
Design of a Secure and Fault Tolerant Environment for Distributed Storage

Arnab Paul, Sameer Adhikari, Umakishore Ramachandran
College of Computing

Georgia Institute of Technology,
Atlanta, GA 30332, USA

{arnab, sameera, rama}@cc.gatech.edu

Abstract

We discuss the design and evaluation of a secure and fault tolerant storage infrastructure for un-trusted
distributed computing environments. Previous designs of storage systems for this space have tended to
use decoupled mechanisms for achieving fault tolerance and security. Our design, based on cryptographic
properties of error-correction odes, combines redundancy (for fault tolerance) and encryption (for security)
in a single unified framework. Our protocol can handle Byzantine faults andensures confidentiality in a
completely un-trusted environment. We qualitatively demonstrate the practicability of this approach. We also
quantitative comparison of scheme and two other approaches, namely, Pure replication based techniques
and SecureIDA scheme, and discuss their mertis and demerits.

1 Introduction

The growth in the volume of information handled by modern applications, the falling price of storage
units, and the rapid improvement in network speeds have accelerated the research endeavor in distributed
storage systems. These storage systems guarantee high availability of data inthe presence of machine
failures. The distribution of units can be at various levels; they could be geographically separated nodes
connected via the Internet, or nodes distributed over a LAN, or even an array of disks in a RAID-like [6]
architecture. Irrespective of the scale of distribution, the key principle that enables high availability (or
fault tolerance) is the redundancy of information across different storage units. However, the degree and the
specifics of the way in which redundancy is added, control the fault tolerance limits of the system.

In addition to fault tolerance, another very important issue that is critical in the design of such systems is
security. Typically these systems are accessed by multiple users and are often connected to the internet and
are thus potential targets for malicious attacks. While encryption is widely usedto ensure the confidentiality
of data, malicious parties can simply modify the data, which may go undetected causing potentially critical
situations. Therefore, such systems need to have Byzantine fault tolerance to handle both hardware failures
and data corruption, maintaining confidentiality at the same time.

Previous design approaches for distributed storage systems can be classified into two major categories,
viz., (i) Pure replication based methodsand (ii) Transformation based techniques. In a replication based
strategy, data is replicated several times and then the replicas are stored ondifferent servers (or storage
units). In the retrieval phase, a certain number of these replicas are accessed and compared in order to ob-
tain the original document. The overhead in this scheme is that of byte copyingduring the write phase and

1



that of the comparison cost during the read phase. However, this simple design leads to very high space
complexity. Additionally, to ensure confidentiality of data, documents must be encrypted, thus adding the
encryption/decryption costs to the write/read latencies.

A transformation based scheme can be viewed as a mapping from a lower dimensional space to higher
dimensional one. A document of lengthm is inflated in size to lengthn (n ≥ m). The inflated document
is now split into multiple pieces and each piece is stored on one of the storage units. The original docu-
ment can be reconstructed even if some of the pieces are missing. Seminal work in this area by Rabin [26]
showed how to design such a scheme to obtain a fault tolerant storage. Intuitively, such a scheme can also be
modified to guarantee data confidentiality, provided no more than a specified maximum number of servers
(storing the data pieces) ever collude to extract the data. It is also known that this scheme is in general
highly space optimal, requiring minimal redundancy to enable a certain degreeof availability. However, this
scheme no longer remains secure while deployed over a completely untrustedset of servers, i.e., all of them
are allowed to collude to extract the document. Encryption has to be added to safeguard the data increasing
the associated access cost.

A variant of the transformation-based approach uses error correction codes (ECC). Designs for distributed
storage systems based on error correction code have been proposedby some researchers [2, 32]. ECC based
techniques provide redundancy in a space optimal way, leading to a space-optimal design for reliability.

In this thesis, we present SAFE, an ECC based scheme, that combines fault tolerance and encryption in a
single set of operations. In particular we exploit cryptographic properties of some specific error correcting
codes, such as generalized Reed-Solomon codes and Goppa codes [25], that allow us to use a single transfor-
mation that adds both redundancy and encryption to the data. One main feature of our system is the reduced
key management overhead and therefore reduction in security risks. For large distributed storage, key-
management is a significant problem, which is further aggravated by symmetric-key encryption. To avoid
such glitches, different techniques have been proposed. Use of public-private key pairs for every participant
reduces the key overhead; for using symmetric key, one needs to maintain akey for every writer-reader pair
of data which leads to potentiallyO(n2) keys to be maintained. Moreover, given that every participant is not
equally secure, compromising the weaker parties leads to secret key beingrevealed. Public-private key pairs
need onlyO(n) keys to be maintained, one pair for each participant. We use this to our advantage; the codes
that are used to provide fault tolerance can also be exploited to provide security with almost no additional
computational cost. The other properties of the proposed scheme are (1)fast writes, and (2) absolute data
integrity. These properties are in line with two observations about storage systems.
Dominance of writes over reads: In many secure distributed collaborations, there are many more writes(updates)
than reads. Consider a standrad CVS application. Although the shared files are supposed to be accessed
concurrently, typically there is little overlap between the work-hours of the individual users. However, the
users keep checking in their local copies with every small update under thepresumption that any other user
should have access to the most recent version. Hence a single read is usually followed by multiple writes
[12]. As another example, one can think of a smart home enabled with multiple sensors and data aggregators
that capture and store information in a continuous fashion. However, onlyparts of them are typically ana-
lyzed at a later point of time depending on what needs to be analyzed. To thisend, we note that Goppa codes
providefast joint encryption-replication. The read operation is comparatively slower toother alternatives.
However, in a write-dominated system this design choice is a reasonable one.
Probabilistic guarantee of compare by HashingAlthough cryptographic hashing has been accepted as a
standard and unquestionable technique to verify data-integrity, the guarantee is only probabilistic. First,
this may not simply be acceptable for certain critical data such as medical records. Second, despite the
argument that hash-collision probabilities are less than probabilities of hardware faults, this argument is true

