Design of a Secure and Fault Tolerant Environment for Distributed Storage

Arnab Paul, Sameer Adhikari, Umakishore Ramachandran
College of Computing
Georgia Institute of Technology,
Atlanta, GA 30332, USA
{arnab, sameera, ram@cc.gatech.edu

Abstract

We discuss the design and evaluation of a secure and fault tolerant stioragstructure for un-trusted
distributed computing environments. Previous designs of storage sy$berthis space have tended to
use decoupled mechanisms for achieving fault tolerance and securitydedign, based on cryptographic
properties of error-correction odes, combines redundancy (fdt falerance) and encryption (for security)
in a single unified framework. Our protocol can handle Byzantine faultsearsdires confidentiality in a
completely un-trusted environment. We qualitatively demonstrate the piaititicaf this approach. We also
guantitative comparison of scheme and two other approaches, namgtyréplication based techniques
and SecurelDA scheme, and discuss their mertis and demerits.

1 Introduction

The growth in the volume of information handled by modern applications, thedatliice of storage
units, and the rapid improvement in network speeds have accelerateddaecte endeavor in distributed
storage systems. These storage systems guarantee high availability of ttatapiesence of machine
failures. The distribution of units can be at various levels; they could bgrgehically separated nodes
connected via the Internet, or nodes distributed over a LAN, or evemran af disks in a RAID-like [6]
architecture. Irrespective of the scale of distribution, the key princigé ¢hables high availability (or
fault tolerance) is the redundancy of information across differenageounits. However, the degree and the
specifics of the way in which redundancy is added, control the fauliaoger limits of the system.

In addition to fault tolerance, another very important issue that is criticakimésign of such systems is
security. Typically these systems are accessed by multiple users andiesreainected to the internet and
are thus potential targets for malicious attacks. While encryption is widelytasatsure the confidentiality
of data, malicious parties can simply modify the data, which may go undetectsithggquotentially critical
situations. Therefore, such systems need to have Byzantine fault téarmhandle both hardware failures
and data corruption, maintaining confidentiality at the same time.

Previous design approaches for distributed storage systems can $iexldato two major categories,
viz., (i) Pure replication based methodsd (ii) Transformation based techniquek a replication based
strategy, data is replicated several times and then the replicas are stodéterment servers (or storage
units). In the retrieval phase, a certain number of these replicas agssaeccand compared in order to ob-
tain the original document. The overhead in this scheme is that of byte cogyiimgy the write phase and



that of the comparison cost during the read phase. However, this singindeads to very high space
complexity. Additionally, to ensure confidentiality of data, documents must beygeted, thus adding the
encryption/decryption costs to the write/read latencies.

A transformation based scheme can be viewed as a mapping from a lowersdimarspace to higher
dimensional one. A document of lengthis inflated in size to length (n > m). The inflated document
is now split into multiple pieces and each piece is stored on one of the storége Tine original docu-
ment can be reconstructed even if some of the pieces are missing. Semikah wos area by Rabin [26]
showed how to design such a scheme to obtain a fault tolerant storagtvehtusuch a scheme can also be
modified to guarantee data confidentiality, provided no more than a specifigcham number of servers
(storing the data pieces) ever collude to extract the data. It is also knawmhik scheme is in general
highly space optimal, requiring minimal redundancy to enable a certain deaeailability. However, this
scheme no longer remains secure while deployed over a completely unsastddervers, i.e., all of them
are allowed to collude to extract the document. Encryption has to be addaftmard the data increasing
the associated access cost.

A variant of the transformation-based approach uses error comexiaes (ECC). Designs for distributed
storage systems based on error correction code have been progasede researchers [2, 32]. ECC based
techniques provide redundancy in a space optimal way, leading to agptwel design for reliability.

In this thesis, we present SAFE, an ECC based scheme, that combiliéslémance and encryption in a
single set of operations. In particular we exploit cryptographic ptaseof some specific error correcting
codes, such as generalized Reed-Solomon codes and Goppa &jdemfallow us to use a single transfor-
mation that adds both redundancy and encryption to the data. One mairefebdur system is the reduced
key management overhead and therefore reduction in security riskslarge distributed storage, key-
management is a significant problem, which is further aggravated by symikegriencryption. To avoid
such glitches, different techniques have been proposed. Use laf-pubrate key pairs for every participant
reduces the key overhead; for using symmetric key, one needs to maikirfa every writer-reader pair
of data which leads to potential9(n?) keys to be maintained. Moreover, given that every participant is not
equally secure, compromising the weaker parties leads to secret keyrbadaded. Public-private key pairs
need onlyO(n) keys to be maintained, one pair for each participant. We use this to ourtadeathe codes
that are used to provide fault tolerance can also be exploited to providétgewnith almost no additional
computational cost. The other properties of the proposed scheme dast(tites, and (2) absolute data
integrity. These properties are in line with two observations about stoyagenss.

