KStreams: Kernel Support for Efficient End-to-End Data
Streaming

Jiantao Kong and Karsten Schwan
College of Computing
Georgia Institute of Technology, Atlanta, GA 30332

{jiantao,schwan}@cc.gatech.edu

Abstract

Technology advances are enabling increasingly data-
intensive applications, ranging from peer-to-peer file
sharing, to multimedia, to remote graphics and
data visualization. One outcome is the considerable
memory pressure imposed on the machines involved,
caused by application-specific data movements and
by repeated crossings of user/kernel boundaries. We
address this problem with a novel system service,
termed KStreams, a general facility for manipulat-
ing data without using intermediate buffers when
it moves across multiple kernel objects, like files
or sockets. KStreams may be used to implement
kernel-level services that range from application-
specific implementations of sendfile commands, to
data mirroring or proxy functions, to fast path data
conversions and transformations for data streaming.
The KStreams API permits individual applications
to define fast path operations, which will then exe-
cute at kernel level and if desired, without further
application involvement. By placing application-
specific data manipulations into data movement fast
paths, user/kernel boundary crossings are avoided.
By operating on data streams ‘in-flight’, data buffer-
ing is made unnecessary, thereby further reducing
the memory pressure imposed on machines.

KStreams is implemented on Linux kernel version
2.4.22. Its evaluation uses data-intensive tasks per-
formed in conjunction with modern web services,
such as proxy functions, remote media stream-
ing, data visualization, etc. Initial experiences
with the KStreams implementation are encourag-
ing. Fast path data transformation via KStreams
results in increased throughput of 20-50% compared
to user-level data manipulations. Future work with
KStreams uses it with complex multi-machine web
services, evaluated with representative user loads
and applications.

1 Introduction

Applications like web and transaction services, pub-
lish /subscribe, or remote collaboration are becom-
ing increasingly common. One outcome is a growing
demand for services that involve frequent or large-
scale data streaming. Supporting web requests,
such streaming services range from protocol-level
functionality like TCP routing, TCP handoff, or IP
packet rewriting [3, 5, 6], to proxy forwarding and
stack splicing [4, 8], to in kernel data paths [1] and
data streaming system calls like sendfile, to kernel-
resident web servers like khttpd [7, 12] that are
able to load-balance dynamic requests across mul-
tiple remote machines. For highly reliable servers,
data replication or mirroring have been shown use-
ful [9, 16]. To handle multi-media applications or
remote data visualization, kernel-resident data fil-
tering [11] can reduce the memory loads imposed
by such large-data applications, and QoS manage-
ment actions include the packet scheduling or traffic
differentiation needed by many such codes [13, 14].

Our research is creating and evaluating a small set
of kernel abstractions that support the efficient,
kernel-level representation of data streams. The
KStreams kernel service is a ‘thin’ layer on top of
the kernel’s network and file subsystems. KStreams
abstracts files and sockets into unified data objects
that may be manipulated by application-specific op-
erations. It provides an API to define such opera-
tions, termed stream handlers, to specify the objects
that represent incoming data, the type of incoming
data, and the relationships among multiple such ob-
jects (if data arrives on multiple incoming points).
It also specifies the outgoing data objects and their
relationships (when there are multiple ones). Exam-
ples in our work include (1) a data stream that ar-
rives on multiple incoming sockets and is forwarded
to multiple outgoing sockets in order to load-balance

the requests it contains across different servers [27]
and (2) a single incoming data stream mirrored to
multiple remote sites to maintain reliability or up-
time properties for transactional applications [9].
Other examples focus on data stream manipula-
tions, such as data downsampling [28], format con-
version [10], and similar ‘lightweight’ data transfor-
mations.

An important attribute of KStreams is that it
can operate independently of applications, as with
well-known services like sendfile : once initiated,
data streaming can proceed without additional
user-level input. Toward these ends, application-
level knowledge about the structure of streaming
data is represented with efficient, kernel-level meta-
information about data types, accessible to and used
by KStreams handlers. At the same time, when
needed, explicit events linking applications with
KStreams services can be associated with streams.
For instance, for transactional data streams in op-
erational information systems [17], data mirroring
and specialization can be changed dynamically by
application-level code that assesses current system
risks, indicates necessary trust levels [32], or eval-
uates the current reliability /performance tradeoffs
required by applications. Similarly, stream han-
dlers can dynamically interact with web services
or sensor data to vary levels of data downsam-
pling, data privacy assurance, and others. Finally,
KStreams handlers that implement remote graphi-
cal displays, including displays tiled across multiple
nodes, KStreams handlers can change their behav-
ior in response to altered end user needs, ranging
from rapid changes in a user’s viewpoint to slower
changes like levels of attention.

The KStreams service is integrated into the Linux
operating system kernel above the network proto-
col and VFS layers. It utilizes the buffer manage-
ment, flow control and other facilities of the network
and file subsystems to acquire and send data. By
managing data streams at the kernel level, unneces-
sary memory copying is avoided, thereby improving
system throughput and reducing memory pressure.
When operating on ‘in-flight’ data, stream handlers
also require no additional copying, by permitting
them to directly operate on data objects read and
written from/to network buffers and file caches.

We evaluate the capabilities and performance of
KStreams services with microbenchmarks that use
different types of incoming and outgoing data ob-
jects and multiple ways in which input and output

links are utilized. In addition, KStreams is used to
implement the functionality needed by applications
that include operational information systems, which
use transactional data flows, and web or media ser-
vices that transport visual data. KStreams handlers
implement data mirroring, routing, or format con-
version functions and/or lightweight image process-
ing actions like data downsampling through image
cropping. Initial results are encouraging. Measure-
ments show that in-kernel data streaming can im-
prove system throughput from 20-50% compared to
user level implementations, particularly for larger
data sizes.

In the remainder of this paper, Section 2 discusses
related work, whereas Section 3 describes the basic
components of a KStreams data stream. Section 4
describes our Linux-based KStreams prototype and
elaborates how this service is integrated into the
Linux kernel. Section 5 presents experimental re-
sults and discusses the performance of KStreams-
based kernel-level data streaming services. Section 6
concludes the paper and presents future work.