2



only for completely random inputs. Further there has been recent evidence that it may not be as risk free as
commonly envisaged [9]. As we will see in later sections, some alternative design principles depend heavily
on hashing while our design does not.

The contribution of this paper is two fold. First, we present the design for aSecure And Fault tolerant
Environment for data storage (SAFE). Second we evaluate the performance of our system with respect to
the alternatives. We do a comparative study of SAFE, a replication scheme augmented with encryption and
Secure IDA. We believe that this is the first study of its kind.

The rest of the paper is organized as follows. Section 2 presents relatedwork, and lays the the ground
work for our proposal. Section 3 delves into the preliminaries of error correction codes and why this is
relevant to fault tolerant storage. It also talks about Goppa codes [25], and their relevant properties. Section
4 discusses the design of SAFE. Section 5 presents the evaluation of our system: the methodology and the
performance with respect to the alternatives. Section 6 presents the conclusions and the future work we
intend to pursue.

2 Related Work

There are two primary directions of research in the space of distributed storage designs: Pure replica-
tion based and transformation (and fragmentation) based strategies. Quorum systems [3] have been used
to provide coordination in distributed systems. Quorum approach is pure replication based. A quorum can
be viewed as a collection of subsets over a universe of servers so thatany pair of subsets satisfy certain
intersection properties. Early works on quorum system considered howto handle benign failures [8, 31].
Byzantine failures, where the servers maliciously corrupt data, and collude among themselves, were studied
later on [18, 22, 19]. The replication techniques studied in these investigations were adopted in the design
of persistent object stores, such as Phalanx [20] and Fleet [21].

Another alternative to handle byzantine faults in a distributed environment is replicated state machine
approach [27]. Castro and Liskov [5] presented a practical implementation based on this approach; they
built a file system that handles byzantine faults. The key idea used in [5] is toreplace public key operations
by Message Authentication Codes that results in very small overhead. Overall, the replication schemes are
not space optimal; to safeguard againstf faulty servers, at least3f + 1 replicas need to be maintained [23].
Moreover, these schemes do not offer any inherent confidentiality fordata; these schemes have to be aug-
mented with encryption to assure confidentiality.

Transformation based approaches were initially designed to protect against benign failures. A very simple
example is adding extra parity bits to the data in a RAID-like [6] system. In [26] Rabin presented an effi-
cient Information Dispersal Algorithm (IDA) that can be used for fault tolerance in parallel and distributed
systems. The scheme works as follows. Letn be the number of servers storing the data. Split the data into
m pieces (m < n ). Imagine each piece to be a vector of lengthm. By using a linear transformation (which
can be thought of as ann × m matrix T(n,m)), convert this vector into a vector of lengthn. Store each
piece of this new vector in one of the servers. If the transformation can besuitably designed so that anym
columns are linearly independent, then the originalm vector can be reconstructed from anym pieces. Thus
the scheme can tolerate up tof = n − m failures and is provably space optimal. However, this scheme
cannot guard against Byzantine faults as there is no way of knowing during retrieval if a data piece has been
altered by the server.

Krawczyk [13] extended the IDA scheme to handle Byzantine faults, by appending fingerprints of each
data piece along with the fingerprint of the entire content. Intuitively the scheme works as follows - first, with

3



the help of the fingerprints, the integrity of the data pieces can be verified, and once the required number of
unaltered pieces are identified, the original document can be retrieved using the IDA scheme. This extension
does not solve the security/confidentiality issue. However, the distributed fingerprinting can be combined
with secret sharing [28] in a clever way that uses symmetric key encryption; the resulting scheme is shown
to be secure with short secret sizes [14]. This approach, known asSecureIDA was exploited in the design
of e-Vault, an electronic storage system developed at IBM [10]. A hybrid approach that combines secret
sharing and replication based strategies has recently been developed byLakshmanan et al [16]. This scheme
tries to retain the best aspect of both the schemes and offer various levelsof security guarantee, along with
other flexibilities.

We conclude this section by mentioning a few other distributed storage systems that have been reported
recently. The PASIS architecture developed at CMU provides a combination of decentralization, redundancy
and encoding along with dynamic self-maintenance in the design of asurvivable information storage[33].
The OceanStore project at Berkeley is a global scale information system designed with a goal to be able to
supply data anywhere and anytime and therefore combines decentralizationand cryptographic techniques in
its architcture [15]. Farsite [1] is a scalable file system developed at Microsoft Research, that provides the
abstraction of a centralized file system over a set of physically distributed untrusted workstations acting as
storage units.