Dominance of writes over readth many secure distributed collaborations, there are many more writeségpda
than reads. Consider a standrad CVS application. Although the sharedriélesupposed to be accessed
concurrently, typically there is little overlap between the work-hours of tbwidual users. However, the
users keep checking in their local copies with every small update undpreébemption that any other user
should have access to the most recent version. Hence a single readlly tallowed by multiple writes
[12]. As another example, one can think of a smart home enabled with multiderseand data aggregators
that capture and store information in a continuous fashion. However pamtg of them are typically ana-
lyzed at a later point of time depending on what needs to be analyzed. Emthis/e note that Goppa codes
providefastjoint encryption-replication. The read operation is comparatively slowether alternatives.
However, in a write-dominated system this design choice is a reasonable one

Probabilistic guarantee of compare by Hashiadthough cryptographic hashing has been accepted as a
standard and unguestionable technigue to verify data-integrity, therdearis only probabilistic. First,
this may not simply be acceptable for certain critical data such as medicatisecBecond, despite the
argument that hash-collision probabilities are less than probabilities oivaeedaults, this argument is true



only for completely random inputs. Further there has been recent eédieat it may not be as risk free as
commonly envisaged [9]. As we will see in later sections, some alternatiignd@snciples depend heavily
on hashing while our design does not.

The contribution of this paper is two fold. First, we present the design ®eaure And Fault tolerant
Environment for data storage (SAFE). Second we evaluate the perfoentd our system with respect to
the alternatives. We do a comparative study of SAFE, a replication schegneeated with encryption and
Secure IDA. We believe that this is the first study of its kind.

The rest of the paper is organized as follows. Section 2 presents relatkdand lays the the ground
work for our proposal. Section 3 delves into the preliminaries of errarection codes and why this is
relevant to fault tolerant storage. It also talks about Goppa codési2® their relevant properties. Section
4 discusses the design of SAFE. Section 5 presents the evaluation gstems the methodology and the
performance with respect to the alternatives. Section 6 presents thieisions and the future work we
intend to pursue.

2 Related Work

There are two primary directions of research in the space of distributeahstalesigns: Pure replica-
tion based and transformation (and fragmentation) based strategiesun@sgstems [3] have been used
to provide coordination in distributed systems. Quorum approach is pplieaton based. A quorum can
be viewed as a collection of subsets over a universe of servers sanhgiair of subsets satisfy certain
intersection properties. Early works on quorum system considereddtvandle benign failures [8, 31].
Byzantine failures, where the servers maliciously corrupt data, anddecdimnong themselves, were studied
later on [18, 22, 19]. The replication techniques studied in these investigatiere adopted in the design
of persistent object stores, such as Phalanx [20] and Fleet [21].

Another alternative to handle byzantine faults in a distributed environmeeplEated state machine
approach [27]. Castro and Liskov [5] presented a practical implementbtieed on this approach; they
built a file system that handles byzantine faults. The key idea used in [Siepkace public key operations
by Message Authentication Codes that results in very small overheadalQtee replication schemes are
not space optimal; to safeguard agaifisaulty servers, at leastf + 1 replicas need to be maintained [23].
Moreover, these schemes do not offer any inherent confidentialitydfiar;, these schemes have to be aug-
mented with encryption to assure confidentiality.

Transformation based approaches were initially designed to protecsalgaimgn failures. A very simple
example is adding extra parity bits to the data in a RAID-like [6] system. In [28]iRpresented an effi-
cient Information Dispersal Algorithm (IDA) that can be used for fauktance in parallel and distributed
systems. The scheme works as follows. Ldie the number of servers storing the data. Split the data into
m pieces fn < n ). Imagine each piece to be a vector of lengthBy using a linear transformation (which
can be thought of as am x m matrix 7, ,,y), convert this vector into a vector of length Store each
piece of this new vector in one of the servers. If the transformation cauitebly designed so that any
columns are linearly independent, then the originatector can be reconstructed from anypieces. Thus
the scheme can tolerate up fo= n — m failures and is provably space optimal. However, this scheme
cannot guard against Byzantine faults as there is no way of knowirniggigtrieval if a data piece has been
altered by the server.

