
1

Socket Buffer Auto-Sizing for High-Performance Data Transfers

Ravi S. Prasad, Manish Jain, Constantinos Dovrolis
College of Computing

Georgia Tech�
ravi,jain,dovrolis � @cc.gatech.edu

Abstract— It is often claimed that TCP is not a suitable
transport protocol for data intensive Grid applications in
high-performance networks. We argue that this is not nec-
essarily the case. Without changing the TCP protocol, con-
gestion control, or implementation, we show that an ap-
propriately tuned TCP bulk transfer can saturate the avail-
able bandwidth of a network path. The proposed technique,
called SOBAS, is based on automatic socket buffer sizing at
the application layer. In non-congested paths, SOBAS lim-
its the socket buffer size based on direct measurements of
the received throughput and of the corresponding round-trip
time. The key idea is that the send window should be limited,
after the transfer has saturated the available bandwidth in
the path, so that the transfer does not cause buffer overflows
(“self-induced losses”). A difference with other socket buffer
sizing schemes is that SOBAS does not require prior knowl-
edge of the path characteristics, and it can be performed
while the transfer is in progress. Experimental results in sev-
eral high bandwidth-delay product paths show that SOBAS
provides consistently a significant throughput increase (20%
to 80%) compared to TCP transfers that use the maximum
possible socket buffer size. We expect that SOBAS will
be mostly useful for applications such as GridFTP in non-
congested wide-area networks.

I. INTRODUCTION

The emergence of the Grid computing paradigm raises
new interest in the end-to-end performance of data intensive
applications. In particular, the scientific community pushes
the edge of network performance with applications such as
distributed simulation, remote colaboratories, and frequent
multigigabyte transfers. Typically, such applications run
over well provisioned networks (Internet2, ESnet, GEANT,
etc) built with high bandwidth links (OC-12 or higher) that
are lightly loaded for most of the time. Additionally, through
the deployment of Gigabit and 10-Gigabit Ethernet inter-
faces, congestion also becomes rare at network edges and
end-hosts. With all this bandwidth, it is not surprising that
Grid users expect superb end-to-end performance. However,

This work was supported by the ‘Strategic Technologies for the
Internet’ program of the National Science Foundation (award number:
0230841), by the ‘Scientific Discovery through Advanced Computing’ pro-
gram of the Department of Energy (award number: DE-FC02-01ER25467),
and by an equipment donation from Intel Corporation.

this is not always the case. A recent measurement study at
Internet2 showed that 90% of the bulk TCP transfers (i.e.,
more than 10MB) receive less than 5Mbps [1].

It is widely believed that a major reason for the relatively
low end-to-end throughput is TCP. This is either due to TCP
itself (e.g., congestion control algorithms and parameters),
or because of local system configuration (e.g., default or
maximum socket buffer size) [2]. TCP is blamed that it is
slow in capturing the available bandwidth of high perfor-
mance networks, mostly because of two reasons:
1. Small socket buffers at the end-hosts limit the effective
window of the transfer, and thus the maximum throughput.
2. Packet losses cause large window reductions, with a sub-
sequent slow (linear) window increase rate, reducing the
transfer’s average throughput.
Other TCP-related issues that impede performance are mul-
tiple packet losses at the end of slow start (commonly result-
ing in timeouts), the inability to distinguish between conges-
tive and random packet losses, the use of small segments, or
the initial ssthresh value [3], [4].

Researchers have focused on these problems, pursuing
mostly three approaches: TCP modifications [5], [6], [7],
[8], [9], [10], parallel TCP transfers [11], [12], and auto-
matic buffer sizing [3], [13], [14], [15]. Changes in TCP
or new congestion control schemes, possibly with coopera-
tion from routers [7], can lead to significant benefits for both
applications and networks. However, modifying TCP has
proven to be quite difficult in the last few years. Parallel
TCP connections can increase the aggregate throughput that
an application receives. This technique raises fairness issues,
however, because an aggregate of � connections decreases
its aggregate window by a factor ���� , rather than �� , upon a
packet loss. Also, the aggregate window increase rate is �
times faster than that of a single connection. Finally, tech-
niques that automatically adjust the socket buffer size can
be performed at the application-layer, and so they do not re-
quire changes at the TCP implementation or protocol. In this
work, we adopt the automatic socket buffer sizing approach.

How is the socket buffer size related to the throughput
of a TCP connection? The send and receive socket buffers
should be sufficiently large so that the transfer can saturate
the underlying network path. Specifically, suppose that the
bottleneck link of a path has a transmission capacity of �
bps and the path between the sender and the receiver has a

2

Round-Trip Time (RTT) of � sec. When there is no com-
peting traffic, the connection will be able to saturate the path
if its send window is ����� , i.e., the well known Band-
width Delay Product (BDP) of the path. For the window to
be this large, however, TCP’s flow control requires that the
smaller of the two socket buffers (send and receive) should
be equally large. If the size � of the smaller socket buffer is
less than ����� , the connection will underutilize the path.
If � is larger than ����� , the connection will overload the
path. In that case, depending on the amount of buffering in
the bottleneck link, the transfer may cause buffer overflows,
window reductions, and throughput drops.

The BDP and its relation to TCP throughput and socket
buffer sizing, are well known in the networking literature
[16]. As we explain in 	 II, however, the socket buffer size
should be equal to the BDP only when the network path does
not carry cross traffic. The presence of cross traffic means
that the “bandwidth” of a path will not be � , but somewhat
less than that. Section II presents a model of a network path
that helps to understand these issues, and it introduces an im-
portant measure referred to as Maximum Feasible Through-
put (MFT).

Throughout the paper, we distinguish between congested
and non-congested network paths. In the latter, the probabil-
ity of a congestive loss (buffer overflow) is practically zero.
Non-congested paths are common today, especially in high-
performance well provisioned networks. In 	 III, we explain
that, in a non-congested path, a TCP transfer can saturate the
available bandwidth as long as it does not cause buffer over-
flows. To avoid such self-induced losses, we propose to limit
the send window using appropriately sized socket buffers.
In a congested path, on the other hand, losses occur indepen-
dent of the transfer’s window, and so limiting the latter can
only reduce the resulting throughput.

The main contribution of this paper is to develop an
application-layer mechanism that automatically determines
the socket buffer size that saturates the available bandwidth
in a network path, while the transfer is in progress. Section
IV describes this mechanism, referred to as SOBAS (SOcket
Buffer Auto-Sizing), in detail. SOBAS is based on direct
measurements of the received throughput and of the cor-
responding RTT at the application layer. The key idea is
that the send window should be limited, after the transfer
has saturated the available bandwidth in the path, so that
the transfer does not cause buffer overflows, i.e., to avoid
self-induced losses. In congested paths, on the other hand,
SOBAS disables itself so that it does not limit the trans-
fer’s window. We emphasize that SOBAS does not require
changes in TCP, and that it can be integrated with any TCP-
based bulk data transfer application, such as GridFTP [17].

