
1/6

Automatic Placement for Quantum Cell Automata

Ramprasad Ravichandran†, Nihal Ladiwala‡, Jean Nguyen‡, Sung Kyu Lim‡, and Mike Niemier†

†College of Computing
‡School of Electrical and Computer Engineering

Georgia Institute of Technology
{raam@cc, gte568t@prism, jnguyen@ece, limsk@ece, mniemier@cc}.gatech.edu

Abstract: Quantum-dot Cellular Automata (QCA) is a novel
computing mechanism that can represent binary
information based on spatial distribution of electron charge
configuration in chemical molecules. It has the potential to
allow for circuits and systems with functional densities that
are better than end of the roadmap CMOS, but also imposes
new constraints on system designers. Several recent works
concentrated on partitioning and global placement in the
context of QCA schematics based on constraints imposed
by this architecture. In this paper we develop the first cell-
level placement of QCA circuits, where the given circuit is
assumed to be partitioned into 4-phase asynchronous QCA
timing zones. We formulate the QCA cell placement in
each timing zone as a unidirectional geometric embedding
of k-layered bipartite graphs. We then present an analytical
and a stochastic solution for minimizing the wire crossings
and wire length in these placement solutions. Results
provide designs of circuits and systems that will be used to
develop computationally interesting designs for chemists
who are currently preparing to build the patterns and
substrates required for real QCA circuits.

1. INTRODUCTION

Nano technology and devices will have revolutionary
impact on the CAD field. Similarly, CAD research at circuit,
logic and architectural levels for nano devices can provide
valuable feedbacks to nano research and illuminate ways
for developing new nano devices. It is time for CAD
researchers to play an active role in nano research. One
approach to computing at the nano-scale is the quantum-dot
cellular automata (QCA) concept that represents
information in a binary fashion, but replaces a current
switch with a cell having a bi-stable charge configuration.
QCA devices can be realized in metal [2], or with chemical
molecules [1]. A wealth of experiments have been
conducted with metal-dot QCA, with individual devices
[2,3], logic gates [3,4,5], wires [4], latches [3], and clocked
devices [3,6], all having been realized. This advancement is
followed by various recent efforts in developing CAD tools
for QCA based circuits and systems [18,19].

In this paper we develop the first cell-level placement of
QCA circuits, where the given circuit is assumed to be
partitioned into 4-phase asynchronous QCA timing zones.
We formulate the QCA cell placement in each timing zone

as a unidirectional geometric embedding of k-layered
bipartite graphs. We then present an analytical and a
stochastic solution for minimizing the wire crossings and
wire length in these placement solutions. Results provide
designs of circuits and systems that will be used to develop
computationally interesting designs for chemists who are
currently preparing to build the patterns and substrates
required for real QCA circuits.

2. PRELIMINARIES

2.1. QCA Devices
“3-dot cells” are fundamental building blocks of QCA cells,
which been researched and simulated for the last two
decades. This molecule shown in Figure 1 forms a ‘v’-
shape, and charge can be localized on any one of the three
dots at the “points” of the ‘v’. If charge is localized on one
of the top two dots, the cell will encode a binary 1 or 0.
Whether or not charge is in the top two dots (the active state)
or the lower dot (the null state) can be determined by an
electric field that will raise or lower the potential of the
central dot relative to the top two dots [1]. When
considering basic cell-to-cell interactions, binary 1s and 0s
are physically represented by the dipole moments of QCA
molecules. Dipole moments are formed by the way that
charge is localized within certain sites of a QCA molecule
and how that charge can tunnel between these sites [7]. In
the presence of a strong driver dipole, a larger amount of
energy is required to excite a cell into a mistake state [8].

Circuit elements are shown and described here in terms

of 4-dot QCA cells. A 4-dot cell could simply be formed by
two adjacent 3-dot but are also being engineered as explicit
molecules [9]. 4-dot cells are ideal because of symmetry.
Binary information is stored and moved with quadropole
moments. The fundamental QCA logical gate is a three-
input majority gate (Figure 2a). Computation is performed
by driving the device cell to its lowest energy state, which
will occur when it assumes the polarization of the majority

Binary 1 Binary 0

cation
+

neutral radical

neutral radical µ

cation
+

µ
neutral radical

neutral radical

Figure 1. Schematic representation of molecular QCA

2/6

of three inputs. Data can be moved in a QCA circuit with a
row of QCA cells. A binary signal propagates from left-to-
right because of electrostatic interactions between adjacent
cells. A QCA “wire” can also be comprised of cells rotated
45-degrees (Figure 2c). Here, a binary signal will alternate
between a binary 1 and a binary 0. The majority voting
function can be reduced to an AND or OR function by
setting an input to a 0 or a 1. Inversion is also possible and
QCA’s logic set is thus functionally complete. Finally,
QCA wires of different orientations possess the unique
property that they are able to cross in the plane without
destroying the value being transmitted on either wire
(Figure 2c). This is most important as, at present, all layout
is assumed to be two-dimensional.

A clocking mechanism that will allow for a QCA device

to transition from a monostable, null state to a bistable,
active state, and then back to a monostable, null state is also
desired for molecular QCA cells. QCA’s clock is typically
viewed to be an electric field that controls barriers within a
QCA cell, and in turn controls whether or not excess charge
in a QCA cell can represent a binary 1 or 0. It was first
characterized as having 4 phases. In the switch phase, QCA
cells begin un-polarized with inter-dot potential barriers
low. Then, barriers are raised, QCA cells become polarized
according to the state of their driver, and computation
occurs. Raised barriers suppress electron tunneling and cell
states are fixed. In the hold phase, barriers remain high so
outputs of a subarray can be used as inputs to another
subarray. In the release phase, barriers are lowered and
cells relax to an unpolarized state. In the relax phase,
barriers stay lowered and cells remain unpolarized [10].