2 Related Work

There has been substantial prior work on reduc-
ing memory copies in networked systems, much of
which was focused on reducing the need to copy data
from user to kernel space (or vice versa) for network
communications. Basic support is provided by page
mapping, where mmap , for example, can be used to
map the kernel’s file cache pages to an application’s
address space, thereby reducing memory copies on
file access. Transparent copy avoidance [21] uses
page swapping techniques to implement the copyless
interoperation between the network and file subsys-
tems. Its requirement of page alignment for incom-
ing network data limits its applicability, however.
Such limitations are addressed by buffer handoff or
buffer sharing, as with the Container Shipping 1/0
system [22]. It uses I/O read and write operations
with handoff (move) semantics, which implies that
buffers are owned by one domain rather than be-
ing shared. In comparison, Fbufs [23] is a copy-free
cross-domain transfer and buffering mechanism for
I/0 data; it uses immutable, concurrently accessible
buffers, but Fbufs principally target network com-
munications, so do not support file system accesses.
IO-Lite [24] and the zero-copy framework [25] gener-
alize the idea of Fbufs, integrating them with the file

cache by implementing a unified I/O buffering and
caching system. This solution eliminates data copy-
ing via buffer handoff or sharing, but requires that
each subsystem’s buffer management is changed to
utilize the new buffer structure. Our work is less
aggressive, by building on top of existing I/O sub-
systems and not changing the behavior or their re-
spective methods for managing buffers. This implies
that data copying will still be required when subsys-
tem boundaries are crossed. It also implies, how-
ever, that KStreams is more easily ported to other
OS platforms than other approaches, and that our
solutions remain open to the additional optimiza-
tion developed earlier.

A general way to address system throughput is
critical path optimization for specific applications.
The sendfile system call mentioned earlier copies
data from file caches directly to the network socket
buffers, thereby reducing the number of times data
is copied from two (one to applications, one down
to network buffers) to one. This is similar to earlier
work on splicing data streams [1]. TCP splicing [4]
is motivated by web proxying: by ‘splicing’ two TCP
connections, the socket buffer containing incoming
data can be directly linked (i.e., re-linked) to the
outgoing socket. This involves only small kernel
modifications and provides a simple programming
interface.

Our work is inspired by TCP splicing, but differs
in two ways. First, KStreams allows multiple data
objects to act as data sources and sinks, where the
relationship among these data objects is defined by
application-specific patterns. Second, application-
specific stream handlers can be applied to data,
where such handlers have full knowledge of the types
of data being manipulated. This enables applica-
tions to define exactly the data manipulations they
need, efficiently apply such manipulations to ‘in-
flight’ data, and control manipulations if and when
needed.

Four other kernel facilities developed by our group
further enhance the utility of KStreams. First,
the PBIO binary data format [18] provides to
stream handlers an efficient representation of the
application-level data structure contained in mes-
sage payloads. Second, kernel plugins, realized for
TA-32 and TA-64 architectures, permit arbitrary ap-
plications to place stream handlers into OS kernels,
by ensuring the handlers’ name isolation from the
remainder of the OS kernel and by ensuring tim-
ing safety via time budgets [11]. Third, dynamic

binary code generation functionality coupled with
a kernel-level, multi-machine resource management
infrastructure, termed Q-Fabric [19], lets remote
machines place stream handlers into the kernels of
machines with which they cooperate, thereby per-
mitting handlers to be deployed on the machines
that are best suited to run them. Q-Fabric also pro-
vides the efficient event mechanisms needed to per-
mit stream handlers to be dynamically controlled by
applications [29]. Finally, a specific class of stream
handlers useful for multi-media and real-time ap-
plications performs both rate- and deadline-based
packet scheduling [14, 20].

3 KStreams Service

Additional data copying limits server throughput
by putting pressure on their memory resources.
By supporting application-specific data manipula-
tion services at kernel level, the additional data
copy required by involving a third party (e.g., an
application-level process) in kernel subsystem inter-
actions can be avoided.

""""""" (Application)
KST,’?,EAM ,,,,, Yo Yo] o
7 Data Input Stream Output
i objects pattern handler pattern

P)—'ﬂ'o_

| ' KStream Service |

1 1 v v

VFS VFS

Network Layer

_,
3

DS NS

Figure 1: Stream Components.

The challenge is to construct a kernel service that
can represent the multiplicity of data transfer mod-
els required by applications. Our approach is to
support alternative data transfer models by permit-
ting applications to specify: (1) data sources, (2)
data sinks, and (3) relationships between sources
and sinks. This is illustrated in Figure 1, where

arrow lines link application-specified source with
sink I/O objects. In addition, ‘input patterns’ de-
fine relationships between multiple sources and ‘out-
put patterns’ relate multiple sinks. Entire data
flows are defined by linking input with output pat-
terns. Finally, application-specific data manipula-
tions are performed by stream handlers . Such han-
dlers may change ‘in-flight’ data, or they may im-
plement value-added services like monitoring, data
extraction to detect illicit payload changes, etc.

3.1 Data Sources and Sinks

Since KStreams is implemented as a thin layer on
top of native I/O subsystems, it must utilize the vir-
tual file and network systems to provide device-side
I/O operational support, cache management, flow
control, and interrupt handling. To cleanly inter-
face with different subsystems, the KStreams service
defines a data object abstraction that hides the op-
erational details of various devices and subsystems.
This abstraction encapsulates the basic operations
of I/O devices into a unified interface. KStreams
interacts with I/O objects like files and sockets
through the data object abstraction in two ways,
as shown in Figure 2. First, the data stream can
read or write a data object with explicit read/write
downcalls. Second, the data object can notify the
data stream of important device-side events like
data-ready, connection errors etc. via notification
upcalls.

lRead/Write TEventnotification

(data-ready,space-ready,errors etc.)

Data object abstraction

VFS
Network Layer

Figure 2: Data Object Interface.