Experimental results in several high BDP paths, shown
in 	 V, show that SOBAS provides consistently a significant
throughput increase (20% to 80%) compared to TCP trans-

fers that use the maximum possible socket buffer size. A key
point about SOBAS is that it does not require prior knowl-
edge of the path characteristics, and so it is simpler to use
than socket buffer sizing schemes that rely on previous mea-
surements of the capacity or available bandwidth in the path.
We expect that SOBAS will be mostly useful for applications
such as GridFTP in non-congested wide-area networks.

In 	 VI, we review various proposals for TCP optimiza-
tions targeting high BDP paths, as well as the previous work
in the area of socket buffer sizing. We finally conclude in
	 VII.

II. SOCKET BUFFER SIZE AND TCP THROUGHPUT

Consider a unidirectional TCP transfer from a sender
���

to a receiver ����� . TCP uses window based flow con-

trol, meaning that

���

is allowed to have up to a certain
number of transmitted but unacknowledged bytes, referred
to as the send window ��� , at any time. The send window is
limited by

�����������! "��#%$&��'($*)+�%, (1)

where � # is the sender’s congestion window [18], � ' is the
receive window advertised by ����� , and) � is the size of
the send socket buffer at

���

. The receive window ��'

is the amount of available receive socket buffer memory at
����� , and is limited by the receive socket buffer size) ' , i.e.,
� '.-) ' . In the rest of this paper, we assume that � ' =) ' ,
i.e., the receiving application is sufficiently fast to consume
any delivered data, keeping the receive socket buffer always
empty. The send window is then limited by:

�������/���� 0��#1$&�2, (2)

where �3�4������ ") � $*) ' , is the smaller of the two socket
buffer sizes.

If the send window ��� is limited by ��# we say that the
transfer is congestion limited, while if it is limited by � , we
say that the transfer is buffer limited. If �657� �98 is the con-
nection’s RTT when the send window is � � , the transfer’s
throughput is

: � � �
�;57��� 8 �

�/���! 0� # $&�2,
�657��� 8 (3)

Note that the RTT can vary with ��� because of queueing
delays due to the transfer itself.

We next describe a model for the network path < that the
TCP transfer goes through. The bulk TCP transfer that we
focus on is referred to as target transfer; the rest of the traffic
in < is referred to as cross traffic. The forward path from
���

to ���!� , and the reverse path from ����� to

���

,
are assumed to be fixed and unique for the duration of the
target transfer.

Each link = of the path transmits packets with a capacity
of �?> bps. Arriving packets are discarded in a Drop Tail

3

manner. Let � > be the initial average utilization of link = ,
i.e., the utilization at link = prior to the target transfer. The
available bandwidth � > of link = is then defined as � > �
� > � 5������ > 8 . Adopting the terminology of [19], we refer to
the link of the forward path <�� with the minimum available
bandwidth � � �����
	��
� > , as the tight link. The buffer size
of the tight link is denoted by)�� .

A link is saturated when its available bandwidth is zero.
Also, a link is non-congested when its packet loss rate due
to congestion is practically zero; otherwise the link is con-
gested. For simplicity, we assume that the only congested
link in the forward path is the tight link. A path is called
congested when its tight link is congested; otherwise, the
path is called non-congested.

The exogenous RTT of the path is the sum of all aver-
age delays along the path, including both propagation and
queueing delays, before the target transfer starts. The av-
erage RTT ��� , on the other hand, is the sum of all average
delays along the path while the target transfer is in progress.
In general, ��������� due to increased queueing caused by the
target transfer.

From Equation (3), we can view the target transfer
throughput as a function

: 5 � 8 . Then, an important ques-
tion is: given a network path < , what is the value(s) �� of the
socket buffer size that maximizes the target transfer through-
put

: 57� 8 ? We refer to the maximum value of
: 57� 8 as the

Maximum Feasible Throughput (MFT) �: . The conventional
wisdom, as expressed in textbooks [16], operational hand-
outs [2], and research papers [14], is that the socket buffer
size �� should be equal to the Bandwidth Delay Product
of the path, where “bandwidth” is the capacity of the path
� , and “delay” is the exogenous RTT of the path � � , i.e.,
���� � � � � . Indeed, if the send window is � � � � � � � ,

and assuming that there is no cross traffic in the path, the
tight link becomes saturated (i.e., � =0) but not congested,
and so the target transfer achieves its MFT (�: � �).

In practice, a network path always carries some cross traf-
fic, and thus ��� � . If ����� � ��� , the target transfer
will saturate the tight link, and depending on)�� , it may also
cause packet losses. Losses, however, cause multiplicative
drops in the target transfer’s send window, and, potentially,
throughput reductions. Thus, the amount of buffering)�� at
the tight link is an important factor for socket buffer sizing,
as it determines the point at which the tight link becomes
congested.

The presence of cross traffic has an additional important
implication. If the cross traffic is TCP (or TCP friendly), it
will react to the presence of the target transfer reducing its
rate, either because of packet losses, or because the target
transfer has increased the RTT in the path (� � ��� �). In that
case, the target transfer can achieve a higher throughput than
the initial available bandwidth � . In other words, the MFT
can be larger than the available bandwidth, depending on the

congestion responsiveness of the cross traffic.
The previous discussion reveals several important ques-

tions. What is the optimal socket buffer size �� and the
MFT in the general case of a path that carries cross traf-
fic? What is the relation between the MFT and the available
bandwidth � ? How is the MFT different in congested ver-
sus non-congested paths? How should a socket buffer sizing
scheme determine �� , given that it does not know a priori �
and)�� ? These questions are the subject of the next section.

III. MAXIMUM FEASIBLE THROUGHPUT AND

AVAILABLE BANDWIDTH

A. Non-congested paths

Suppose first that the network path < is non-congested.
We illustrate next the effect of the socket buffer size � on the
throughput

: 5 � 8 with an example of actual TCP transfers in
an Internet2 path.

The network path is from a host at Ga-Tech (regu-
lus.cc.gatech.edu) to a RON[20] host at NYU (nyu.ron.lcs.mit.edu).
The capacity of the path is � =97Mbps1, the exogenous RTT
is � � =40ms, and the loss rate that we measured with ping
was zero throughout our experiments. We repeated a 200MB
TCP transfer four times with different values of � . Available
bandwidth measurements with pathload [19] showed that �
was practically constant before and after our transfers, with
��� 80Mbps.

Figure 1 shows the throughput and RTT of the TCP con-
nection when � =128KB. In this case, the throughput of the
transfer remains relatively constant, the connection does not
experience packet losses, and the transfer is buffer limited.
The transfer does not manage to saturate the path because: 57� 8 � �� 0� � =25.5Mbps, which is much less than � . Ob-
viously, any socket buffer sizing scheme that sets � to less
than �� 0��� will lead to poor performance.

Next we increase � to the value that is determined by
the available bandwidth, i.e., � �!� � ��� =400KB (see
Figure 2). We expect that in this case the transfer will
saturate the path, without causing persistent queueing and
packet losses. Indeed, the connection is still buffer limited,
getting approximately the available bandwidth in the path
(
: 57� 8 =79.6Mbps). Because � was determined by the avail-

able bandwidth, the transfer did not introduce a persistent
backlog in the queue of the tight link, and so �"�+� ��� =40ms.