3 Error Correction and Fault Tolerance

3.1 Preliminaries

Noisy Channel

( Error probability = p)

m n

(n/m) = Space blow up due to redundancy

      (m/n) = Information Rate

m/n <=  C (Channel capacity)

n m

Encode Decode

Figure 1. Shannon’s Observation on Information Rate over a Noisy Channel

In this section we try to draw a connection between the theory of error correction codes (ECC) and the
design of space efficient fault tolerant storage. ECC has been studiedin numerous contexts, and chiefly in
connection with the transmission of messages over noisy communication channels. Figure 1 shows such
a scenario. The message to be transmitted is of lengthm. However, because of the noise in the channel,
some of the bits are modified with some error probabilityp. Notice, that this error probability is an intrin-
sic property of the channel and serves as an abstraction of the physical characteristics of the channel that
gives rise to this transmission noise. At this point one can see a clear analogbetween a noisy channel and a
failure prone storage; the writer in this case has the role of the sender andthe reader acts like the receiver.
To safeguard against the errors in the channel (or the storage), onecan add redundancy to the message so
that even if some of the bits are corrupted the original message can be recovered. In Figure 1, the original
message (of lengthm) is inflated with redundancy bits to lengthn and then transmitted over the channel.

4



The quantitym/n is known as theInformation Rate, since this defines what fraction of the total transport is
the original information content. What is the theoretical upper limit of Information Rate? In his classic 1948
paper that opened the field of modern communication theory, Shannon showed that for any channel, there
exists a quantity called theChannel capacity(C), that serves as the upper bound of the information rate [29].
In our case, the failure probabilities of the storage units abstractly define this quantityC; given an accurate
estimate of this probability, the upper bound can be determined. However, for all practical purposes, one can
replace the probabilities with the expected number of errors (f ) and thence design all subsequent algorithms.

Shannon’s paper that had mostly information theoretic ideas, did not have any constructive proof that the
boundC can indeed be attained; the proof was existential in nature. One primary goal of the theory of ECC
is to investigate how close to this limit the information rate can be pushed by explicit algorithms. Therefore,
it is quite natural that one would look into ECC techniques to design space-optimal redundancy algorithms
to build fault tolerant storage. There are numerous error correction schemes with different Information
Rates. The algorithmic complexity increases as the Information rate is improved.For a clear understanding
of Information and ECC theory, the reader can refer to texts such as [7]and [25], respectively. For our
purposes, we have focused on a specific ECC, viz., Goppa codes [25]. These codes, in addition to having
good information rates, offer certain cryptographic properties that canbe exploited in designing secure and
fault tolerant storage.

Reed-Solomon and Goppa Codes

Next, we present the construction of Reed-Solomon and Goppa codes in brief, since a detailed mathematical
description is beyond the scope of this paper and perhaps not as much relevant as the main design principle.
The main intent is to bring out the cryptographic properties of these codes that make them attractive for
designing storage systems for untrusted environments. e A linear(n, k, d) code (n ≥ k) is a linear mapping
E from a set of strings of lengthk to the strings of lengthn, such that for any two stringsx, y (of length
k ) the Hamming distance between the encoded strings,D(E(x), E(y)) ≥ d. This means any two strings
of lengthk are now separated by at least a distanced in the encoded form. For any linear code, there is an
associatedgeneratormatrixG (dimensionn× k) that maps strings (vectors) of lengthk to strings of length
n. Encoding a string therefore is simply multiplying the vector with the Generator matrix. On the other
hand, checking whether a string of lengthn is really a codeword involves another matrixH (dimension
(n − k) × n), known as theparity check matrix. The rows ofH are such that they give a basis to the null
space ofG, i.e.,G.HT is a zero matrix. Any codewordα = Gx therefore also belongs to the null space of
H, givingαHT = 0. This is how one checks if a transmitted packet is a codeword or not. IfαHT 6= 0, then
it is an indication that the transmitted packet has been corrupted. A linear code is completely defined with
the help of its generator and parity matrices.

A Reed-Solomon code is a specific class of linear code. The easiest way tothink about such a code is as
follows. Consider some finite fieldFq of orderq and imagine a polynomialf(x) of degreek < q, over the
field, i.e.,f(x) = f0+f1x+. . .+fk−1x

k−1 | fi ∈ Fq. Letα0, α1, . . . αn−1 ben points in the field (k < n <

q). Consider the vector obtained by evaluatingf(x) in all these points, i.e.,̂f = [f(α0), f(α1), . . . f(αn−1)].
This vectorf̂ can be thought of as the encoding of the message block[f0, f1, . . . fk−1]. If g(x) is a different
polynomial of degreek, the corresponding vector̂g can agree withf̂ on at mostk − 1 points, since two
polynomials of degree at mostk − 1 can share at mostk − 1 roots. Hence the encoded vectors differ in
at leastn − (k − 1) points, which is the minimum distance of this code. One can easily show that this
polynomial formalism can be easily cast in the form of a linear transformation.