Krawczyk [13] extended the IDA scheme to handle Byzantine faults, pgmrging fingerprints of each
data piece along with the fingerprint of the entire content. Intuitively theraetveorks as follows - first, with
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the help of the fingerprints, the integrity of the data pieces can be verifiddyrace the required number of
unaltered pieces are identified, the original document can be retrieiwepthis IDA scheme. This extension
does not solve the security/confidentiality issue. However, the distribuigdrprrinting can be combined
with secret sharing [28] in a clever way that uses symmetric key encryptiemesulting scheme is shown
to be secure with short secret sizes [14]. This approach, knov@ecasel DA was exploited in the design
of e-Vault, an electronic storage system developed at IBM [10]. Aibydpproach that combines secret
sharing and replication based strategies has recently been developakshynanan et al [16]. This scheme
tries to retain the best aspect of both the schemes and offer variousdégelsurity guarantee, along with
other flexibilities.

We conclude this section by mentioning a few other distributed storage systanitmte been reported
recently. The PASIS architecture developed at CMU provides a comhiraftiecentralization, redundancy
and encoding along with dynamic self-maintenance in the desigrsoifvdable information storagi33].
The OceanStore project at Berkeley is a global scale information syssignéd with a goal to be able to
supply data anywhere and anytime and therefore combines decentraleadicnyptographic techniques in
its architcture [15]. Farsite [1] is a scalable file system developed at Bbér&esearch, that provides the
abstraction of a centralized file system over a set of physically distributedsted workstations acting as
storage units.

3 Error Correction and Fault Tolerance

3.1 Preiminaries

iy l—p — |[/n ||m
- —
( Error probability = p)
Encode Decode

(n/m) = Space blow up due to redundancy
(m/n) = Information Rate

m/n <= C (Channel capacity)

Figure 1. Shannon’s Observation on Information Rate over a Noisy Channel

In this section we try to draw a connection between the theory of erroeatwn codes (ECC) and the
design of space efficient fault tolerant storage. ECC has been stndieenerous contexts, and chiefly in
connection with the transmission of messages over noisy communication thakigre 1 shows such
a scenario. The message to be transmitted is of lemgtiHowever, because of the noise in the channel,
some of the bits are modified with some error probabjlityNotice, that this error probability is an intrin-
sic property of the channel and serves as an abstraction of the gdigtsiracteristics of the channel that
gives rise to this transmission noise. At this point one can see a clear dreogen a noisy channel and a
failure prone storage; the writer in this case has the role of the sendd¢h@mnelader acts like the receiver.
To safeguard against the errors in the channel (or the storagefaonedd redundancy to the message so
that even if some of the bits are corrupted the original message can bemtoln Figure 1, the original
message (of lengthn) is inflated with redundancy bits to lengthand then transmitted over the channel.
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The quantitym /n is known as thénformation Ratesince this defines what fraction of the total transport is
the original information content. What is the theoretical upper limit of InfornmelRate? In his classic 1948
paper that opened the field of modern communication theory, ShannordHbat for any channel, there
exists a quantity called théhannel capacityC'), that serves as the upper bound of the information rate [29].
In our case, the failure probabilities of the storage units abstractly defsqubntityC; given an accurate
estimate of this probability, the upper bound can be determined. Howewral jfoactical purposes, one can
replace the probabilities with the expected number of erfojya6d thence design all subsequent algorithms.

Shannon’s paper that had mostly information theoretic ideas, did not hsnaastructive proof that the
boundC can indeed be attained; the proof was existential in nature. One primdrgfgba theory of ECC
is to investigate how close to this limit the information rate can be pushed by exfdicittams. Therefore,
it is quite natural that one would look into ECC techniques to design spaeeadpedundancy algorithms
to build fault tolerant storage. There are numerous error correctioanses with different Information
Rates. The algorithmic complexity increases as the Information rate is imprewed.clear understanding
of Information and ECC theory, the reader can refer to texts such anf¥]25], respectively. For our
purposes, we have focused on a specific ECC, viz., Goppa codeslf2se codes, in addition to having
good information rates, offer certain cryptographic properties thabeaxploited in designing secure and
fault tolerant storage.