From the application’s point of view, data may come
from either single or multiple I/O objects. For the
latter case, the application should specify how the
data coming from different I/O objects is organized.
In KStreams, a basic relationship pattern for multi-
ple input points is defined by two factors: (1) polling
size, and (2) polling order.

Polling size defines how much data to read from

each of the input links every time it is accessed. The
size depends on whether the incoming data is a set
of fix-sized or variable-sized records. The former
case is specified with a single integer, the latter case
assumes that size information is included in each of
the incoming records. For complex cases, applica-
tion knowledge is needed to accept incoming data.
With KStreams, such knowledge is accessed by al-
lowing the application to specify an in-kernel call-
back function (one per link) that checks the incom-
ing data and calculates its size. This callback is ex-
ecuted at kernel level, uses meta-information about
data structure and sizes provided by applications,
and requires some safe method for downloading ap-
plication code into OS kernels. Several such meth-
ods have been developed in past research [2, 30], and
the one used in our work is described in [7, 11].

Polling order defines the order by which the data
is polled from multiple input data objects. By de-
fault, polling order is round robin, but more gener-
ally, applications may require multiple inputs to be
collected and merged prior to generating an output.
In such cases, input patterns may be such that a
single record is constructed from portions arriving
on multiple links in arbitrary order and/or at dif-
ferent rates. KStreams deals with such application-
specific input behaviors by permitting streams to
explicitly poll inputs, whenever they arrive or using
application-level knowledge accessed via callbacks
(e.g., if incoming records are tagged).

Outputs are handled like inputs. An output pattern
defines the order in which data is pushed to multiple
output data objects, and how much data to write to
each of the output links every time it is accessed. As
part of the definition, the pushing order parame-
ter specifies the manner in which data is written to
multiple links (round robin is the default). A simple
use of pushing order is data striping, where a single
record is divided and striped across multiple out-
put links, perhaps for parallel storage or processing.
A more complex example combines such striping
with secret sharing techniques in order to confuse
potential attackers. Another example is network-
aware data output, where data is written to output
links according to available link capacities. Multi-
cast pattern is another type of output pattern and
can be used for data mirroring and replication.

3.2 Stream Handlers

Stream handlers are useful for many reasons. A
sink may require data customization to meet its
client’s current needs. There may be format mis-
matches between sources and sinks, due to machine
heterogeneity or more generally, due to differences
in the assumptions made by end user applications.
Stream handlers address issues like these by manip-
ulating data in its fast path from input to output
data objects. Stream handlers may be implemented
by kernel modules, or dynamically generated as via
high level languages or using binary code genera-
tion and downloaded into the kernel using isolation
support [11].

The effect of placing a stream handler into a
KStreams data path is its continuous consumption
of incoming and production of outgoing data ob-
jects. To attain high performance and avoid ad-
ditional data copying, such actions must utilize
source and sink subsystems’ I/O buffer facilities.
For instance, logically contiguous source data stored
in device-side buffers like file caches and socket
buffers is typically scattered across multiple memory
buffers. This requires stream handlers to either ac-
cept vector-type input buffers or to be implemented
to manipulate data incrementally [31]. Both in-
cremental and non-incremental data processing are
supported in KStreams, as shown in Figure 3, where
non-incremental processing may involve data accu-
mulation in KStreams buffers. As shown later, addi-
tional buffering increases memory pressure and re-
duces system throughput, which indicates that it
must be used judiciously.

Source Module

[J|pata comes in

Accumulate buffers

Incremental
Handler?

H[F

Handler Case B

Handler Case A
—

Iy

| I—

Il

Acquire buffers cquire buffers

Figure 3: Handler Work Flow.

For ‘in-flight” data processing, the fact that stream
handlers operate at kernel level enables optimiza-

tions that can eliminate additional data copying:
since a handler accesses actual I/O buffers via the
data object abstraction, processing results can be
directly written into and accumulated in sink-side
I/0 buffers, rather than using additional intermedi-
ate buffers. Toward these ends, KStreams provides
a simple ‘acquire/release’ facility for sink-side data
buffers.

An illustration of stream handlers placed between
source and sink data objects appears in Figure 1.
Not shown in that figure is that handlers can also
be associated with single, specific output links. The
intent is to enable per sink (i.e., per client) data
customization.

3.3 Stream Engines

The KStreams service utilizes both synchronous and
asynchronous stream engines. A synchronous en-
gine uses an application-level context for execution,
thereby guaranteeing that stream handling operates
in synchrony with application-level functions. In
this case, the application first sets up the KStreams
data path, then traps into the kernel via a KStreams
system call, and the KStreams service uses the pro-
cess’ context to execute stream handlers and per-
form I/0 operations. The engine determines where
to poll for data based on the input pattern, ac-
quires the device-side buffers into which incoming
data is placed, provides these buffers to the appro-
priate stream handlers (if present), determines out-
going data buffers as specified by the output pat-
tern, and finally, writes data to the sink-side I/O
buffers. Upon completion or when exceptions oc-
cur, control is returned to the application.

The asynchronous streaming model uses a dedicated
kernel-level thread to serve multiple streams. One
motivation is to support applications that handle a
large number of streams, as exemplified by a Web
proxy cache application that processes thousands of
connections from and to clients and servers. Such
a cache typically employs some small number of
threads or processes to handle a large number of
connections using select system call. Another mo-
tivation is to provide QoS support. Namely, unlike
the single stream model, a kernel-level process can
use a QoS scheduler to precisely control resource
allocations across multiple streams, without inter-
ference from the machine’s CPU scheduler.

Stream Action Queue

Engine | ol LTI
Actions

o

Streams

Stream
Scheduler

Event Queue

LTI

Push Events

Figure 4: Multiple Stream Control.