One may think that the previous case corresponds to the
optimal socket buffer sizing, i.e., that the MFT is �: �#� .
The MFT of a path, however, depends on the congestion re-
sponsiveness of the cross traffic. If the cross traffic is not
congestion responsive, such as unresponsive UDP traffic or
an aggregate of short TCP flows, it will maintain an almost
$
The capacity and available bandwidth measurements mentioned in this

paper refer to the IP layer. All throughput measurements, on the other hand,
refer to the TCP layer.

4

0

5

10

15

20

25

30

T
hr

ou
gh

pu
t (

M
bp

s)

0 10 20 30 40 50 60
Time (sec)

39

40

41

42

43

44

R
T

T
 (

m
se

c)

Fig. 1. Throughput and RTT of a 200MB transfer with � =128KB.

0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

30

40

50

60

70

80

R
T

T
 (

m
se

c)

Fig. 2. Throughput and RTT of a 200MB transfer with � =400KB.

constant throughput as long as the target transfer does not
cause buffer overflows and packet losses. In this case, the
MFT will be equal to the available bandwidth. If the cross
traffic consists of buffer limited persistent TCP transfers,
however, any increase in the RTT will lead to reduction of
their throughput. In that case, the target transfer can “steal”
some of the throughput of cross traffic transfers by caus-
ing a persistent backlog in the tight link, making the MFT
larger than � . An analysis of the congestion responsiveness
of Internet traffic is outside the scope of this paper; interested
readers can find some results in [21].

To illustrate the effect of congestion responsiveness of
cross-traffic on MFT, we further increase � to 550KB (see
Figure 3). First point is that the transfer is still buffer
limited, as it does not experience any packet losses. Sec-
ond, the RTT increases by 9ms from � � =40ms to � � =49ms.
Consequently, the throughput of the target transfer reaches: 5 � 8 � �" "��� =89.6Mbps, which is more than the available
bandwidth before the target transfer. Where does this addi-
tional throughput come from? Even though we do not know

0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

30

40

50

60

70

80

R
T

T
 (

m
se

c)

Fig. 3. Throughput and RTT of a 200MB transfer with � =550KB.

the nature of cross traffic in this path, we can assume that
some of the cross traffic flows are buffer limited TCP flows.
The throughput of such flows is inversely proportional to
their RTTs, and so the 9ms RTT increase caused by the target
transfer leads to a reduction of their throughput.

One may think that increasing � even more will lead to
higher throughput. That is not the case however. If we in-
crease � beyond a certain point, the target transfer will cause
buffer overflows in the tight link. The transfer will then be-
come congestion limited, reacting to packet drops with large
window reductions and slow window increases.

To illustrate this case, Figure 4 shows what happens to the
target transfer when � is set to 900KB (the largest possible
socket buffer size at these end-hosts). The connection expe-
riences several losses during the initial slow-start (about one
second after its start), which are followed by a subsequent
timeout. Additional losses occur after about 12 seconds, also
causing a significant throughput reduction.

0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

30

40

50

60

70

80

R
T

T
 (

m
se

c)

Fig. 4. Throughput and RTT of a 200MB transfer with � =900KB (max).

The previous four cases illustrate that socket buffer siz-
ing has a major impact on TCP throughput in non-congested

5

paths. The target transfer can reach its MFT with the max-
imum possible socket buffer size that does not cause self-
induced packet losses. We also show that, depending on the
congestion responsiveness of cross traffic, the MFT may be
only achievable if the target transfer introduces a persistent
backlog in the tight link and a significant RTT increase. Lim-
iting the socket buffer size based on the available bandwidth,
on the other hand, does not increase the RTT of the path but
it may lead to suboptimal throughput.

How can a socket buffer sizing scheme determine the opti-
mal value of � for a given network path? An important point
is that end-hosts do not know the amount of buffering at the
tight link) � or the nature of the cross traffic. Consequently,
it may not be possible to predict the value of � that will lead
to self-induced losses, and consequently, to obtain the MFT.

Instead, it is feasible to determine � based on the available
bandwidth. That is simply the point in which the received
throughput becomes practically constant, and the RTT starts
to increase. Even though setting � based on the available
bandwidth may be suboptimal compared to the MFT, we
think that it is a better objective for the following reasons:
1. Since the amount of buffering at the tight link is un-
known, accumulating a persistent backlog can lead to early
congestive losses, reducing significantly the target transfer’s
throughput.
2. A significant RTT increase can be detrimental for the per-
formance of real-time and interactive traffic in the same path.
3. Increasing the target transfer’s throughput by deliberately
increasing the RTT of other TCP connections can be consid-
ered by many as an unfair congestion behavior.

B. Congested paths

A path can be congested, for instance, if it carries one or
more congestion limited persistent TCP transfers, or if there
are packet losses at the tight link due to bursty cross traffic.

The key point that differentiates congested from non-
congested paths is that the target transfer can experience
packet losses independent of its socket buffer size. This is
a consequence of Drop Tail queueing: dropped packets can
belong to any flow. A limited socket buffer, in this case, can
only reduce the target transfer’s throughput. So, to maxi-
mize the target transfer’s throughput, the socket buffer size
� should be sufficiently large so that the transfer is always
congestion limited.

The previous intuitive reasoning can be also shown ana-
lytically using a result of [22]. Equation (32) of that refer-
ence states that the average throughput of a TCP transfer in
a congested path with loss rate � and average RTT � is

: 57� 8 � ��� � �� $�� 5 � $�� 8 , (4)

where � is the transfer’s maximum possible window (equiv-
alent to socket buffer size), and � 5 � $�� 8 is a function that de-
pends on TCP’s congestion avoidance algorithm. Equation

(4) shows that, in a congested path (� � 0), a limited socket
buffer size � can only reduce the target transfer’s through-
put, never increase it. So, the optimal socket buffer size in a
congested path is ���� ��� , where ��� is a sufficiently large
value to make the transfer congestion limited throughout its
lifetime, i.e., � � � ���
	���# .

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20 25 30
Time (sec)

80

85

90

95

100

105

110

R
T

T
 (

m
se

c)
Fig. 5. Throughput and RTT of a 30MB transfer in a congested path with

� =30KB.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20 25
Time (sec)

80

85

90

95

100

105

110

R
T

T
 (

m
se

c)

Fig. 6. Throughput and RTT of a 30MB transfer in a congested path with
� = ��� .

To illustrate what happens in congested paths, Figures 5
and 6 show the throughput and RTT of a TCP transfer in
a path from regulus.cc.gatech.edu to aros.ron.lcs.mit.edu at
MIT. The capacity of the path is � =9.7Mbps, the RTT is
��� =78ms, while the available bandwidth � is about 3Mbps.

In Figure 5, � is limited to 30KB, which is the value de-
termined by the available bandwidth (� = � �"�). Even though
the transfer does not overload the path (notice that the RTT
does not show signs of persistent increase) the connection
experiences several packet losses. The average throughput
of the transfer in this case is 2.4Mbps.