Reed-Solomon and Goppa Codes

Next, we present the construction of Reed-Solomon and Goppa codésfjrsimce a detailed mathematical
description is beyond the scope of this paper and perhaps not as newanteas the main design principle.
The main intent is to bring out the cryptographic properties of these codéesntiike them attractive for
designing storage systems for untrusted environments. e A ljnekrd) code ¢ > k) is a linear mapping
E from a set of strings of length to the strings of length, such that for any two strings, y (of length

k) the Hamming distance between the encoded stribg#;(z), E(y)) > d. This means any two strings
of length% are now separated by at least a distaside the encoded form. For any linear code, there is an
associatedeneratommatrix G (dimensiom: x k) that maps strings (vectors) of lengttio strings of length

n. Encoding a string therefore is simply multiplying the vector with the Generatolixndmn the other
hand, checking whether a string of lengths really a codeword involves another mat#ik (dimension

(n — k) x n), known as thearity check matrix The rows ofH are such that they give a basis to the null
space ofG, i.e.,G.H" is a zero matrix. Any codeword = Gz therefore also belongs to the null space of
H, givingaH™ = 0. This is how one checks if a transmitted packet is a codeword or nefZ ff # 0, then

it is an indication that the transmitted packet has been corrupted. A linearigadmpletely defined with
the help of its generator and parity matrices.

A Reed-Solomon code is a specific class of linear code. The easiest Wagk@bout such a code is as
follows. Consider some finite fielf, of orderq and imagine a polynomigi(x) of degreek < ¢, over the
field,i.e..f(z) = fot+fiz+.. .+ fr1287 1| fi € F,. Letag, a1, ... a,,—1 ben pointsin the field ¢ < n <
q). Consider the vector obtained by evaluatjiig) in all these points, ief = [f(ao), flan),... flan-1)].

This vectorf can be thought of as the encoding of the message bfacki, . .. fr—1]. If g(x) is a different
polynomial of degreé, the corresponding vectgrcan agree withf on at mostk — 1 points, since two
polynomials of degree at most— 1 can share at mogt — 1 roots. Hence the encoded vectors differ in

at leastn — (k — 1) points, which is the minimum distance of this code. One can easily show that this
polynomial formalism can be easily cast in the form of a linear transformation.



A Goppa code is another kind of linear code that is determined by an iikeyolynomialg(z).

9(x) = go + 1z + g22® + ... gra”, g #0
The coefficients and the variable can take values from a field|¢ = p™ for some prime num-
berp and integerm. Leta = (a1, 0,...an), o € GF(q), such that for allj, g(a;) # 0. Let
t = (t1,ta,...,tn),t; € GF(p). A Goppa code is a collection of vectorghat satisfy the following
equation.

s i

=0 mod
L Yoy 9(x)

A Goppa code is completely determined by the Goppa polynogial.

Goppa codes have fast decoding algorithms, in particular they can bdetkasing known algorithms
to decode other standard codes, viz., the Generalized Reed Solomasn Eodexample, the well known
Peterson Algorithm for GRS codes can be adopted to decode Goppa dtdedecoding in such case is of
orderO(f3 + nf), wheref is the number of bit errors in a binary string. In what follows, we desdtiee
cryptographic properties of these codes.

3.2 Cryptographic Propertiesof Linear Codes

M cEliece Cryptosystem

Decoding a general binary linear code is NP-complete [4]. Based on arsintilaion McEliece developed

a public key cryptosystem that exploits the hardness of syndrome dgocodinGoppa code. In brief, the
scheme works as follows. A private key consists of four items: (i) anuicixde polynomial, the Goppa
polynomial, (ii) a permutation of. elementsy = (a1, a9, ... ay,), a; € GF(q), (iii) a parity check matrix
H (this has to be computed) and (iv) a matfithat scrambles the plaintext.

The public key consists of the generator matsixcomputed in a particular way; we skip the details of this
generation process for brevity.

To encrypt a plain text, a sender gets hold of the public key, computes the ciphertextas.G + e.
Wheree is any random error pattern up yJobits, wheref is the maximum number of errors the code is
designed to correct. The private key holder, on having the parity cmetkix H, will be able to recover
a codeword even in the presencefoérrors or less. However, an adversary will have to face the decoding
problem without knowing the error vecter This hardness is the basis of McEliece Cryptosystem [24]. To
date all known attacks on this scheme are exponential; there is no knoexpsuiential structural attack
that might distinguish between a permuted Goppa code from a randomkai@s a contrast, the hardness
of decoding RSA, the most popular public key infrastructure, is not knmabe NP-complete and subex-
ponential structural attacks are also known to exist.