An asynchronous stream engine is a kernel-level pro-
cess driven by control events. Figure 4 depicts an
engine that serves multiple streams. Streams’ data
sources and sinks generate events, typically due to
interactions with the underlying I/O subsystems.
Three types of important events are DataReady,
which indicates that there is data available at the
source side, SpaceReady, which means that there is
buffer space available at the sink side, and Con-
trolEvent, which are notifications of exceptions, er-
rors, or other special events. Event implementa-
tions typically rely on interceptions of subsystem
callbacks, as with the socket interface, where in-
tercepting the callbacks of a socket in the network
subsystem can be used to generate events. Given
such events, the stream engine operates by polling
actions from the action queue and then enforcing
them through the unified data object interface for
streams’ data sources and sinks.

Events can also be used for QoS control. QoS events
are inserted into a KStreams event queue, and a
stream scheduler translates such events into associ-
ated actions. A best-effort scheduler, for instance,
would use a FIFO queue and translate a DataReady
event to an action that polls for incoming data; a
SpaceReady event would be interpreted as a data
pushing action.

3.4 QoS on Streams

The KStreams service provides quality of service
support on multiple streams using a QoS policy-
dependent stream scheduler. This scheduler is a re-
placable element of the KStreams service. It con-
trols resource allocation across multiple streams by

issuing I/O operations at different rates for different
streams. Since QoS control cannot be limited to sin-
gle resources, but must address all of the resources
used by data streaming actions, QoS scheduling de-
scribes the total volume of data being streamed as
an explicitly manageable virtual resource. We make
this choice for simplicity and ease of understanding,
because the total volume of data streaming is closely
related to the use of physical resources like CPU,
memory, network and disk I/O bandwidth. Finally,
since it only controls the rates or data volumnes
of data streams, QoS scheduling can delegate to
subsystems the allocation of their own system re-
sources.

A simple example of a stream scheduler is a prior-
ity based scheduler, where each stream has an as-
sociated priority. The scheduler translates events
from data sources and sinks into actions, and then
sorts the action queue by stream priority. A more
interesting example is a class-based fair share sched-
uler [15], where data streams are classified into sev-
eral groups, called classes. Classes can be derived
from application types, stream importance, or even
user IDs. Each class has a share limit that spec-
ifies the percentage of system resources allocated
to that class of streams. The stream engine exe-
cutes actions from the action queue in consecutive
rounds. In each round, there is a target volume for
each class calculated based on its share. The stream
engine enforces actions for each class until reaching
its target or until there is no action available. The
total volume of each round can be varied to ensure
reasonable responsiveness and throughput. Unused
volume from each class can be partially forwarded
to the next round for fairness purposes.

4 Prototype Implementation

KStreams is implemented in Version 2.4.22 of Linux
kernel. The current prototype implements data
sources and data sinks on regular files and on net-
work sockets. It can use application-specific stream
handlers, but does not yet support dynamic handler
downloading and runtime handler-application inter-
actions. In the remainder of this section, we com-
ment on some interesting aspects of the KStreams
implementation.

Access device-side buffer
polldata
pushvmdata
pushagedata
pushskbdata

Request device-side buffer
getmem
putmem

Subscribe for device-side events
waitdata
waitspace

Callback for event notification
dataready
spaceready
statechange

Table 1: Data Object Interface.

4.1 Data Objects

The data object abstraction provides a unified in-
terface with which KStreams services access device-
side buffers. It also allows services to define specific
actions via callback functions in response to device-
side events. The API for data objects may be cate-
gorized into four groups, as listed in Table 1.

An interesting aspect of the implementation is that
I/O buffers acquired via the polldata call can be
passed to the sink side with three different methods,
depending on where data is stored. The first method
is used when data is stored as a virtual memory
block. It copies data into some sink-side buffer us-
ing pushvmdata. If data is stored in a physical page
and the sink-side buffer is page-based, then push-
pagedata allows that page to be used as a direct
sink-side storage container, protected as ‘copy on
write’. When data is stored in a socket buffer not
associated with any socket, and the sink side link
is a socket with same attributes, then pushskbdata
allows the socket buffer to be directly linked to the
new socket. Finally, when output data is generated
by stream handlers, the most efficient implementa-
tion is one in which a handler writes data directly to
a sink side buffer. Getmem returns a vector of I/O
buffers of some required size, and putmem commits
the handler’s updates to those buffers.

Event subscription and notification callbacks pro-
vide an opportunity for KStreams services to re-
spond to special events. This is particularly useful
when a single thread operates on multiple streams,
since a service cannot block on any single stream.
Instead, a service can switch between multiple
streams, depending on the availability of incoming
data and buffer space, using KStreams events.

4.2 Handler Formats

Stream handlers can operate on stream data as long
as they comply with the KStreams API. Typically,
a handler consists of two functions, one for data pro-
cessing and the other for controlling handler execu-
tion. Figure 5 depicts the format of handler func-
tions.

Interface StreamHandler
{
int handlercontrol(ctrlcode, param) ;
int processdata(inbuffer, insize,
outbuffer, outsize, state);
int processdatav(in_iovec, inlen,
out_iovec, outlen, state);

Figure 5: Handler Interface.

The function handlercontrolis used to initialize han-
dler state, calculate the buffer size for storing result
data for given incoming data, and perform similar
tasks. A handler either implements processdata to
process data incrementally, or it implements pro-
cessdatav to process vector type data that is com-
prised of a fully received, meaningful data record.
The state accessible to stream handlers is inten-
tionally limited, defined by a small block of pre-
allocated kernel memory for each handler. Such
state may contain selected history information or
parameters used to determine its current operation.

4.3 KStreams API

The KStreams API for applications is designed to
create and control the kernel-level data paths pro-
vided by the KStreams facility. The interface ad-
dresses path setup, data transfers along the path,

Setup Data Path Transfer Data
stream runstream
attachinput startstream
detachinput stopstream
attachoutput waitstream
detachoutput Stream Options
addstreamhandler setstreamoption

Table 2: KStreams Service Interface.

and path option setting. Table 2 lists the main ele-
ments of this API.