In Figure 6, on the other hand, � is increased to the maxi-

6

mum possible value, and so the transfer is always congestion
limited. The transfer experiences again multiple loss events,
but since this time it is not limited by � it achieves a larger
average throughput, close to 3.1Mbps.

IV. SOCKET BUFFER AUTO-SIZING (SOBAS)

In this section we describe SOBAS. As explained in the
previous section, the objective of SOBAS is to saturate the
available bandwidth of a non-congested network path, with-
out causing a significant RTT increase. SOBAS does not
require changes at the TCP protocol or implementation, and
so it can be integrated with any bulk transfer application. It
does not require prior knowledge of the capacity or avail-
able bandwidth, while the RTT and the presence of conges-
tive losses are inferred directly by the application using UDP
out-of-band probing packets. The throughput of the transfer
is also measured by the application based on periodic mea-
surements of the received goodput.

We anticipate that SOBAS will be mostly useful in spe-
cific application and network environments. First, SOBAS
is designed for bulk data transfers. It would probably not
improve the throughput of short transfers, especially if they
terminate before the end of slow start. Second, SOBAS takes
action only in non-congested paths. In paths with persistent
congestion or limited available bandwidth, SOBAS will dis-
able itself automatically, providing the same throughput as
a regular TCP transfer. Third, SOBAS adjusts the socket
buffer size only once during the transfer. This is sufficient
as long as the cross traffic is stationary, which may be not
be a valid assumption if the transfer lasts for several minutes
[23]. For extremely large transfers, the application can split
the transferred file in several segments and transfer each of
them sequentially using different SOBAS sessions.

We next state certain host and router requirements for
SOBAS to work effectively. First, the TCP implementation
at both end hosts must support window scaling, as specified
in [24]. Second, the operating system should allow dynamic
changes in the socket buffer size during the TCP transfer,
increasing or decreasing it.2 Third, the maximum allowed
socket buffer size at both the sender and receiver must be
sufficiently large so that it does not limit the connection’s
throughput. Finally, the network elements along the path are
assumed to use Drop Tail buffers, rather than active queues.
All previous requirements are valid for most operating sys-
tems [13] and routers in the Internet today.

A. Basic idea

The basic idea in SOBAS is the following. In non-
congested paths, SOBAS should limit the receiver socket
�
If an application requests a send socket buffer decrease, the TCP sender

should stop receiving data from the application until its send window has
been decreased to the requested size, rather than dropping data that are al-
ready in the send socket (see [25]

�
4.2.2.16). Similarly, in the case of a

decrease of the receive socket buffer size, no data should be dropped.

buffer size, and thus the maximum possible send window, so
that the transfer saturates the path but does not cause buffer
overflows. In congested paths, on the other hand, SOBAS
should set the socket buffer size to the maximum possible
value, so that the transfer is congestion limited.

SOBAS detects the point in which the transfer has satu-
rated the available bandwidth using two “signatures” in the
receive throughput measurements: flat-rate and const-rate-
drop. The flat-rate condition is detected when the receive
throughput appears to be almost constant for some time pe-
riod. The const-rate-drop condition occurs when SOBAS
is unable to avoid self-induced losses, and it is detected as a
rate drop following a short time period in which the through-
put was constant. The detection of these two signatures is
described later in more detail.

if (flat-rate or const-rate-drop)

if (non-congested path)
� � : � � ; (set socket buffer size to rate times RTT)
else
� � ������� ; (set socket buffer size to maximum value)
,

Fig. 7. Basic SOBAS algorithm.

B. Implementation details and state diagram

Several important details about the SOBAS algorithm are
described next.

How does the receiver infer whether the path is congested,
and how does it estimate the RTT? The receiver sends an
out-of-band periodic stream of UDP packets to the sender.
The sender echoes the packets back to the receiver with a
probe sequence number. The receiver uses these sequence
numbers to estimate the loss rate at the forward path, infer-
ring whether the path is congested or not. Even though it
is well-known that periodic probing may not result in accu-
rate loss rate estimation, notice that SOBAS only needs to
know whether the path is congested, i.e., whether the loss
rate is non-zero. Additionally, the periodic path probing al-
lows the receiver to maintain a running average of the RTT.
Each probing packet is 100B and they are sent every 10ms
resulting in a rate of 80kbps. This overhead is insignificant
compared to the throughput benefits that SOBAS provides,
as shown in 	 V.

How often should SOBAS measure the receive throughput:
? SOBAS measures the receiver throughput periodically at

the application layer, as the ratio of the amount of bytes re-
ceived in successive time windows of length � =2 � RTT.
The measurement period � is important. If it is too small,
and especially if it is smaller than the transfer’s RTT, the re-
sulting throughput measurements will be very noisy due to
delays between the TCP stack and the application layer, and
also due to the burstiness of TCP during the RTT. If � is

7

too large, on the other hand, SOBAS will not have enough
time to detect that it has saturated the available bandwidth
before a buffer overflow occurs. In the Appendix, we de-
rive expressions for the Buffer Overflow Latency, i.e., for the
amount of time it takes for a network buffer to fill up in two
cases: when the target transfer is in slow-start and when it is
in congestion-avoidance. Based on those results, we argue
that the choice � =2 � RTT is a reasonable trade-off in terms
of accuracy and measurement latency.

How does the receiver detect the two conditions flat-rate
and const-rate-drop? The flat-rate condition is true when
five successive throughput measurements are almost equal,
i.e., when the throughput has become constant3. At that
point, any further increases in the send window cause persis-
tent backlog in the tight link and RTT increases. The const-
rate-drop condition is true, on the other hand, when the re-
ceive throughput has dropped significantly after a period of
time (two throughput measurements) in which it was almost
constant. This happens when SOBAS does not manage to
limit the send window before the target transfer experiences
a packet loss. This is unavoidable sometimes in practice, es-
pecially in under-buffer paths. However, SOBAS will avoid
any further such losses by limiting the receiver socket buffer
after the first loss.

Before the connection is established, SOBAS sets the send
and receive socket buffers to their maximum values in order
to have a sufficiently large window scale factor. The value of
ssthresh becomes then equally large, and so the initial slow-
start can lead to multiple packet losses. Such losses often
result in one or more timeouts, and they can also cause a sig-
nificant reduction of ssthresh, slowing down the subsequent
increase of the congestion window. This effect has been also
studied in [9] and [26]. SOBAS attempts to avoid massive
slow start losses using a technique that is similar with that
of [9]. The basic idea is to initially limit the receive socket
buffer size based on a rough capacity estimate ��� of the for-
ward path. ��� results from the average dispersion of five
packet trains, using UDP probing packets [27]. If later on
the transfer becomes buffer limited, SOBAS increases peri-
odically the socket buffer size by one Maximum Segment
Size (MSS) in every RTT. This linear increase is repeated
until one of the flat-rate or const-rate-drop conditions be-
comes true.

Figure 8 shows the state diagram of the complete SOBAS
algorithm. Overall, the implementation of the algorithm is
roughly 1,000 lines of C code.