5



A Goppa code is another kind of linear code that is determined by an irreducible polynomialg(x).

g(x) = g0 + g1x + g2x
2 + . . . grx

r, gr 6= 0

The coefficients and the variablex can take values from a fieldFq|q = pm for some prime num-
ber p and integerm. Let α = (α1, α2, . . . αn), αi ∈ GF (q), such that for allj, g(αj) 6= 0. Let
t̂ = (t1, t2, . . . , tn), ti ∈ GF (p). A Goppa code is a collection of vectorŝt that satisfy the following
equation.

Σn
j=1

tj
x − αj

= 0 mod g(x)

A Goppa code is completely determined by the Goppa polynomialg(x).
Goppa codes have fast decoding algorithms, in particular they can be decoded using known algorithms

to decode other standard codes, viz., the Generalized Reed Solomon Codes. For example, the well known
Peterson Algorithm for GRS codes can be adopted to decode Goppa codes. The decoding in such case is of
orderO(f3 + nf), wheref is the number of bit errors in a binary string. In what follows, we describethe
cryptographic properties of these codes.

3.2 Cryptographic Properties of Linear Codes

McEliece Cryptosystem

Decoding a general binary linear code is NP-complete [4]. Based on a similar intuition McEliece developed
a public key cryptosystem that exploits the hardness of syndrome decoding of a Goppa code. In brief, the
scheme works as follows. A private key consists of four items: (i) an irreducible polynomial, the Goppa
polynomial, (ii) a permutation ofn elementsα = (α1, α2, . . . αn), αi ∈ GF (q), (iii) a parity check matrix
H (this has to be computed) and (iv) a matrixS that scrambles the plaintext.
The public key consists of the generator matrixG computed in a particular way; we skip the details of this
generation process for brevity.

To encrypt a plain texts, a sender gets hold of the public key, computes the ciphertext asc = s.G + e.
Wheree is any random error pattern up tof bits, wheref is the maximum number of errors the code is
designed to correct. The private key holder, on having the parity checkmatrix H, will be able to recover
a codeword even in the presence off errors or less. However, an adversary will have to face the decoding
problem without knowing the error vectore. This hardness is the basis of McEliece Cryptosystem [24]. To
date all known attacks on this scheme are exponential; there is no known subexponential structural attack
that might distinguish between a permuted Goppa code from a random code.Just as a contrast, the hardness
of decoding RSA, the most popular public key infrastructure, is not known to be NP-complete and subex-
ponential structural attacks are also known to exist.

We exploit this cryptographic property of these linear codes. When combined with the default fault
tolerance feature, we believe these codes provide a powerful design principle for secure fault tolerant storage.
In the next section we describe how exactly we use linear code based encoding/encryption in our storage
design.

4 Design of SAFE

Figure 2 shows the block diagram of a distributed data store. There is an un-trusted storage medium. A
producer of the data, denoted asW writes onto this storage. Subsequently the data is read by a consumer,R.
BothW andR are potentially trusted parties. However, the nodes where the data is storedcan be completely

6



Un-trusted Storage Medium

W R

Pub
R

Prv
R

Decrypt using

Encrypted data

E( ,  D)Pub
R

(Public key)

Un-trusted Storage MediumUn-trusted Storage Medium

W R

Pub
R

Pub
R

Prv
R

Prv
R

Decrypt using

Encrypted data

E( ,  D)Pub
R

E( ,  D)Pub
R

Pub
R

(Public key)

Figure 2. Abstract view of a Distributed Secure Storage

un-trusted. The system is prone to Byzantine failures. We assume that at any given time, no more thanf
servers can modify the data maliciously. However, we do not assume any upper bound on the number of
servers that may work together in order to read the data1. Clearly the threshold cryptographic schemes
[11], that make an assumption about the number of colluding servers, will not work in such a scenario. To
write a document,W grabs the public key published byR, encrypts it using this public key and then writes
the encrypted message onto the medium. In this case the public keys are actuallygenerated by the linear
error correcting codes that we have discussed in the previous section.The first advantage of this scheme is
the dual purpose served by the encoding operation; first as a means to provide fault tolerance and second
as a strong encryption method. The absence of any symmetric key offers two more features. Neither the
writer or the reader need to maintain pairwise symmetric keys. And next, the security risk is minimized;
although we assume that both writer and reader to be trusted, for the kind ofapplication class we consider,
the writers (that could potentially be sensors generating volumes of data) could be compromised easily, for
several reasons such as exposition to the external world, mobility etc.. In such cases, a compromised writer,
which had access to a symmetric key would automatically lead to the violation of confidentiality. On the
other hand, it is relatively safer to assume that the consumer of the data stayun-compromised for a much
longer period of time. Since the encryption is done using the public key of this consumer, only a private key,
which is held by only one party, can decrypt the data.

We assume that all writes for any single data block are strictly serialized. Thisis not a very restrictive
assumption, because, even if there are multiple writers of a single block, the write requests can always be
linearized at some location that may act as a gateway to these servers. This issimilar to the assumption
that multiple writers coordinate their write operations when they access the samefile. For any write and
read operation, the user tries to contact a server, up to a predetermined timeout. If the server does respond,
communication takes place, otherwise, the part of the data being exchangedwith this particular server is
assumed to be erroneous, both for write and read operations. Use of timeout leaves the possibility of not
being able to differentiate between theslowand thefaulty. However, in a practical deployment, it should be
reasonable to determine a timeout period long enough to filter out the non-responding units.