The following text describes the typical way in
which this API is used. First, the application uses
stream to create an instance of a data path in the
kernel, with polling and pushing orders specified.
Next, it attaches files and sockets for input and
output by invoking attachinput and attachoutput for
each. Finally, it inserts stream handlers by calling
addstreamhandler. For synchronous operation, the
application uses runstream to trap into the kernel
and block until an exception occurs or all data is
transferred. For asynchronous operation, the appli-
cation calls startstream to delegate the data trans-
fer job to a dedicated thread. The function re-
turns immediately. The application can then poll
the data path to check on its status, it can termi-
nate the stream by calling stopstream, and block on
it with the waitstream call. In addition, by using
setstreamopt, the application can set arbitrary key-
value pairs for each of the data paths. This API
is intended for more complex or for QoS-controlled
services.

4.4 Discussion

While the current KStreams implementation can
support complex data streaming services like data
splicing, data striping, mirroring, and others, some
limitations remain. Our current prototype uses pre-
created stream handlers loaded as trusted kernel
modules, thereby not dealing with the well-known
safety and security problems created by running
application-level code in OS kernels. We are ad-
dressing these issues by integrating the kernel plu-
gins isolation facility described in [11]. Another
limitation is related to the multicast pattern for out-
going data, for which we must copy data to the mul-
tiple buffers for each outgoing link. We are now in-
vestigating changes to the structure of socket buffers

to permit one block of buffers to be shared across
multiple sockets.

KStreams are designed to efficiently support longer
term, large-scale data streaming. Their setup and
teardown overheads would not permit their use for
short term transfers, like individual http requests,
for instance. Further, stream handlers are intended
for lightweight data processing like payload moni-
toring, data filtering, or per-client data customiza-
tion. Compute-intensive actions like data compres-
sion or encryption should be performed at user level,
perhaps coupled with KStream-level services that
couple such actions with data replication or data
striping, for instance.

5 Experimental Evaluation

The performance of KStreams services is evaluated
from several perspectives. Microbenchmarks cap-
ture the throughput improvements attained by us-
ing KStreams vs. application-level data stream-
ing for multiple scenarios. The utility and lim-
itations of kernel-level stream handlers are evalu-
ated with simple sensor/image processing handlers
that implement runtime tradeoffs in the amounts
of data moved to remote clients. The intent is to
emulate the operation of a media data server that
customizes data in accordance with current client
needs vs. available network bandwidth [28]. A
third set of examples are derived from web ser-
vices applications. Their plug and play capabilities
frequently require the dynamic conversion of data
formats to match differing sender/receiver assump-
tions, or to maintain privacy by sharing only the in-
formation needed by others [17] (e.g., sharing only
low-resolution rather than high-resolution data with
subcontractors). The format-aware data streaming
services used in our research can provide per-client
customized data with high levels of efficiency.

Experiments are conducted on an Intel Pentium III
600MHz machine with 256M memory, connected by
a NetGear GA620 Gigabit Ethernet card. Client-
side applications run on a much faster 4-way 2.8GHz
machine with a Gigabit link, thereby never consti-
tuting a bottleneck.

5.1 Microbenchmarks

The first benchmark results evaluate the basic per-
formance of the KStreams infrastructure by exper-
imenting with different kernel-level subsystems, in-
cluding disk to network, network to disk, and net-
work to network. In addition, multiple stream pat-
terns with respect to the number of incoming or out-
going links are tested. To better understand the im-
plications of ‘in-flight’ data stream manipulations,
a ‘dummy handler’ outputs exactly the same data
as received but also touches each file data entry,
thereby emulating a handler that must touch all of
a message’s payload.

File to socket data streaming is the basic operation
in applications like web servers, multimedia services,
etc. Figure 6 compares the performance of differ-
ent implementations of a simple file server. The
file server is a multi-thread application that serves
file with one thread per request. 16 clients continu-
ously send requests for files of differing sizes. Mea-
surements demonstrate that the KStreams service
performs almost as well as the sendfile system-call
when serving static files. Both the KStreams- and
the sendfile-based server implementations outper-
form an implementation that uses read/write sys-
tem calls. Maximum throughput is limited by net-
work speeds, as evident when file sizes reach 512K
bytes. Note that KStreams substantially outper-
forms user-level implementations that manipulate
data with the same ‘dummy handlers’ as those used
at kernel-level, which cannot take advantage of the
‘sendfile’ command. The user-level implementation
is from 30-50% slower than the KStreams implemen-
tation, depending on file sizes.

Another typical functionality used by applications is
socket to file data streaming, as with data upload,
remote backup, disk caches, etc. Using the same
file server as above, Figure 7 shows that KStreams-
based implementations improve throughput by up
to 20% compared to user-level implementations.
This is because the user-level implementation must
use an additional buffer compared to the KStreams

File to Socket Stream Throughput

500

—=—read/write
--+--sendfile
—+—kstream

O rw+dummy
4 ks+dummy

IS
S
3

©
3
3

Throughput [Megabits/Sec]
n
8
8

=]
3

4K 8K 16K 32K 64K 128K 256K 512K ™
File Size [bytes]

Figure 6: File to Socket Streams.

Socket to File Stream Throughput

IS
5
o

—=—read/write
—4—kstream

N
o
S

w

a

=]
L

& rw+dummy
4 ks+dummy

w

o

S
L

Throughput [Megabits/Sec]
- - N N
o [$)] o o
o o o o

o
=]
L

o

4K 8K 16K 32K 64K 128K 256K 512K ™
File Size [bytes]

Figure 7: Socket to File Streams.

Socket to Socket Stream Throughput

700

—=—read/write
—4— kstream

500 4 o rw+dummy
4 - ks+dummy

600 -

Throughput [Megabits/Sec]

4K 8K 16K 32K 64K 128K 256K 512K 1M M
File Size [bytes]

Figure 8: Socket to Socket Streams.

‘N to 1' Socket Stream Throughput

700

600 4 ‘*‘A—A——A\‘\“‘

Tl E B A A
A
500 M.—H
[RS = R P PP - EUUUY - BSOS - USSR SRR s

—=—read/write

—+—kstream

-~ & rw+dummy
A ks+tdummy

Throughput [Megabits/Sec]

1 2 3 4 5 6 7 8
Number of Incoming Sources per Stream

Figure 9: N to 1 Socket Streams.

implementation. In addition, adding a dummy han-
dler to the KStreams implementation does not af-
fect total throughput, because the handler can di-
rectly operate on the device-side buffer and write to
the sink-side buffer. Average improvements are less
than those attained for the previous case because
the mechanisms of sending to vs. receiving from a
network differ.