V. EXPERIMENTAL RESULTS

We have implemented SOBAS as a simple TCP-based
data transfer application. The prototype has been tested over

�
The required constant throughput measurements are only two, instead

of five, when the transfer is in the initial slow-start phase (states 1 and 2 in
Figure 8).

6

5

1

S = R * T

flat−rate

S =
 R

 * T
fla

t−rat
e O

R co
nst−

rat
e−

drop

S = R
 * T

const−
rate−

drop
flat−

rate O
R

S += MSS

S += MSS

buffer limitedrate drop

buffer limited

congested path

time since last increase > T

S += MSS

estimate capacity C’

S = 1.2 * C’ * T

MAX

2 3 4

S = S

Fig. 8. SOBAS state diagram.

a large number of paths and at several operating systems (in-
cluding Linux 2.4, Solaris 8, and FreeBSD 4.7). In this sec-
tion, we present results from a few Internet paths, covering
an available bandwidth range of 10-1000Mbps. These paths
traverse links in the following networks: Abilene, SOX, ES-
Net, NYSERNet, GEANT, SUNET (Sweden), and campus
networks at the location of the end-hosts (Georgia Tech,
LBNL, MIT, NYU, Lulea University). For each path, we
compare the throughput that results from SOBAS with the
throughput that results from using the maximum allowed
socket buffer size (referred to as “non-SOBAS”). The lat-
ter is what data transfer applications do in order to maximize
their throughput. The SOBAS and non-SOBAS transfers on
each path are performed in close sequence.

We classify the following paths in three groups, depending
on the underlying available bandwidth. The “gigabit path” is
located in our testbed and is limited by a Gigabit-Ethernet
link (1000Mbps). The “high-bandwidth paths” provide 400-
600Mbps and they are probably limited by OC12 links or
rate-limiters. The “typical paths” are limited by Fast Ether-
net links, and they provide less than 100Mbps. The transfer
size is 1GB in the gigabit and high-bandwidth paths, and
200MB in the typical paths.

A. Gigabit path

Our gigabit testbed consists of four hosts with GigE NICs
connected to two Gigabit switches. The GigE link between
the two switches is the tight link with capacity � =970Mbps
at the IP layer. Two hosts are used as the source and sink
of cross traffic, while the two other hosts are the source and
sink of the target transfer. We use NISTNet [28] to emulate
an RTT of 20 msec in the path.

Figures 9 and 10 show the throughput and RTT for this
path with and without SOBAS, respectively. The average
throughput is 918Mbps in the former and 649Mbps in the
latter. A trace analysis of the two connections shows that
the non-SOBAS flow experienced multiple losses at the ini-
tial slow-start. After recovering from those losses, the trans-
fer started a painfully slow congestion-avoidance phase at

8

0 5 10 15
0

200

400

600

800

1000
T

hr
ou

gh
pu

t (
M

bp
s)

0 5 10 15
Time (sec)

20

25

30

35

40

R
T

T
 (

m
se

c)

Fig. 9. With SOBAS: Gigabit path, no cross traffic (
�

=950Mbps).

0 5 10 15
0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15
Time (sec)

20

25

30

35

40

R
T

T
 (

m
se

c)

Fig. 10. With SOBAS: Gigabit path, no cross traffic (
�

=950Mbps).

about 600Mbps, without ever reaching the available band-
width of the path. SOBAS, on the other hand, avoided the
slow-start losses using the packet-train based capacity es-
timate. Shortly afterwards, about 500ms after the transfer
started, SOBAS detected the flat-rate condition and it set �
to its final value. The RTT with SOBAS increased only by
3ms, from 20ms to 23ms.

We next consider the performance of SOBAS with con-
gestion unresponsive cross traffic. Instead of generating
random cross traffic, we use trace-driven cross traffic gen-
eration, “replaying” traffic from an OC-48 trace (IPLS-
CLEV-20020814-093000-0), available at NLANR-MOAT
[29]. The average rate of the cross traffic is 400Mbps. Notice
that even though the packet sizes and interarrivals are based
on real Internet traffic, this type of cross traffic does not react
to congestion or increased RTTs. Figures 11 and 12 show the
throughput and RTT for this path with and without SOBAS,
respectively. The average throughput is 521Mbps in the for-
mer and 409Mbps in the latter. There are two loss events in
the non-SOBAS flow. First, the initial slow-start caused ma-
jor losses and several timeouts, which basically silenced the
transfer for about 2.5 seconds. After the losses were recov-

0 5 10 15 20
0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

20

25

30

35

40

R
T

T
 (

m
se

c)

Fig. 11. With SOBAS: Gigabit path, unresponsive traffic (
�

=550Mbps).

0 5 10 15 20
0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

20

25

30

35

40

R
T

T
 (

m
se

c)

Fig. 12. Without SOBAS: Gigabit path, unresponsive traffic (
�

=550Mbps).

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

T
hr

ou
gh

pu
t (

M
bp

s)

0 0.2 0.4 0.6 0.8 1
1850

1900

1950

2000

R
ec

v
A

dv
. W

in
do

w
 (

kB
)

0 0.2 0.4 0.6 0.8 1
Time (sec)

20

21

22

23

24

25

R
T

T
 (

m
se

c)

Fig. 13. Initial throughput, socket buffer size, and RTT with SOBAS in the
path of Figure 11.

9

0 5 10 15 20
0

100

200

300

400

500

600

700
T

hr
ou

gh
pu

t (
M

bp
s)

0 5 10 15 20
Time (sec)

20

25

30

35

40

45

50

R
T

T
 (

m
se

c)

Fig. 14. With SOBAS: Gigabit path, buffer limited TCP traffic
(

�
=450Mbps).

0 5 10 15 20
0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

20

25

30

35

40

45

50

R
T

T
 (

m
se

c)

Fig. 15. Without SOBAS: Gigabit path, buffer limited TCP traffic
(

�
=450Mbps).

ered, the non-SOBAS flow kept increasing its window be-
yond the available bandwidth. As a result, the RTT increased
to about 28ms, and then the transfer experienced even more
losses followed by a slow congestion-avoidance phase.

SOBAS, on the other hand, determined successfully the
point at which the available bandwidth was saturated, and it
limited the socket buffer size before any losses occur. Fig-
ure 13 shows in more detail the initial phase of the SOBAS
transfer. At the start of the transfer, SOBAS set � =1,875KB
based on the initial capacity estimate. At about 0.2s, the
transfer became buffer limited, and SOBAS started increas-
ing linearly the socket buffer size. Shortly afterwards, at
about 0.4s, the flat-rate condition was detected, and SOBAS
set � to its final value. Notice that the RTT was increased by
only 1-2ms.

Next, we evaluate SOBAS with congestion responsive
TCP-based cross traffic. The latter is generated with a buffer
limited IPerf transfer that cannot get more than 500Mbps

0 5 10 15 20
0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

10

12

14

16

18

20

R
T

T
 (

m
se

c)

Fig. 16. With SOBAS: GaTech campus path (
�

=600Mbps).