We exploit this cryptographic property of these linear codes. When cadbwith the default fault
tolerance feature, we believe these codes provide a powerful desigipfe for secure fault tolerant storage.
In the next section we describe how exactly we use linear code basediegiencryption in our storage
design.

4 Design of SAFE
Figure 2 shows the block diagram of a distributed data store. There is-anated storage medium. A

producer of the data, denoted\&swrites onto this storage. Subsequently the data is read by a congumer,
BothW andR are potentially trusted parties. However, the nodes where the data isshorbd completely
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Figure 2. Abstract view of a Distributed Secure Storage

un-trusted. The system is prone to Byzantine failures. We assume that given time, no more thaff
servers can modify the data maliciously. However, we do not assume aey bhpund on the number of
servers that may work together in order to read the dat@learly the threshold cryptographic schemes
[11], that make an assumption about the number of colluding servers,avitork in such a scenario. To
write a documentyV grabs the public key published IR encrypts it using this public key and then writes
the encrypted message onto the medium. In this case the public keys are agtueltgted by the linear
error correcting codes that we have discussed in the previous sethierfirst advantage of this scheme is
the dual purpose served by the encoding operation; first as a mearsigepfault tolerance and second
as a strong encryption method. The absence of any symmetric key ofterndwe features. Neither the
writer or the reader need to maintain pairwise symmetric keys. And next, theitgatsk is minimized,;
although we assume that both writer and reader to be trusted, for the kaqpgbliéation class we consider,
the writers (that could potentially be sensors generating volumes of datal) lm® compromised easily, for
several reasons such as exposition to the external world, mobility etaichrcases, a compromised writer,
which had access to a symmetric key would automatically lead to the violation ofleatifility. On the
other hand, it is relatively safer to assume that the consumer of the datanstmmpromised for a much
longer period of time. Since the encryption is done using the public key ofahisuener, only a private key,
which is held by only one party, can decrypt the data.

We assume that all writes for any single data block are strictly serialized.iS hist a very restrictive
assumption, because, even if there are multiple writers of a single block rifeergquests can always be
linearized at some location that may act as a gateway to these servers. Sinidas to the assumption
that multiple writers coordinate their write operations when they access thefdamEor any write and
read operation, the user tries to contact a server, up to a predeterminedttitfiehe server does respond,
communication takes place, otherwise, the part of the data being exchaitbetiis particular server is
assumed to be erroneous, both for write and read operations. Use ofitileaees the possibility of not
being able to differentiate between tslewand thefaulty. However, in a practical deployment, it should be
reasonable to determine a timeout period long enough to filter out the nporidiag units.

Figure 3 is showing the details in our scheme. The original data to be starebits long; m is assumed
to be a multiple of3 and therefore it is essentiallyr:a/8 byte long data block. Once these bits are
encoded to a string of bits using a Goppa code, the bits are distributed and are stored on differears.

There are two aspects of security to considerin(grity, for which theoretically there has to be an upper bound on the number
of bit alterations, and (iixonfidentialitywhich can be independent of how many parties trying to decipher a dgshe
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Figure 3. A Goppa Encoded Data block distributed to n Servers

The reason we have to consider the block as a string of bits ( and no} ls/esause we are using a binary
Goppa code that safeguards against bit errors. Handling doneyse &etel will keep the bits all together,
and thereby a single server failure will affect eight bits at a time. Such éubtits can be dealt with by
using specialized codes known as Erasure codes. However, in the stthis paper, we did not consider
such options and limited ourself to simply using Goppa codes. The bit levehtige can also be averted
if we used non binary Goppa codes that operate with a larger alphabgintols; such codes can perhaps
consider a single byte as one symbol. However, again we limited ourselves lbintiry design, because
normally the binary codes are known to have better fault tolerance paramete

V blocks

Figure 4. Bunching up V blocks to extract bit columns

Storing a single bit at a time on a server would be inefficient. In reality welbupa number of blocks
that need to be stored and then isolate out the bits from these blocks, pethite into a new block of
writable length, and store the new block on to one server. Figure 4 desthits process. A number} of
n length blocks of a file that is being written are bunched up. As seen in thefige bit0 of each block
goes to servel, bit 1 to serverl, and so on. Note that these blocks are output of a Goppa encoding module
If we take V' to be a multiple o, it yields a block ofl//8 bytes. Thus in one time we writg/8 bytes
to each server. For small, the write process is inefficient due to the transport overhead assbuidte
writing to a server. The scheme therefore definitely yield better results ingtaigh volume of data at one
time than small volumes. Meta-information, such as file name, block identifierinoolibomn identifier are
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all appended along with the data blocks finally being stored. These informatie essential for a subse-
quent read phase.