Socket to socket data streaming is the typical work-
load of proxy servers. Our experiments use a simple
multi-threaded proxy application that relays client
requests for files to backend file servers, and for-
wards the response data back to clients using the
KStreams service vs. regular read/write system
calls. Figure 8 illustrates the attained throughput,
counting both the incoming data from the back-
end server and the outgoing data to clients. The
figure shows that the relative improvement for the
KStreams-based service reaches its peak for file sizes
around 64K to 128K bytes. When file sizes increase
further, throughput improvement become less sig-
nificant. This is because the network has become
the bottleneck. We expect that KStreams-based ser-
vices will perform even better with large files when
using machines that have better network connectiv-
ities. Moreover, when dealing with ‘smart proxy’
applications that can process data ‘in-flight’ to pro-
vide value-added functionality like data monitor-
ing, data filtering, data customization etc., we ex-
pect KStreams-based services with dynamic stream
handlers to substantially outperform user level im-
plementations. This is evident from measurements
that use dummy handlers depicted in Figure 8.

The next set of microbenchmarks concern data

Multicast Stream Throughput

600 -

—=—read/write
--A-- kstream
—&—rw+dummy
-4 ks+dummy

Throughput [MBits/Sec]

1 2 3 4 5 6 7 8
Number of Sink Nodes per Stream

Figure 10: Multicast Streams.

streams with multiple incoming and/or outgoing
links. Several link patterns are evaluated. For the
multiple incoming links, we experiment with data
being polled in a round robin manner, in random or-
der, or using self-contained global position tags like
timestamps. The performance results shown here
use round robin, but we note that other patterns
perform similarly.

The specific experiment performed emulates a proxy
application that receives data uploaded from mul-
tiple sources and then sends the merged data to
a backend server, as often done in sensor data fu-
sion. Both incoming and outgoing points are net-
work sockets. The proxy retrieves 4K bytes data
per access to each incoming link. The proxy serves
16 streams concurrently, with each stream lasting
about 2 minutes. We measure average throughput
during data streaming after a 20 second warm-up
period, as shown in Figure 9. It is apparent that the
throughput attained with KStreams reaches around
600MBits, which is almost the maximum capac-
ity of our Ethernet card and its current driver. It
outperforms the user-level implementation by 20%,
with better results expected for machines that have
stronger network connectivities (i.e., multiple con-
current gigabit links), as is the case with many mod-
ern proxy servers.

For the outgoing side, we have experimented with
multiple patterns, including round robin for data
striping, random for load balancing, and multi-
cast for data mirroring and replication. While the
streams with the first two patterns perform similarly
to the stream with only one outgoing link, the mul-
ticast pattern differs significantly. Figure 10 illus-

trates the performance of a proxy application that
multicasts data incoming from one network link to
multiple outgoing links. For this ‘data increasing’
KStreams service, KStreams plus dummy handler
still outperforms the corresponding user level imple-
mentation, but for simple data multicast to a small
number of nodes, it performs only slightly better.
For a larger number of nodes, its performance is
almost the same. There are two reasons for this
behavior. First, with a larger number of outgoing
links, the network becomes the bottleneck. Second,
whenever data is copied to multiple outgoing links,
it must be copied to multiple buffers, one per link.
When multicasting data to N nodes, the KStreams
service makes N data copies, whereas the user level
implementation makes N+1 copies using read/write
system calls. If we could modify the socket buffer
structure so that multiple sockets could share one
piece of data, then the in-kernel data path would be
improved further.

5.2 Smart Image Server

Proceedings from microbenchmarks to evaluations
that involve more realistic applications, our first ap-
plication is a ‘smart’ sensor /image data server used
by clients to retrieve PPM-structured data (PPM
rather than compressed data is used to permit
clients to perform image processing tasks not pos-
sible after lossy compression methods are applied).
This application evaluates the utility of kernel-level
stream handling by downsampling sensor data as
per current client needs, using application-specific
downsampling methods.

The image server is a multi-threaded application
that serves images of PPM format in response to
clients’ requests. In comparison to a web server
that delivers static image files, the application cus-
tomizes images with client-provided stream han-
dlers. For example, it can grayscale images for
use with monochrome display devices, it can crop
images or otherwise downsample them to reduce
network bandwidth needs and conserve client pro-
cessing power. The specific handlers used include
image cropping, image grayscaling, and three dif-
ferent downsampling methods. The cropping han-
dler chooses one block of the image based on user-
specified coordinate values. The grayscale handler
just converts each RGB triple to one grayscale value.
The three down-sampling handlers use different al-
gorithms. The first one can only down-sample the

Image Server Throughput

100
80

Cropl Cropll

@ read/write
W kstream

Throughput (Requests/Sec)
& 3

N
S

.

Grayscale Down- Down- Down-
samplingl samplingll samplinglll

o

Image Handler

Figure 11: Rquests for Processed Images.

image to some integral fraction of its original size
(e.g., 1/2 or 1/3). The second handler calculates
the corresponding neighborhood in the original im-
age for each pixel in the new image, then chooses
the middle point of the neighborhood. The third al-
gorithm calculates the neighborhood in original im-
ages too, but uses linear interpolation to determine
the new color value of the pixel in the new image.

All image handlers process data incrementally. Con-
sider the grayscale handler as an example. The
handler uses a small block of pre-allocated space
for state variables to store parameters and inter-
mediate processing result. When the PPM image
header arrives, the handler parses the image meta-
information and stores it as intermediate state. For
each triple RGB value, it then computes a grayscale
value and outputs it directly to the sink side buffer.
When a RGB triple crosses the boundary of an in-
coming data fragment, the partial value is stored in
intermediate state waiting for the next data frag-
ment.