0 5 10 15 20
0

100

200

300

400

500

600

700

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
Time (sec)

10

12

14

16

18

20

R
T

T
 (

m
se

c)

Fig. 17. without SOBAS: GaTech campus path (
�

=600Mbps).

due to its socket buffer size. Figures 14 and 15 show the
throughput and RTT for this path with and without SOBAS,
respectively. The average throughput is 574Mbps in the for-
mer and 452Mbps in the latter. Once more we observe that
the non-SOBAS flow experienced losses at the initial slow-
start, even though they were recovered quickly in this case.
One more loss event occurred about 6 seconds after the start
of the transfer, causing a major reduction in the transfer’s
throughput. SOBAS, on the other hand, detected the flat-
rate condition shortly after the start of the transfer, avoiding
any packet losses.

B. High-bandwidth paths

We next present similar results for two paths in which the
available bandwidth varies between 400-600Mbps. These
paths carry “live” Internet traffic, and so we cannot know the
exact nature of the cross traffic.

The first path connects two different buildings at the Geor-
gia Tech campus. The path is rate-limited to about 620Mbps

10

0 5 10 15 20 25 30 35
0

100

200

300

400

500
T

hr
ou

gh
pu

t (
M

bp
s)

0 5 10 15 20 25 30 35
Time (sec)

60

70

80

90

100

110

120

130

R
T

T
 (

m
se

c)

Fig. 18. With SOBAS: Path from GaTech to LBNL (
�

=450Mbps).

0 5 10 15 20 25 30 35
0

100

200

300

400

500

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20 25 30 35
Time (sec)

60

70

80

90

100

110

120

130

R
T

T
 (

m
se

c)

Fig. 19. Without SOBAS: Path from GaTech to LBNL (
�

=450Mbps).

at the IP layer. Because the RTT of this path is typically less
than one millisecond, we again use NISTnet to create an ad-
ditional delay of 10ms. Figures 16 and 17 show the through-
put and RTT for this path with and without SOBAS, respec-
tively. The average throughput is 542Mbps in the former and
445Mbps in the latter. Qualitatively, the results are similar
to those of the Gigabit path without (or with unresponsive)
cross traffic. Notice that the non-SOBAS flow pays a large
throughput penalty due to the initial slow-start losses. The
SOBAS flow avoids any losses, and it manages to get a con-
stant throughput that is close to the capacity of the path.

A wide-area high-bandwidth network path that was avail-
able to us was the path from Georgia Tech to LBNL in
Berkeley CA. The available bandwidth in the path is about
400Mbps, even though we do not know the location of the
tight link. Figures 18 and 19 show the throughput and RTT
for this path with and without SOBAS, respectively. The
average throughput is 343Mbps in the former and 234Mbps
in the latter. The large RTT in this path (� � =60ms) makes

0 5 10 15 20 25 30
0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20 25 30
Time (sec)

30

40

50

60

70

80

90

100

R
T

T
 (

m
se

c)

Fig. 20. With SOBAS: Path from GaTech to NYU (
�

=90Mbps).

0 5 10 15 20 25 30
0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20 25 30
Time (sec)

30

40

50

60

70

80

90

100

R
T

T
 (

m
se

c)

Fig. 21. Without SOBAS: Path from GaTech to NYU (
�

=90Mbps).

the linear window increase during congestion-avoidance in
the non-SOBAS flow to be ever slower than in the previous
paths.

C. Typical paths

We finally show results from paths that provide less than
100Mbps of available bandwidth. Many paths between US
and European universities and research centers fall into this
class today.

The first path is from Georgia Tech to NYU. The path is
limited by a Fast Ethernet, with a capacity of about 97Mbps
at the IP layer. The available bandwidth that pathload mea-
sured was about 90Mbps. Figures 20 and 21 show the
throughput and RTT for this path with and without SOBAS,
respectively. The average throughput is 87Mbps in the for-
mer and 48Mbps in the latter. The non-SOBAS flow expe-
rienced several loss events, followed by slow recovery peri-
ods. Notice that the short throughput drops in the SOBAS
flow are caused by RTT spikes (probably due to cross traffic

11

0 5 10 15 20 25 30
0

20

40

60

80

100
T

hr
ou

gh
pu

t (
M

bp
s)

0 5 10 15 20 25 30
Time (sec)

0

50

100

150

200

R
T

T
 (

m
se

c)

Fig. 22. With SOBAS: Path from GaTech to NYU (
�

=80Mbps).

0 5 10 15 20 25 30
0

20

40

60

80

100

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20 25 30
Time (sec)

0

50

100

150

200

R
T

T
 (

m
se

c)

Fig. 23. Without SOBAS: Path from GaTech to NYU (
�

=80Mbps).

bursts), and they do not correspond to loss events.

The next experiment was also performed at the GaTech-
NYU path, but during a different time period. The available
bandwidth in this case was about 80Mbps. Figures 22 and 23
show the throughput and RTT for this path with and without
SOBAS, respectively. The average throughput is 70Mbps
in the former and 57Mbps in the latter. An important point
to take from these experiments is that SOBAS is robust to
the presence of real Internet cross traffic, and it manages
to avoid self-induced losses even though the RTT measure-
ments show significant RTT spikes.

The final experiment was performed at a path from Geor-
gia Tech to a host at Lulea in Sweden. The capacity
and available bandwidth for this path was 97Mbps and
40Mbps, respectively. Figures 24 and 25 show the through-
put and RTT for this path with and without SOBAS, respec-
tively. The average throughput is 33Mbps in the former and
20Mbps in the latter. An interesting point about this experi-
ment was that the SOBAS flow did not manage to avoid the

0

10

20

30

40

50

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60 80
Time (sec)

150

155

160

165

170

R
T

T
 (

m
se

c)

Fig. 24. With SOBAS: Path from GaTech to Lulea (
�

=40Mbps).

0

10

20

30

40

50

T
hr

ou
gh

pu
t (

M
bp

s)

0 20 40 60 80
Time (sec)

150

155

160

165

170

R
T

T
 (

m
se

c)

Fig. 25. Without SOBAS: Path from GaTech to Lulea (
�

=40Mbps).

self-induced losses at the initial slow start. This is because
the initial capacity estimate (93.5Mbps) was much higher
than the available bandwidth. The losses were recovered in
about 5 seconds, and SOBAS detected a flat-rate condition
at about � =10s. There were no losses after that point.

VI. RELATED WORK

A. Socket buffer sizing techniques

An auto-tuning technique that is based on active band-
width estimation is the Work Around Daemon (WAD) [3].
WAD uses ping to measure the minimum RTT ��� prior to
the start of a TCP connection, and pipechar to estimate the
capacity � of the path [30]. A similar approach is taken by
the NLANR Auto-Tuning FTP implementation [31]. Similar
socket buffer sizing guidelines are given in [2] and [13].

The first proposal for automatic TCP buffer tuning was
[14]. The goal of that work was to allow a host (typically a
server) to fairly share kernel memory between multiple on-
going connections. The proposed mechanism, even though
simple to implement, requires changes in the operating sys-

12

tem. An important point about [14] is that the BDP of a path
was estimated based on the congestion window (cwnd) of the
TCP connection. The receive socket buffer size was set to a
sufficiently large value so that it does not limit the transfer’s
throughput.