Figure 3 is showing the details in our scheme. The original data to be stored ism bits long; m is assumed
to be a multiple of8 and therefore it is essentially am/8 byte long data block. Once thesem bits are
encoded to a string ofn bits using a Goppa code, the bits are distributed and are stored on different servers.

1There are two aspects of security to consider: (i)integrity, for which theoretically there has to be an upper bound on the number
of bit alterations, and (ii)confidentialitywhich can be independent of how many parties trying to decipher a cyphertext

7



m

n

S1 S2 S3 S_n

Goppa Encoding

Data to be stored

Untrusted Storage Medium

Figure 3. A Goppa Encoded Data block distributed to n Servers

The reason we have to consider the block as a string of bits ( and not bytes) is because we are using a binary
Goppa code that safeguards against bit errors. Handling done at a byte level will keep the bits all together,
and thereby a single server failure will affect eight bits at a time. Such bulkerrors can be dealt with by
using specialized codes known as Erasure codes. However, in the scope of this paper, we did not consider
such options and limited ourself to simply using Goppa codes. The bit level operation can also be averted
if we used non binary Goppa codes that operate with a larger alphabet ofsymbols; such codes can perhaps
consider a single byte as one symbol. However, again we limited ourselves to the binary design, because
normally the binary codes are known to have better fault tolerance parameters.

b0 b1 b2 b_n

c0 c1 c2 c_n

z0 z1 z2 z_n

d0 d1 d2 d_n V blocks

S0 S_n

Figure 4. Bunching up V blocks to extract bit columns

Storing a single bit at a time on a server would be inefficient. In reality we bunch up a number of blocks
that need to be stored and then isolate out the bits from these blocks, put these bits into a new block of
writable length, and store the new block on to one server. Figure 4 describes this process. A number (V ) of
n length blocks of a file that is being written are bunched up. As seen in the figure the bit0 of each block
goes to server0, bit 1 to server1, and so on. Note that these blocks are output of a Goppa encoding module.
If we takeV to be a multiple of8, it yields a block ofV/8 bytes. Thus in one time we writeV/8 bytes
to each server. For smallV , the write process is inefficient due to the transport overhead associated with
writing to a server. The scheme therefore definitely yield better results in storing high volume of data at one
time than small volumes. Meta-information, such as file name, block identifier and bit column identifier are

8



all appended along with the data blocks finally being stored. These informations are essential for a subse-
quent read phase.

Data Retrieval from the system is exactly the reverse of the write operation.The blocks retrieved from a
server are essentially the bit columns of the original data. Once all such columns are acquired and arranged
with the help of the meta information, the whole bit matrix is transposed to yield the original blocks. If some
server does not respond, i.e., if some of the bit columns are missing, we fill them with zeros. These are the
erroneous bits, and the decoding module in the very next step can extractout the data given by the user even
in presence of these erroneous bits. Also notice that the presence of malicious servers ( up tof of them) that
may modify the data blocks, does not change anything. Because the ECC naturally handles any alteration
( less than or equal tof ) in that data that may happen for any reason. This is the primary distinction
between supporting a fail-stop system and a Byzantine system. However, aByzantine failure may involve
one further complication; one malicious party masquerading as other parties and sending wrong data on
everyone’s behalf. Normally t is impossible to attend any distributed consensus even in the presence of a
single malicious party, however, forpractical fault tolerance it suffices to use authentication as a protection
against such masquerading. One can use a standard public key infrastructure for this purpose, but that
incurs performance penalty. A faster and cheaper alternative is to use Message Authentication Code (MAC)
[5]. Any such mechanism can be integrated into our architecture without any incomapatibility factor and
incurring only performance cost.

A user, while writing in this setting follows what we already described in section3.2. He encodes the data
block using Goppa codes and randomly addst bit errors (t ≤ f ) to the block. An adversary trying to read
this encrypted data, will have to solve the Syndrome Decoding problem for Goppa codes, which is provably
hard. While, this takes care of confidentiality, the system is still robust to tolerate up tof − t failures (
because the user has already used upt errors to confuse the adversary ). This enables the user to use the
scheme in a public key infrastructure. However, when the storage is usedjust like a private storage, and no
public key exchange is necessary, the Goppa code parameters need not be published at all. In that case it is
not even required by the user to add the random error pattern, and thereby utilizing the full robustness of the
system, i.e., tolerating up tof failures.

Implementation

The system is right now implemented as a user level library and is tested to workon Linux operating system.
A gateway mediates between any client and these servers. The communicationbetween the client and the
gateway is assumed to take place through a secure channel. The serversall run a listener thread; a thread that
listens for read and write commands from the gateway, the gateway receives the commands from the client.
The gateway is assumed to be trusted, as it performs all the cryptographic operations with the plaintext. On
receiving the plaintext from the client, the gateway performs encoding/cryptographic operations, transposes
the bit arrays as we discussed before, generates the meta-data about the blocks and store the blocks (along
with the meta data ) on the servers. The read operations are done exactly in the reverse order. Note that such
a gateway is not an absolute requirement in the architecture; all the tasks could as well be carried out by the
client. The current implementation uses the gateway for design simplicity on the client end.