Data Retrieval from the system is exactly the reverse of the write operdtimnblocks retrieved from a
server are essentially the bit columns of the original data. Once all shaomies are acquired and arranged
with the help of the meta information, the whole bit matrix is transposed to yield thimaklgocks. If some
server does not respond, i.e., if some of the bit columns are missing, wesfill with zeros. These are the
erroneous bits, and the decoding module in the very next step can exdtadloe data given by the user even
in presence of these erroneous bits. Also notice that the presence dboefiervers (up tg of them) that
may modify the data blocks, does not change anything. Because the E@@llgehandles any alteration
( less than or equal t¢ ) in that data that may happen for any reason. This is the primary distinction
between supporting a fail-stop system and a Byzantine system. Howdgzraatine failure may involve
one further complication; one malicious party masquerading as other parteseading wrong data on
everyone’s behalf. Normally t is impossible to attend any distributed consen®n in the presence of a
single malicious party, however, fpractical fault tolerance it suffices to use authentication as a protection
against such masquerading. One can use a standard public key udiastrfor this purpose, but that
incurs performance penalty. A faster and cheaper alternative is to @ssage Authentication Code (MAC)
[5]. Any such mechanism can be integrated into our architecture withgquinaomapatibility factor and
incurring only performance cost.

A user, while writing in this setting follows what we already described in se@i@nHe encodes the data
block using Goppa codes and randomly adb errors ¢ < f) to the block. An adversary trying to read
this encrypted data, will have to solve the Syndrome Decoding problemdipp&codes, which is provably
hard. While, this takes care of confidentiality, the system is still robust toatelerp tof — ¢ failures (
because the user has already used apors to confuse the adversary ). This enables the user to use the
scheme in a public key infrastructure. However, when the storage igustdike a private storage, and no
public key exchange is necessary, the Goppa code parameters néedoublished at all. In that case it is
not even required by the user to add the random error pattern, aetbyheilizing the full robustness of the
system, i.e., tolerating up tpfailures.

I mplementation

The system is right now implemented as a user level library and is tested t@wdaikux operating system.
A gateway mediates between any client and these servers. The communieti@en the client and the
gateway is assumed to take place through a secure channel. The atnvers listener thread; a thread that
listens for read and write commands from the gateway, the gateway retle&veommands from the client.
The gateway is assumed to be trusted, as it performs all the cryptogragehations with the plaintext. On
receiving the plaintext from the client, the gateway performs encodingtgyaphic operations, transposes
the bit arrays as we discussed before, generates the meta-data &ldolotikts and store the blocks (along
with the meta data ) on the servers. The read operations are done exactlyeénehse order. Note that such
a gateway is not an absolute requirement in the architecture; all the tagksasowell be carried out by the
client. The current implementation uses the gateway for design simplicity on thé efid.

5 Evaluation

5.1 Objectives

In this section we evaluate SAFE on simple microbenchmarks. We also compuéte dther two ap-
proaches discussed in this paper. To this end we used the same infrtastthat we built for developing
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SAFE, to evaluate the other two schemes as well. Recall that the view ofeséistiributed storage in
Figure 2 is quite generic in nature. It can be used to represent eithékkiE ,SSecure IDA or replication
with encryption. In fact, the design of eVault, the SecurelDA based syftem IBM [10] has a similar
architecture. The replication based schemes can also be faithfully teygdh this setting. The immediate
purpose of our study is not the design and implementation of a file system end toather we wanted to
asses the practicability of our scheme outside the shell of asymptotic ordpteadties. We also wanted to
find out how well it compares with other techniques.