An application based socket buffer auto-tuning technique,
called Dynamic Right-Sizing (DRS), has been proposed in
[15]. DRS measures the RTT of the path prior to the start
of the connection. To estimate the bandwidth of the path,
DRS measures the average throughput at the receiving side
of the application. It is important to note however that the
target transfer throughput does not only depend on the con-
gestion window, but also on the current socket buffer size.
Thus, DRS will not be able to estimate in general the socket
buffer size that maximizes the target transfer’s throughput,
as it may be limited by the current socket buffer size. The
socket buffer sizing objective of DRS does not correspond
to one of the six models in the previous section. A com-
parison of some socket buffer sizing mechanisms appears in
[32].

We finally note that the 2.4 version of the Linux kernel sets
the socket buffer size dynamically. In particular, even if the
application has specified a large receive socket buffer size
(using the setsockopt system call), the TCP receiver adver-
tizes a small receive window that increases gradually with
every ACKed segment. Also, Linux 2.4 adjusts the send
socket buffer size dynamically, based on the available sys-
tem memory and the transfer’s send socket buffer backlog.

B. TCP congestion control modifications

Several researchers have proposed TCP modifications,
mostly focusing on the congestion control algorithm, aim-
ing to make TCP more effective in high-performance paths.
Since our work focuses on techniques that require no
changes in TCP, we do not review these proposals in detail
here.

Floyd proposed High-Speed TCP [5], in which the win-
dow increase and decrease factors depend on the current con-
gestion window. These factors are chosen so that a bulk TCP
transfer can saturate even very high-bandwidth paths in lossy
networks.

With similar objectives, Kelly proposed Scalable TCP [8].
An important difference is that Scalable TCP uses constant
window increase and decrease factors, and a multiplicative
increase rule when there is no congestion. With the latter
modification, Scalable TCP recovers from losses much faster
than TCP Reno.

TCP Westwood uses bandwidth estimation, derived from
the dispersion of the transfer’s ACKs, to set the congestion
window after a loss event [10]. Westwood introduced the
concept of “eligible rate”, which is an estimate of the TCP
fair share.

Another TCP variant that focuses on high-bandwidth

paths is TCP FAST [6]. FAST has some important simi-
larities with TCP Vegas[33]. The key idea is to limit the
send window of the transfer when the RTTs start increasing.
This is similar in principle with SOBAS, implying that FAST
and Vegas also aim to saturate the available bandwidth in the
path. An important difference is that SOBAS disables itself
in congested paths, becoming as aggressive as a Reno con-
nection. It is known, on the other hand, that Vegas is less
aggressive than Reno in congested paths.

Recently, [34] proposed a TCP variant in which the send
window is adjusted based on the available bandwidth of a
path. The proposed protocol is called TCP-Low Priority
(TCP-LP). Even though TCP-LP is not a socket buffer siz-
ing scheme, it is similar to SOBAS in the sense that it aims
to capture the available bandwidth. A major difference with
TCP-LP is that SOBAS disables itself in congested paths,
and so it would result in higher throughput than TCP-LP in
such paths. Additionally, TCP-LP reduces the send window
every time the RTTs show an increasing trend; this behavior
would lead to lower throughput than SOBAS even in non-
congested paths.

VII. CONCLUSIONS

Common socket buffer sizing practices, such as setting the
socket buffer size to the default or maximum value, can lead
to poor throughput. We developed SOBAS, an application-
layer mechanism that automatically sets the socket buffer
size while the transfer is in progress, without prior knowl-
edge of any path characteristics. SOBAS manages to saturate
the available bandwidth in the network path, without caus-
ing a significant RTT increase. SOBAS can be integrated
with bulk transfer applications, such as GridFTP, providing
significantly better performance in non-congested wide-area
network paths. We plan to integrate SOBAS with popular
Grid data transfer applications in the future.

ACKNOWLEDGEMENTS

We are grateful to Dave Andersen (MIT), K Claffy
(Caida), Steven Low (Cal Tech), Matt Mathis (PSC), Nagi
Rao (ORNL), Matt Sanders (Georgia Tech), Brian Tierney
(LBL), and Matt Zekauskas (Internet2) for providing us with
computer accounts at their sites. We are also grateful to
Karsten Schwan, Matt Wolf, Zhongtang Cai, Qi He, and
Greg Eisenhauer from Georgia Tech for the valuable com-
ments and discussions. We also appreciate the availability
of network traces from the NLANR-PMA project, which is
supported by the NSF cooperative agreements ANI-0129677
(2002) and ANI-9807479 (1998).

REFERENCES

[1] S. Shalunov and B. Teitelbaum, Bulk TCP Use and Performance on
Internet2, 2002. Also see: http://netflow.internet2.edu/weekly/.

[2] B. Tierney, “TCP Tuning Guide for Distributed Applications on Wide
Area Networks,” USENIX & SAGE Login, Feb. 2001.

13

[3] T. Dunigan, M. Mathis, and B. Tierney, “A TCP Tuning Daemon,” in
Proceedings of SuperComputing: High-Performance Networking and
Computing, Nov. 2002.

[4] M. Allman and V. Paxson, “On Estimating End-to-End Network Path
Properties,” in Proceedings of ACM SIGCOMM, pp. 263–274, Sept.
1999.

[5] S. Floyd, HighSpeed TCP for Large Congestion Windows, Dec. 2003.
RFC 3649 (experimental).

[6] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, Architec-
ture, Algorithms, Performance,” in Proceedings of IEEE INFOCOM,
Mar. 2004.

[7] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks,” in Proceedings of ACM SIG-
COMM, Aug. 2002.

[8] T. Kelly, “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks,” ACM Computer Communication Review (CCR), Apr.
2003.

[9] R. Krishnan, C. Partridge, D. Rockwell, M. Allman, and J. Sterbenz,
“A Swifter Start for TCP,” Tech. Rep. BBN-TR-8339, BBN, Mar.
2002.

[10] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla, “Using Adaptive
Rate Estimation to Provide Enhanced and Robust Transport over Het-
erogeneous Networks,” in Proceedings IEEE ICNP, Nov. 2002.

[11] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The Case
for Application-level Network Striping for Data Intensive Applica-
tions using High Speed Wide Area Networks,” in Proceedings of Su-
perComputing: High-Performance Networking and Computing, Nov.
2000.

[12] T. J. Hacker and B. D. Athey, “The End-To-End Performance Effects
of Parallel TCP Sockets on a Lossy Wide-Area Network,” in Proceed-
ings of IEEE-CS/ACM International Parallel and Distributed Process-
ing Symposium, 2002.

[13] M. Mathis and R. Reddy, Enabling High Perfor-
mance Data Transfers, Jan. 2003. Available at:
http://www.psc.edu/networking/perf tune.html.