Figure 11 shows the achieved request rates using
in-kernel streaming with stream handlers vs. us-
ing a user level implementation. Parameters for re-
quests are set so that the output images are ap-
proximately one third of the size of the incoming or
original images. The exception is ‘down-sample I’,
which produces images of one fourth of their orig-
inal sizes. The size of the original PPM image is
about 900K bytes. Performance improvements are
apparent. For Cropl, for instance, the KStreams
implementation can serve about 40% more requests
compared to a simple user level implementation.
Crop II is an optimized user-level implementation

that uses the writev system call, but the KStreams
implementation still outperforms it by 20%. In con-
trast, for computationally expensive image handlers
like ‘grayscale’, performance improvements are less
apparent (only about 10%). This trend continues:
for down-sampling I, we gain only 6% since compu-
tational costs are dominating the savings attained
from reducing memory copies; for down-sampling
II, and III, the KStreams service performs slightly
worse than the user-level service, thereby demon-
strating the need to carefully evaluate the data han-
dling performed at kernel vs. user levels.

5.3 Format-Aware Data Services

Most of the format-aware data services implemented
in our work operate non-incrementally. This is be-
cause dealing with an application-level format typ-
ically requires the receipt of an entire application-
level message, followed by its manipulation and out-
put. The idea is, of course, that the data server
should send data to clients in the formats they re-
quire, thereby offloading such manipulations from
clients and reducing network bandwidth needs. In
our implementation, data records are stored in files
that use the PBIO binary data format. When clients
send requests for data, they specify the desired for-
mat using an XML description, where the desired
format may contain only some fields of the server-
side data records. The desired format can also re-
quire to derive new values for selected entries in
new data records, from values contained in the orig-
inal records. An example is a total passenger count
forwarded to a caterer derived from a flight record
in the operational information system described in
[17]. For such computations, the server uses dy-
namically generated code to convert old to new data
records.

The specific data record used in our experiments is
comprised of multiple data fragments received from
the source side device buffer. All of these fragments
are passed to the handler. The record contains two
kinds of fields. The first kind contains integers,
floats, etc. This data must be stored in a contiguous
memory block. The second kind contains arrays of
raw data and strings, where field manipulations can
be done even when crossing fragment boundaries.
By splittin each record into sub-structures that are
either contiguous, thereby requiring an additional
copy, or non-contiguous (i.e., not requiring an addi-
tional copy), acceptable levels of performance can be

Throughput of Streams with Format Conversion

Oread/write
1401 | M read/writev
Okstream

Request Rate (per Sec)
©
3

2 4 8 16
Size of Original Data Format [Kbytes]

Figure 12: Format Conversion Hander on Streams.

attained for the format and data conversions being
implemented, for both source and sink side buffers.
The format conversion handler then operates as fol-
lows.

Step 1. Translate the data record incoming as mul-
tiple fragments into several smaller structures, each
of which are placed into a contiguous buffer or rep-
resented a array data. Store some small structures
in intermediate contiguous buffers, as necessary.
Step 2. Translate the sink side buffers into small
structures based on the outgoing data format. Asso-
ciate small structures with intermediate contiguous
buffers if they cross buffer boundaries.

Step 3. Perform format conversions based on small
structures.

Step 4. For the converted result, if data is stored
in intermediate buffers, move it to the sink buffers.

Because we have not integrated dynamic code gen-
eration into the current KStreams implementation,
several hardcoded format converters are used. Mea-
surements with these handlers depicted in Figure 12
use 512k byte files that contain data records of 2K,
4K, 8K or 16K bytes. Each data record contains
one fourth contiguous (integer or float) and three
fourth of array type data. The client requests half
of the contiguous data and two third of the array
data. The figure shows that the KStreams imple-
mentation of format conversion handlers performs
better with large data records, and that it outper-
forms the user level implementation by 38% for 16K
bytes records, and by 20% against the optimized im-
plementation using writev.

6 Conclusions and Future Work

The contributions of this paper are the definition,
implementation, and evaluation of a small set of
kernel abstractions that support the efficient im-
plementation of data streaming applications. The
KStreams service abstracts files and sockets into
unified data objects and links them into an in-
kernel fast data path. It defines relationship pat-
tern for complex data streams that consist of mul-
tiple incoming or outgoing points, and it permits
application-specified data processing to be ‘plugged
into’ the in-kernel fast path, the latter represented
as stream handlers. Kernel-level stream scheduling
also opens opportunities for QoS control applied to
multiple data streams.

Our initial experiences with using KStreams-based
services are encouraging. Measurement shows
that in-kernel data streaming can improve system
throughput from 20-50%. More importantly, in-
kernel data streaming reduces the number of times
data is copied, thereby reducing the memory pres-
sure imposed on server machines.

Our future work will address multiple issues. First,
we are currently integrating the KStreams service
with the kernel plugins developed by our group [11],
thereby addressing the safety and security problems
caused by running user-provided at kernel level.
Second, we will investigate the possibility of further
optimization of the in-kernel data path. One goal is
to allow multiple sockets to share a block of data,
thereby enabling efficient kernel-level multicasting.
Third, it is known that the application may loses
control on the data streaming once it delegates the
data transfer tasks to kernel [26]. We plan to inte-
grate different QoS policies with the stream sched-
uler so that the application can control the behavior
of multiple kernel-level data streams.

References

[1] K. Fall and J. Pasquale, Exploiting In-Kernel
Data Paths to Improve I/O Throughput and
CPU Availability, In Proceedings of the 1993
Winter Useniz Conference, 1993.

[2] D. Engler, M. Kaashoek and J. O’Toole Jr.,
Exokernel: An Operating System Architecture
for Application-Level Resource Management,

In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, 1995.

[3] D. Dias, W. Kish, R. Mukherjee and R. Tewari,
A Scalable and Highly Available Web Server, In
the 41st IEEE International Computer Confer-
ence, February, 1996.

[4] D. Maltz and P. Bhagwat, TCP Splicing for
Application Layer Proxy Performance, IBM
Research Report RC 21139, March, 1998.