Figure 5 describes the typical cross section of a distributed storageer lais the physical storage
medium; it could be a disk array like RAID [6], or a bunch of virtual disks Ifketal [17], or a host of
servers with disks distributed over local or wide area network. Layetliisoftware layer; depending on
layer 1, it can be a driver for disk arrays, or a distributed file systemHilemgipani [30], or simple nfs,
or some wide area network file system respectively. The core proté@Uistributed secure storage is
typically implemented above the first two layers. Our generic infrastructargdges a simple emulation en-
vironment spanning a bunch of servers over an nfs and implements tioeqlsocorresponding to different
storage schemes. We believe this approach serves two purposes Frstiswe can test the applicability
of a Goppa code based algorithm for storage in terms of real life tractadilfgace and time orders. And
second, we get a single platform to normalize the implementation of three diffgrategies to carry out a
comparative analysis.

We have run all the experiments on a cluster of 16 nodes, each beinay 8MP, 550 MHz Pentium
I, with 4GB RAM and 2MB L2 cache. The nodes run RedHat Linux 7.lallrthe experiments, we elim-
inated the client that we mentioned in the previous section, because the cormatimmiiztween the client
and the gateway is simply a secure transmission of read and write data aalliyidaes not involve any
of the distributed protocols. Similarly, during the write and read operatidrtegaserver end, the interac-
tion between the nfs and the server thread executing the read/write commiaaybisd the scope of the
protocols. Including this interaction with the disk, which is shared by mangndifit users may perturb the
actual reading for the cost of the protocols. To estimate this cost adgusaeeaccount for the encoding
and decoding costs, the cost of handling the meta information, and the conatmmiaverheads.

5.2 Comparison Platform

We have tried to reproduce the two schemes other than SAFE in a minimal bditifawy. For a
replication based strategy, we felt that implementing a complete system, suafuasua of a particular
kind is not necessary, as that would include building mechanisms to haniesismcy which we are not
dealing in the first phase of SAFE’s development. We emulate a write opeitatigyure replication strategy
in following steps - (i) encrypt the data using symmetric encryption; we u€es iy particular, (i) make
(3f41) copies of this data and (iii) disseminate the copies an3gig1 servers. A read operation similarly
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consists of - (i) reading the data back from at lefst 1 servers, (ii) take a majority voting to determine the
correct copy of the data and then decrypt using the same key.

For the SecurelDA scheme, we take the following steps - (i) Inflatexdoyte data inton bytes using a
linear mapping with a row rank at least, let’s call these pieceg; for (1 < i < n), (ii) with eachd;,
append the vectadtH,, Ho, ... H; ... Hy,) , H; being the hash digest df (iii) Store each of these document
pieces with a different servet, servers in all. The read operation retrieves the stored pieces, verifias f
the hash digests the integrity of each piece and then choose from thessrpiencorrupted pieces and
assemble them to recover the original block of lengthThe original scheme proposed by Krawczyk, does
not require the entire digest vector to be appended to every pieceadngite digest vector can be processed
with an ECC beforehand and only the pieces from this encoded vectqamded with each data piece.
We avoided that complication here at the cost of slight blow up in space.

5.3 Results Summary

To implement SAFE we chose a Goppa code implementation with the following paraméteéakes
blocks of 82 bytes and transforms them into blocks of 128 bytesyi.es, 1024 bits. As we discussed in
section 4, we bunch up a number of blocks of size 82 and encode then2Bituyfie blocks. This particular
implementation can correct up to 37 errérJo keep consistency with the experimental set up for SAFE, we
choose similar parameters for other experiments as well, i.e, we considks b2 bytes; for SecurelDA
scheme we transform them into blocks of 128 bytes, which gives a fautatae of 46. In the case of
replication, no transformation of individual blocks is required, but it th@smaximum space requirements.
In fact, to safeguard againgt= 37 errors, it has to make at leasf + 1 = 112 copies of each block and
disseminate all of them.

Figure 6 summarizes the write latencies for SecurelDA and SAFE schenaefiastion of number of
bytes of data ( expressed as the number of blocks of 82 bytes ). Thefgasge replication based strategy
was significantly high compared to the other two schemes; in order for aviesl comparison between
the performance of SAFE and SecurelDA, we choose to present aaliatncy for those two schemes.
We see that SAFE latency is lower for most of the data points. For examplkl 2dblocks, SAFE latency
is about 1.6 seconds compared to 3.3 seconds taken by SecurelDAs hgnt of refrence, for the same
number of blocks the pure replication scheme took more than 200 secdridss due to the fact that Goppa
code has fast encoding. Note that in these experiments, SAFE anegtErEgchemes are forced to handle
the data in blocks, because of their algorithmic requirements. While there ishakyorithmic restriction
for the replication scheme. It can ideally write any number of bytes in onextpr. Though in reality this
might not hold. For example, these schemes can as well be running onaagisi array. In this case it is
natural to expect that data transfer is limited to blocks of a maximum lengthtaJestulate this behavior
we imposed a restriction on the block length that could be written in one operdtiainis case for the
replication based scheme; for 512 blocks, the latency increased to @37dse showing that this is perhaps
unsuitable for at least disk array like environments.