[14] J. Semke, J. Madhavi, and M. Mathis, “Automatic TCP Buffer Tun-
ing,” in Proceedings of ACM SIGCOMM, Aug. 1998.

[15] M. K. Gardner, W.-C. Feng, and M. Fisk, “Dynamic Right-Sizing in
FTP (drsFTP): Enhancing Grid Performance in User-Space,” in Pro-
ceedings IEEE Symposium on High-Performance Distributed Com-
puting, July 2002.

[16] L. L. Peterson and B. S. Davie, Computer Networks, A Systems Ap-
proach. Morgan Kaufmann, 2000.

[17] W. Allcock, J. Bester, J. Bresnahan, A. Chevenak, I. Foster, C. Kessel-
man, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, gridFTP,
2000. See http://www.globus.org/datagrid/gridftp.html.

[18] M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control, Apr.
1999. IETF RFC 2581.

[19] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Mea-
surement Methodology, Dynamics, and Relation with TCP Through-
put,” in Proceedings of ACM SIGCOMM, pp. 295–308, Aug. 2002.

[20] “Resilient Overlay Network (RON).” http://nms.lcs.mit.edu/ron/, June
2003.

[21] M. Jain, R. S. Prasad, and C. Dovrolis, “The TCP Bandwidth-Delay
Product Revisited: Network Buffering, Cross Traffic, and Socket
Buffer Auto-Sizing,” Tech. Rep. GIT-CERCS-03-02, Georgia Tech,
Feb. 2003. Available at http://www.cercs.gatech.edu/tech-reports/.

[22] J. Padhye, V.Firoiu, D.Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in Pro-
ceedings of ACM SIGCOMM, 1998.

[23] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the Constancy
of Internet Path Properties,” in Proceedings of ACM SIGCOMM In-
ternet Measurement Workshop, pp. 197–211, Nov. 2001.

[24] D. Borman, R. Braden, and V. Jacobson, TCP Extensions for High
Performance, May 1992. IETF RFC 1323.

[25] R. Braden, Requirements for Internet Hosts – Communication Layers,
Oct. 1989. IETF RFC 1122.

[26] S. Floyd, Limited Slow-Start for TCP with Large Congestion Win-
dows, July 2003. Internet Draft: draft-ietf-tsvwg-slowstart-00.txt
(work-in-progress).

[27] C. Dovrolis, P. Ramanathan, and D. Moore, “What do Packet Dis-

persion Techniques Measure?,” in Proceedings of IEEE INFOCOM,
pp. 905–914, Apr. 2001.

[28] M. Carson and D. Santay, “NIST Net - A Linux-based Network
Emulation Tool,” ACM Computer Communication Review, vol. 33,
pp. 111–126, July 2003.

[29] NLANR MOAT, “Passive Measurement and Analysis.”
http://pma.nlanr.net/PMA/, Dec. 2003.

[30] J. Guojun, “Network Characterization Service.” http://www-
didc.lbl.gov/pipechar/, July 2001.

[31] J. Liu and J. Ferguson, “Automatic TCP Socket Buffer Tuning,” in
Proceedings of SuperComputing: High-Performance Networking and
Computing, Nov. 2000.

[32] E. Weigle and W.-C. Feng, “A Comparison of TCP Automatic Tuning
Techniques for Distributed Computing,” in Proceedings IEEE Sympo-
sium on High-Performance Distributed Computing, July 2002.

[33] L. S. Brakmo and L.L.Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE Journal on Selected Areas of
Communications, vol. 13, Oct. 1995.

[34] A. Kuzmanovic and E.W.Knightly, “TCP-LP: A Distributed Algo-
rithm for Low Priority Data Transfer,” in Proceedings of IEEE IN-
FOCOM, 2003.

APPENDIX

We derive the Buffer Overflow Latency (BOL) ��� , i.e.,
the time period from the instant a TCP connection saturates
a link to the instant that the link’s buffer overflows for the
first time. The BOL is important because it determines the
maximum time interval in which the SOBAS receiver should
detect the flat-rate condition before losses occur.

Consider a TCP transfer with initial RTT ��� limited by
a link of capacity � and buffer) . Suppose that the trans-
fer’s throughput

: 5 � 8 reaches the capacity at time � � , i.e.,: 5 � � 8 = � . Any following increase in the transfer’s window is
accumulated at the buffer and it results in increased RTT. Let� 5 � 8 be the backlog at the buffer at time � � ��� . The BOL is
the minimum time period ��� such that

� 5 � �	� �
� 8 �) .
The RTT �;5 � 8 at time � is a function of the instantaneous

backlog,

�;5 � 8 � ��� �
� 5 � 8
� (5)

while the backlog
� 5 � 8 is given by

� 5 � 8 � � 5 � 8 � � ��� � ��
 �;5 � 8 ������� (6)

The previous equation shows that the backlog increase rate
is equal to the window increase rate� �

�
�
�
� ��
�

(7)

which depends on whether the transfer is in congestion-
avoidance (CA) or slow-start (SS).

During congestion-avoidance, the window increases by
one packet per RTT (ignoring delayed-ACKs for now). Thus� ��

�
�
�
� �

� �
� (8)

From (7), we see that the BOL can be determined as follows
�����������
��� � � � � �

� �"!
�
� � � � (9)

14

Solving the previous equation gives us the BOL in
congestion-avoidance:

� � �� �) � ���) � � �
�
� � (10)

Similarly, during slow-start the window increase rate is an
entire window per RTT,� ��

�
� �
� � � (11)

Therefore, ����� � ���
�����

� � �
�������
� � � � (12)

which gives us the BOL in slow-start:

� ���� �)
� (13)

In the presence of Delayed-ACKs, the window increase
rate is reduced by a factor of two. In that case, Equations
(10) and (13) should be replaced by

� � �� �) � ���) � ���� � (14)

and

� ���� � �)
� (15)

respectively. Note that � ���� ��� � � �� .
The previous results show that the BOL is largely deter-

mined by the “buffer-to-capacity” ratio) � , i.e., by the
maximum queueing delay at the link. A common buffer
provisioning rule is to provide enough buffering at a link
so that the buffer-to-capacity ratio is equal to the maxi-
mum RTT among the TCP connections that traverse that
link. For instance, a major router vendor recommends that
) � =500ms. In that case, (15) shows that SOBAS has at
most one second, during slow-start, to detect that the trans-
fer has saturated the available bandwidth, and to limit the
socket buffer size.

Recall from 	 IV that SOBAS measures the received
throughput every two RTTs, and that it detects the flat-rate
condition after two successive constant measurements when
it is in states (1) and (2) (see Figure 8). Thus, the minimum
time period in which SOBAS can limit the socket buffer size
is approximately four RTTs. In other words, SOBAS is ef-
fective in avoiding losses during slow-start as long as

	 � � � � � (16)

For) � =500ms, we have that ��� =1sec and SOBAS avoids
losses as long as the RTT of the target transfer is � �
250ms. For transfers with larger RTTs some losses may oc-
cur in slow-start. On the other hand, the BOL is significantly
larger in congestion-avoidance, which explains why SOBAS
is much more effective in avoiding losses during that phase.