5 Evaluation

5.1 Objectives

In this section we evaluate SAFE on simple microbenchmarks. We also compare itwith other two ap-
proaches discussed in this paper. To this end we used the same infrastructure that we built for developing

9



Representative

Emulation

Environment

3. Dissemination/Aggregation Protocol

2.              S/W Interface                       

1.             Storage Medium                    

Figure 5. Layered view of Functionalities

SAFE, to evaluate the other two schemes as well. Recall that the view of secure distributed storage in
Figure 2 is quite generic in nature. It can be used to represent either of SAFE, Secure IDA or replication
with encryption. In fact, the design of eVault, the SecureIDA based system from IBM [10] has a similar
architecture. The replication based schemes can also be faithfully reproduced in this setting. The immediate
purpose of our study is not the design and implementation of a file system end toend, rather we wanted to
asses the practicability of our scheme outside the shell of asymptotic order complexities. We also wanted to
find out how well it compares with other techniques.

Figure 5 describes the typical cross section of a distributed storage. Layer 1 is the physical storage
medium; it could be a disk array like RAID [6], or a bunch of virtual disks likePetal [17], or a host of
servers with disks distributed over local or wide area network. Layer 2 isthe software layer; depending on
layer 1, it can be a driver for disk arrays, or a distributed file system likeFrangipani [30], or simple nfs,
or some wide area network file system respectively. The core protocol of a distributed secure storage is
typically implemented above the first two layers. Our generic infrastructure provides a simple emulation en-
vironment spanning a bunch of servers over an nfs and implements the protocols corresponding to different
storage schemes. We believe this approach serves two purposes for us. First, we can test the applicability
of a Goppa code based algorithm for storage in terms of real life tractability of space and time orders. And
second, we get a single platform to normalize the implementation of three different strategies to carry out a
comparative analysis.

We have run all the experiments on a cluster of 16 nodes, each being an 8-way SMP, 550 MHz Pentium
II, with 4GB RAM and 2MB L2 cache. The nodes run RedHat Linux 7.1. Inall the experiments, we elim-
inated the client that we mentioned in the previous section, because the communication between the client
and the gateway is simply a secure transmission of read and write data and it really does not involve any
of the distributed protocols. Similarly, during the write and read operations, at the server end, the interac-
tion between the nfs and the server thread executing the read/write command isbeyond the scope of the
protocols. Including this interaction with the disk, which is shared by many different users may perturb the
actual reading for the cost of the protocols. To estimate this cost accurately, we account for the encoding
and decoding costs, the cost of handling the meta information, and the communication overheads.

5.2 Comparison Platform

We have tried to reproduce the two schemes other than SAFE in a minimal but faithful way. For a
replication based strategy, we felt that implementing a complete system, such as aquorum of a particular
kind is not necessary, as that would include building mechanisms to handle consistency which we are not
dealing in the first phase of SAFE’s development. We emulate a write operationin a pure replication strategy
in following steps - (i) encrypt the data using symmetric encryption; we used AES in particular, (ii) make
(3f +1) copies of this data and (iii) disseminate the copies among3f +1 servers. A read operation similarly

10



consists of - (i) reading the data back from at leastf + 1 servers, (ii) take a majority voting to determine the
correct copy of the data and then decrypt using the same key.
For the SecureIDA scheme, we take the following steps - (i) Inflate anm byte data inton bytes using a
linear mapping with a row rank at leastm, let’s call these piecesdi for (1 ≤ i ≤ n), (ii) with eachdi,
append the vector(H1, H2, . . .Hi . . .Hn) , Hi being the hash digest ofdi (iii) Store each of these document
pieces with a different server,n servers in all. The read operation retrieves the stored pieces, verifies from
the hash digests the integrity of each piece and then choose from these piecesm uncorrupted pieces and
assemble them to recover the original block of lengthm. The original scheme proposed by Krawczyk, does
not require the entire digest vector to be appended to every piece. Instead, the digest vector can be processed
with an ECC beforehand and only the pieces from this encoded vector be appended with each data piece.
We avoided that complication here at the cost of slight blow up in space.

5.3 Results Summary

To implement SAFE we chose a Goppa code implementation with the following parameters. It takes
blocks of 82 bytes and transforms them into blocks of 128 bytes, i.e.,n = 1024 bits. As we discussed in
section 4, we bunch up a number of blocks of size 82 and encode them into 128 byte blocks. This particular
implementation can correct up to 37 errors2. To keep consistency with the experimental set up for SAFE, we
choose similar parameters for other experiments as well, i.e, we consider blocks of 82 bytes; for SecureIDA
scheme we transform them into blocks of 128 bytes, which gives a fault tolerance of 46. In the case of
replication, no transformation of individual blocks is required, but it hasthe maximum space requirements.
In fact, to safeguard againstf = 37 errors, it has to make at least3f + 1 = 112 copies of each block and
disseminate all of them.