[5] V. Pai, M. Aron, G. Banga, M. Svend-
sen, P. Druschel, W. Zwaenepoel, and E.
Nahum, Locality-Aware Request Distribution
in Cluster-based Network Servers, In Proceed-
ings of the 8th ACM Conference on Architec-
tural Support for Programming Languages and
Operating Systems, October 1998.

[6] L. Aversa and A. Bestavros, Load Balanc-
ing a Cluster of Web Servers Using Dis-
tributed Packet Rewriting, In Proceedings of
IPCCC’2000: The IEEE International Perfor-
mance, Computing, and Communication Con-
ference, February 2000.

[7] C. Poellabauer, K. Schwan, G. Eisenhauer, and
J. Kong, KECHO - Event Communication for
Distributed Kernel Services, In Proceedings of
the International Conference on Architecture of
Computing Systems, April 2002.

[8] M. Rosu and D. Rosu, An Evaluation of TCP
Splice Benefits in Web Proxy Servers, In the
11th International World Wide Web Confer-
ence, May, 2002.

[9] A. Gavrilovska, K. Schwan, and V. Oleson, A
Practical Approach for 'Zero’ Downtime in an
Operational Information System, In 22nd In-
ternational Conference on Distributed Comput-
ing Systems, July 2002.

[10] A. Gavrilovska, K. Mackenzie, K. Schwan, and
A. McDonald, Stream Handlers: Application-
specific Message Services on Attached Network
Processors, In 10th Symposium on High Per-
formance Interconnects, August, 2002.

[11] 1. Ganev, K. Schwan, and G. Eisenhauer, Ker-
nel Plugins: When A VM Is Too Much, To ap-
pear on the 3rd Virtual Machine Research and
Technology Symposium, May, 2004.

[12] Linux Source Code, Linux, www.kernel.org

[13]

[17]

[18]

[19]

[20]

S. Nagar, H. Franke, J. Choi, C. Seetharaman,
S. Kaplan, N. Singhvi, V. Kashyap, and M.
Kravetz, Class-based Prioritized Resource Con-
trol in Linux, In Poceedings of the Linux Sym-
posium 2003, July 2003.

R. West and C. Poellabauer, Analysis of a
Window-Constrained Scheduler for Real-Time
and Best-Effort Packet Streams, In Proceedings
of the 21st IEEE Real-Time Systems Sympo-
stum, 2000.

J. Kay and P. Lauder. A fair share scheduler,
In Communications of the ACM, Jan 1988.

L. Gao, M. Dahlin, A. Nayate, J. Zheng, and
A. Iyengar. Application specific data replica-
tion for edge services, In Proceedings of the 12th

international conference on World Wide Web
Conference , 2003.

V. Oleson, K. Schwan, G. Eisenhauer, B. Plale,
C. Pu, and D. Amin, Operational Information
Systems - An Example from the Airline Indus-
try. In First Workshop on Industrial Experi-
ences with Systems Software, October 2000.

G. Eisenhauer, Portable Self-Describing Binary
Data Streams, Technical Report GIT-CC-94-
45, College of Computing, Georgia Institute of
Technology.

C. Poellabauer, H. Abbasi, and Karsten
Schwan, Cooperative Run-time Management
of Adaptive Applications and Distributed Re-
sources, In Proceedings of the 10th ACM Mul-
timedia Conference, December 2002

H. Abbasi, C. Poellabauer, K. Schwan, G. Losik
and R. West, Cooperative Run-time Manage-
ment of Adaptive Applications and Distributed
Resources, In the 4th Real-Time Linux Work-
shop, December 2002.

J. Brustoloni, Interoperation of copy avoidance
in network and file I/O, In Proceedings of the
IEEE Conference on Computer Communica-
tions, April 1999.

J. Pasquale, E. Anderson and P. Muller, Con-
tainer Shipping: Operating System Support
for I/O-Intensive Applications, In IEEE Com-
puter, March 1994.

P. Druschel and L. Peterson, Fbufs: A high-
bandwidth cross-domain transfer facility, In
Proceeding of the 14th ACM Symposium on Op-
erating System Principles, December 1993.

[24]

[26]

[28]

[29]

[31]

32]

V. Pai, P. Druschel and W. Zwaenepoel, 10-
Lite: A Unified I/O Buffering and Caching Sys-
tem, In ACM Transactions on Computer Sys-
tems, February 2000.

M. Thadani and Y. Khalidi, An efficient zero-
copy I/O framework for UNIX. Technical Re-
port SMLI TR-95-39, Sun Microsystems Labo-
ratories, Inc., May 1995

J. Kong, D. Rosu, and M. Rosu, Towards
Enabling Web Proxy Control of TCP Splice
Transfer Rates, In 2nd New York Metro Area
Networking Workshop, September, 2002

C. Poellabauer and K. Schwan, Kernel Sup-
port for the Event-based Cooperation of Dis-
tributed Resource Managers, In Proceedings of
the 8th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, Septem-
ber 2002.

A. Fox, S. Gribble, Y. Chawathe, E. Brewer,
and P. Gauthier, Cluster-based Scalable Net-
work Services, In Proceedings of the 16th ACM
Symposium on Operating System Principles,
October, 1997.

C. Poellabauer, K. Schwan, and R. West,
Lightweight Kernel/User Communication for
Real-Time and Multimedia Applications, In
Proceedings of the 11th International Workshop
on Network and Operating Systems Support for
Digital Audio and Video, June 2001.

B. Bershad, S. Savage, P. Pardyak, E. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and
C. Chambers Extensibility, Safety and Perfor-
mance in the SPIN Operating System, In Pro-
ceedings of the 15th Symposium on Operating
Systems Principles, December, 1995.

T. Spalink, S. Karlin, L. Peterson, and Y.
Gottlieb, Building a Robust Software-Based
Router Using Network Processors In Proceed-
ings of the 18th Symposium on Operating Sys-
tems Principles, October, 2001.

S. Lakshmanan, M. Ahamad, and H.
Venkateswaran, Responsive Security for
Stored Data, In the 23rd International Confer-
ence on Distributed Computing Systems, May,
2003

