delete operation followed by an insert operation is costly.
Most of the time the position change of the spatial index entry do
not cause any inconsistencies at the leaf level, i.e. the MBR of the
entry’s leaf node will still contain its new position. As a result our
update operation implementation first checks whether the position
change of the spatial index entry causes its new MBR to cross its
current leaf node’s MBR. If not, the position of the entry is up-
dated without causing any structural change on the tree. Otherwise
a delete operation followed by an insert operation is performed
as the fallback plan. In fact, the update operation can be further
improved by using a bottom up approach as recently introduced
in [13].

Analytical Model for IO Estimation
In what follows, we present an analytical model to calculate the IO
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cost of the query evaluation, i.e. the two scans performed at each
query evaluation step. Table 2 lists some of the symbols used and
their meanings.

Let Amo denote the average area of a moving object motion sen-
sitive bounding box and Amq denote the average area of a moving
query motion sensitive bounding box. Then, assuming that the x
and y components of the velocity vector are equal, based on the
definition of MSBs,

Amo ≈ (α ∗ Smo/
√

2)
2

Amq ≈ (β ∗ Smo/
√

2 + 2 ∗ Rmq)
2

Let Ao denote the average size of the object bounding boxes
stored in the Indexmsb

o (static object’s are assumed to have a box
with zero area) and Aq denote the average size of the query bound-
ing boxes stored in the Indexmsb

q . Then,

Ao ≈ Amo ∗Nmo/No

Aq ≈ (Amq ∗Nmq + L
2
sq ∗ (Nq −Nmq))/Nq

Given this information, the following four quantities can be ana-
lytically derived based on well studied R-tree cost models [5, 10,
15, 4, 24, 25]:

Cu
o : node IO cost for updating the Indexmsb

o during the process-
ing of an object table entry

Cs
o : node IO cost for searching the Indexmsb

q during the process-
ing of an object table entry

Cu
q : node IO cost for updating the Indexmsb

q during the process-
ing of a query table entry

Cs
q : node IO cost for searching the Indexmsb

o during the process-
ing of a query table entry

Let Nvc
o denote the expected value of the number of distinct

objects causing velocity change events during one scan period
and Nvc

q denote the expected value of the number of distinct
queries causing velocity change events during one scan period. If
Ps/Pcm < 1, only some of the moving objects will cause velocity
change events. Hence,

N
vc
o ≈ Nmo ∗min(1, Ps/Pcm)

N
vc
q ≈ N

vc
o ∗Nmq/Nmo

Let Nbi
o denote the expected value of the number of objects caus-

ing box invalidations during one scan period and Nbi
q denote the

expected value of the number of queries causing box invalidations
during one scan period. Then,

N
bi
o ≈ min(Ps/α, 1) ∗Nmo

N
bi
q ≈ min(Ps/β, 1) ∗Nmq

Let Nmot denote the expected value of the number of entries
in the object table that requires processing and Nmqt denote the
expected value of the number of entries in the query table that
requires processing. Assuming that an object causes a veloc-
ity change event (V CE for short) independent of whether it has
caused an MSB invalidation event and similarly a query focal
object causes a velocity change event independent of whether the
query has caused an MSB invalidation,:

Nmot ≈ N
vc
o + N

bi
o −N

bi
o ∗ Prob{object caused VCE}

Nmqt ≈ N
vc
q + N

bi
q −N

bi
q ∗ Prob{query caused VCE}

Then,
Nmot ≈ N

vc
o + N

bi
o −N

bi
o ∗ (N

vc
o /Nmo)

Nmqt ≈ N
vc
q + N

bi
q −N

bi
q ∗ (N

bi
q /Nmq)

Finally, the total IO cost for the periodic scan, Cio, can then be
calculated, considering that for an entry of MOT that requires
processing, an update on the Indexmsb

o and two searches on the
Indexmsb

q are needed and for an entry of MQT that requires pro-
cessing, an update on the Indexmsb

q and a search on the Indexmsb
o

are needed, as follows:

Cio = Nmot ∗ (C
u
o + 2 ∗ C

s
o) + Nmqt ∗ (C

u
q + C

s
q ) (1)

Setting values of α and β
The cost function given by (1) has a global minimum with respect
to parameters α and β for fixed values of moving object speed and
constant motion time. This fact is used to construct the αβTable
mentioned in Section 3.6.
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