Figure 6 summarizes the write latencies for SecureIDA and SAFE schemes asa function of number of
bytes of data ( expressed as the number of blocks of 82 bytes ). The cost of pure replication based strategy
was significantly high compared to the other two schemes; in order for a clearvisual comparison between
the performance of SAFE and SecureIDA, we choose to present only the latency for those two schemes.
We see that SAFE latency is lower for most of the data points. For example, for 512 blocks, SAFE latency
is about 1.6 seconds compared to 3.3 seconds taken by SecureIDA. Just as point of refrence, for the same
number of blocks the pure replication scheme took more than 200 seconds. This is due to the fact that Goppa
code has fast encoding. Note that in these experiments, SAFE and SecureIDA schemes are forced to handle
the data in blocks, because of their algorithmic requirements. While there is no such algorithmic restriction
for the replication scheme. It can ideally write any number of bytes in one operation. Though in reality this
might not hold. For example, these schemes can as well be running on top ofa disk array. In this case it is
natural to expect that data transfer is limited to blocks of a maximum length. Justto emulate this behavior
we imposed a restriction on the block length that could be written in one operation. In this case for the
replication based scheme; for 512 blocks, the latency increased to 337 seconds, showing that this is perhaps
unsuitable for at least disk array like environments.

Figure 7 notes the corresponding read latencies. In this case, the SAFE’s performance was worse com-
pared to the other two. The replication based scheme has a much improved latency for reading compared
to writing, because on the average it had to read less number of replicas to find a majority and hence select
one of them as the correct one. However, the latency worsened in the case of SAFE. For example, for 1536
block of data, SAFE read takes over 12 seconds, as opposed to 9 sec and 3.9 sec for the replication and
SecureIDA schemes respectively. This is because Goppa module in the presence of failures has to do some

2Since the error correction codes are of combinatorial nature, they onlycome in discrete parameters that cannot be arbitrarily
changed. The block lengths 82 and 128 in this case are the specific parameters that are allowed by Goppa Codes.

11



extra work called syndrome decoding.

Figures 8 and 9 shows the bandwidth offered by these different schemes. For write, the replication
bandwidth is very low compared to the other two. We observe that SAFE and SecureIDA are comparable
on this metric; while SAFE has a slightly declining slope, SecureIDA shows a rather rising curve (except at
the end where it bends down slightly). Upto 2048 blocks, SAFE has higherbandwidth than SecureIDA. The
reason for such decline in bandwidth is the bit-level block isolation that is necessary for SAFE (ref. figure
3). Implementing SecureIDA also needed similar isolation of vertical data blocks, however that is done at
the byte level and hence much faster compared to bit level operation. Nevertheless, the two schemes are
comparable for almost all data points. For read operation however, the bandwidth offered by SAFE is much
worse compared to the other two schemes. However, it is reasonable to expect that in a system which is
dominated by writes and critical integrity and confidentiality needs, a user may be willing to pay such prices
for occasional reads.

We end this section on a general comparative note. Table 1 summarizes qualitatively different aspects
of the three schemes we studied here. On the space optimality issue, replicationis clearly very inefficient
compared to the other two. SecureIDA, although has very good performance numbers on the data set used
in this work, suffers from one weakness; lack of deterministic guaranteefor data integrity. This is because,
the integrity is maintained with the help of fingerprinting. It is possible, although with small probability that
an attacker determines how to break a cryptographic hash function. In that case the SecureIDA will not be
able to tolerate even a single Byzantine failure. The probabilistic guarantee for data integrity may not be
acceptable for very critical documents and scenarios.

1

2

3

4

5

6

7

8

9

500 1000 1500 2000 2500 3000 3500 4000 4500

L
a
te

n
cy

 (
se

co
n
d
s)

Number of Blocks

Write Latency

SAFE
SIDA

Figure 6. Write Latencies under different schemes

Properties Scheme
SIDA Rep SAFE

Space Good Bad Good
Integrity P D D

Encryption Reqd. Reqd. Not reqd.

Table 1. Qualitative Comparison, ( P = Probabilistic guarantee, D = Deterministic guarantee)

12



0

5

10

15

20

25

30

35

500 1000 1500 2000 2500 3000 3500 4000 4500

L
a
te

n
cy

 (
se

co
n
d
s)

Number of Blocks

Read Latency

SAFE
SIDA

Replication

Figure 7. Read Latencies under different schemes

0

10000

20000

30000

40000

50000

60000

500 1000 1500 2000 2500 3000 3500 4000

B
a
n
d
w

id
th

 (
B

yt
e
s/

s)

Number of Blocks

Write Bandwidth

SAFE
SecureIDA
Replication

Figure 8. Bandwidth consumed in write under different schemes

6 Conclusions and Future Work

We discussed a new design principle, i.e, that of using Goppa codes based approach for building secure,
fault tolerant storage. The design of SAFE exploits this principle. We demonstrated the practicability of this
approach where most of the data transfer happens in bulk. We comparedthe SAFE approach with two other
alternatives. Both SAFE and SecueIDA beat the replication approach in terms of space blow up. Although it
appears from the results that the transformation or ECC based schemes are much better than pure replication
schemes, this is only true for the selective case where the data transfer happens in bulk. Many applications
may as well demand small blocks of data be read or modified. In such a case,reaching out to a large number
(say a thousand) of servers , with a small number of bytes every time, may prove very inefficient. Which
was predominantly believed to be major weakness of fragmentation based approach.
The design of SAFE serves as a launching pad for the development of anend to end file system, which
is currently being investigated at our research group. Although practicability of the scheme is proven, we
believe a further optimized set of Goppa Code algorithms can be designed. Among the drawbacks of this
approach is the requirement of a large number of servers, which is equal to the number of bits in an encoded
block. However, this can be dealt with if non binary codes of good parameters exist.