Figure 7 notes the corresponding read latencies. In this case, the Sp&formance was worse com-
pared to the other two. The replication based scheme has a much improvey fatereading compared
to writing, because on the average it had to read less nhumber of replicad torfiajority and hence select
one of them as the correct one. However, the latency worsened inga®t&8AFE. For example, for 1536
block of data, SAFE read takes over 12 seconds, as opposed to d&c9asec for the replication and
SecurelDA schemes respectively. This is because Goppa module iredenpe of failures has to do some

ZSince the error correction codes are of combinatorial nature, theyconhe in discrete parameters that cannot be arbitrarily
changed. The block lengths 82 and 128 in this case are the specificgtaraithat are allowed by Goppa Codes.
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extra work called syndrome decoding.

Figures 8 and 9 shows the bandwidth offered by these different sshefar write, the replication
bandwidth is very low compared to the other two. We observe that SAFE ecut&@DA are comparable
on this metric; while SAFE has a slightly declining slope, SecurelDA showtharrasing curve (except at
the end where it bends down slightly). Upto 2048 blocks, SAFE has himretwidth than SecurelDA. The
reason for such decline in bandwidth is the bit-level block isolation that isgsary for SAFE (ref. figure
3). Implementing SecurelDA also needed similar isolation of vertical data §ldakvever that is done at
the byte level and hence much faster compared to bit level operation.rtheless, the two schemes are
comparable for almost all data points. For read operation however, tigsvidth offered by SAFE is much
worse compared to the other two schemes. However, it is reasonableect éxat in a system which is
dominated by writes and critical integrity and confidentiality needs, a user exasllng to pay such prices
for occasional reads.

We end this section on a general comparative note. Table 1 summarizestyedli@different aspects
of the three schemes we studied here. On the space optimality issue, replisaiieaxly very inefficient
compared to the other two. SecurelDA, although has very good penm@ermaumbers on the data set used
in this work, suffers from one weakness; lack of deterministic guardotegata integrity. This is because,
the integrity is maintained with the help of fingerprinting. It is possible, althouigihsmall probability that
an attacker determines how to break a cryptographic hash function.tloadathe SecurelDA will not be
able to tolerate even a single Byzantine failure. The probabilistic guaramtekata integrity may not be
acceptable for very critical documents and scenarios.

Write Latency

1 L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Blocks

Figure 6. Write Latencies under different schemes

Properties Scheme
SIDA Rep SAFE
Space | Good| Bad Good
Integrity P D D
Encryption| Reqd.| Reqd.| Not reqd.

Table 1. Qualitative Comparison, ( P = Probabilistic guarantee, D = Deterministic guarantee)
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Read Latency
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Figure 7. Read Latencies under different schemes
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Figure 8. Bandwidth consumed in write under different schemes

6 Conclusionsand Future Work

We discussed a new design principle, i.e, that of using Goppa codes dygs@ach for building secure,
fault tolerant storage. The design of SAFE exploits this principle. We dstraiad the practicability of this
approach where most of the data transfer happens in bulk. We conthar84FE approach with two other
alternatives. Both SAFE and SecuelDA beat the replication approactmis té space blow up. Although it
appears from the results that the transformation or ECC based schemnesclr better than pure replication
schemes, this is only true for the selective case where the data trangenisan bulk. Many applications
may as well demand small blocks of data be read or modified. In such aeasking out to a large number
(say a thousand) of servers , with a small number of bytes every time, roag pery inefficient. Which
was predominantly believed to be major weakness of fragmentation basedelpp
The design of SAFE serves as a launching pad for the developmentaidato end file system, which
is currently being investigated at our research group. Although pradiigeof the scheme is proven, we
believe a further optimized set of Goppa Code algorithms can be desigmedngithe drawbacks of this
approach is the requirement of a large number of servers, which istegha number of bits in an encoded
block. However, this can be dealt with if non binary codes of good paemnexist.
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Figure 9. Bandwidth consumed in Read under different schemes
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