13



0

5000

10000

15000

20000

25000

30000

35000

500 1000 1500 2000 2500 3000 3500 4000

B
a
n
d
w

id
th

 (
B

yt
e
s/

s)

Number of Blocks

Read Bandwidth

SAFE
SecureIDA
Replication

Figure 9. Bandwidth consumed in Read under different schemes

References

[1] A. Adya and et al. Farsite: Federated, available, and reliable storage for an incompletely trusted envi-
ronment. InProceedings of 5th Symposium on Operating Systems Design and Implementation(OSDI),
2002.

[2] N. Alon, H. Kaplan, M. Krivelevich, D. Malkhi, and J. P. Stern. Scalable secure storage when half the
system is faulty. InAutomata, Languages and Programming, pages 576–587, 2000.

[3] Y. Amir and A. Wool. Optimal availability quorum systems: Theory and practice. Information Pro-
cessing Letters, 65(5):223–228, 1998.

[4] E. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. On inherentintractability of certain coding
problems.IEEE Transactions on Information Theory, IT-24:384–386, 1978.

[5] Castro and Liskov. Practical byzantine fault tolerance. InOSDI: Symposium on Operating Systems
Design and Implementation. USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS,
1999.

[6] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-performance,
reliable secondary storage.ACM Computing Surveys, 26(2):145–185, 1994.

[7] T. Cover and J. Thomas.Elements of Information Theory. John Wiley and Sons Inc., 1991.

[8] D. Gifford. Weighted voting for replicated data. InProc. of ACM Symposium on Operating Systems
Principles, 1979.

[9] V. Henson. An analysis of compare-by-hash. InHot Topics in Operating Systems(HotOS), 2003.

[10] A. Iyengar, R. Cahn, J. Garay, and C. Jutla. Design and implementation of a secure distributed data
repository. 1998.

[11] W. Jackson, K. Martin, and C. O’Keefe. Multithreshold secret scheme. Advances in Cryptology (
CRYPTO 93), 773:126–135, 1994.

[12] J. J. Kistler and M. Satyanarayanan. Disconnected operation in thecoda file system. InThirteenth
ACM Symposium on Operating Systems Principles, volume 25, pages 213–225, Asilomar Conference
Center, Pacific Grove, U.S., 1991. ACM Press.

14



[13] H. Krawczyk. Distributed fingerprints and secure information dispersal. InProc. 13th ACM Symp. on
Principles of Distributed Computating, pages 207–218, 1993.

[14] H. Krawczyk. Secret sharing made short.Advances in Cryptology ( CRYPTO), 773:136–146, 1994.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS. ACM, November 2000.

[16] S. Lakshmanan, M. Ahamad, and H. Venkateswaran. Responsive security for stored data. InProc. of
23rd International Conference on Distributed System (ICDCS)(to be held), 2003.

[17] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. InProceedings of the Seventh Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems,
pages 84–92, Cambridge, MA, 1996.

[18] D. Malkhi and M. Reiter. Byzantine quorum systems. pages 569–578, 1997.

[19] D. Malkhi, M. Reiter, and A. Wool. Optimal byzantine quorum systems. Technical Report 97-10, 17,
1997.

[20] D. Malkhi and M. K. Reiter. Secure and scalable replication in phalanx. In Symposium on Reliable
Distributed Systems, pages 51–58, 1998.

[21] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Persistent objects in the fleet system. InThe 2nd
DARPA Information Survivability Conference and Exposition.

[22] D. Malkhi, M. K. Reiter, and A. Wool. The load and availability of byzantine quorum systems. In
Symposium on Principles of Distributed Computing, pages 249–257, 1997.

[23] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal byzantine storage. In16th International Symposium
on Distributed Computing (DISC 2002), pages 311–326, 2002.

[24] R. J. McEliece. A public key cryptosystem based on algebraic coding theory.Jet Propulsion Lab, DSN
Progress Report, 42(44):114–116, Jan-Feb 1978.

[25] O. Pretzel.Error Correcting Codes and Finite Fields. Clarendon Press, Oxford, 1992.

[26] M. Rabin. The efficient dispersal of information for security, loadbalancing, and fault tolerance.
JACM, 36(5):335–348, April 1989.

[27] F. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.ACM
Computing Surveys, 22(4), December 1990.

[28] A. Shamir. How to share a secret.Communications of the ACM, 22(11), 1979.

[29] C. Shannon. A mathematical theory of communication.Bell Sys. Tech. Journal, 27:379–423, 1948.

[30] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A scalable distributed file system. InSymposium
on Operating Systems Principles, pages 224–237, 1997.

[31] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy databases. In
Database Systems, volume 4, pages 180–209, 1979.

15



[32] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative comparison. In
Peer-to-Peer Systems: First International Workshop (IPTPS), 2002.

[33] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H. Kiliççöte, and P. K. Khosla. Survivable
information storage systems.Computer, 33(8):61–68, 2000.

16