A physical array of QCA cells can be divided into zones
that offer the advantage of mutli-phase clocking and group
pipelining. For each zone, a single potential would
modulate the inter-dot barriers in all of the cells in a given
zone. This would allow one zone of QCA cells to perform a
calculation, have its state frozen by the raising of inter-dot
barriers, and have the output of that zone act as the input to
a successor zone. For molecular QCA, the four phases of a
clock signal could take the form of time-varying, repetitious
voltages applied to silicon wires embedded underneath a
substrate to which QCA cells were attached. Every fourth
wire would simultaneously receive the same voltage and
neighboring wires see delayed forms of the same signal
[11]. The charge and discharge of the clocking wires will
move the area of activity across the molecular layer of QCA
cells. Computation occurs at the “leading edge” of the

applied electric field. Computation would move across the
circuit in a continuous “wave” [3,10].

2.2. Motivation for QCA CAD Research
One might argue that it would be premature to perform any
systems-level study of an emergent device while the
physical characteristics of a device continue to evolve.
However, it is important to note that many emergent, nano-
scale devices are targeted for computational systems – and
to date, most system-level studies have been proposed by
physical scientists, and usually end with a demonstration of
a functionally complete logic set or a simple adder. Useful
and efficient computation will involve much more than this,
and, in general, it is important to provide scientists with a
better idea of how their devices should function. This
coupling can only lead to an accelerated development of
functional and interesting systems at the nano-scale. More
specifically, with QCA, chemists are currently preparing to
test the self-assembly process and its building blocks
described in Section 2. Experiments could begin within one
year and initial work will study the selective attachment and
patterning of molecules to DNA tiles [12]. A significant and
desired end result of this work would be the process of
patterning itself. (In fact, initial experiments will not even
use QCA molecules, but rather molecules that can be
analyzed with Forster Resonance Enhanced Transfer of
fluorescence as applied to DNA or RNA structure
determination problems [12]). Thus, our work can provide
the chemists with computationally interesting patterns – the
real and eventual desired end result.

3. QCA CELL PLACEMENT

3.1. Problem Formulation
QCA placement is divided into three steps: zone
partitioning, zone placement, and cell placement. The
purpose of zone partitioning is to decompose an input
circuit such that a single potential modulates the inner-dot
barriers in all of the QCA cells that are grouped within a
clocking zone. Unless QCA cells are grouped into zones to
provide zone-level clock signals, each individual QCA cell
will need to be clocked. The wiring required to clock each
cell individually would easily overwhelm the simplicity
won by the inherent local interconnectivity of a QCA
architecture. However, because the delay of the biggest
partition also determines the overall clock period, the size
of each partition must also be determined carefully. In
addition, four-phase clocking imposes a strict constraint on
how to perform partitioning. The zone placement step takes
as input a set of zones – with each zone assigned a clocking
label obtained from zone partitioning. The output of zone
placement is the best possible layout for arranging the
zones on a two dimensional chip area. Finally, cell
placement visits each zone to determine the location of each
individual logic QCA cell—a cell used to build majority
gates.

(a) (b) (c)

Figure 2. (a) Majority gate, (b) 90º wire, (c) wire crossing.

input

input

input output

device Coulombic interactions

Signal propagation

45-deg.

90-deg.
wire

wire

direction

3/6

The input to the cell placement is zone placement result,
where all logic/wire blocks at the same clocking level are
placed in the same row. Then the output of cell placement is
an arrangement of QCA cells in each logic block such that
the wire length, wire crossing, and congestion are
minimized while satisfying the timing, area, signal direction,
terminal constraints as well as QCA specific design rules.
The reconvergent path problem does not exist in cell
placement—it is perfectly fine to have unbalanced
reconvergent path lengths among the logic gates in each
logic block. The reason is that correct output values will
eventually be available at the output terminals in each block
if the clock period is longer than the maximum path delay
in each block. We determine the clock period based on the
maximum path delay among all logic/wire blocks, so the
reconvergent path problem does not exist anymore.

However, the following set of constraints exists during
QCA cell placement: (i) timing constraint: signal
propagation delay from the beginning to the end of the zone
should be kept under the clock period computed from zone
partitioning (maximum zone delay), (ii) area constraint: the
placement area/dimension for each logic block is fixed, (iii)
terminal constraint: the IO terminals are located on the top
and bottom boundaries of each logic block, (iv) signal
direction constraint: the signal flow among the logic QCA
cells needs to be unidirectional—from the input to the
output boundary for each zone, and (v) design rules: we
enforce various layout rules for QCA circuits including
minimum/maximum cell/wire spacing and wire length,
allowable cell off-centeredness and rotation, circuit
densities, power dissipation, etc. The area and terminal
constraints are inherited from zone partitioning and zone
placement results. Each zone may have multiple inputs and
multiple outputs, which requires that the topological
ordering must match between the input and output of
neighboring zones. The signal direction is caused by QCA’s
clocking scheme, where an electric field E created by
underlying CMOS wire is propagating in uni-directionally
within each block. Thus, cell placement needs to be done in
such a way to propagate the logic outputs in the same
direction as E.

3.2 Construction of K-layer Bipartite Graphs
In order to satisfy the relative ordering and to satisfy the
signal direction constraint, the original graph G(V,E) is
mapped into a k-layered bipartite graph G’(V’,E’) which is
obtained by insertion of feed-through gates, where V’ is the
union of the original vertex set V and the set of feed-
through gates, and E’ is the corresponding edge set. Figure
3 gives the pseudo-code for the recursive feed-through
insertion algorithm. In this algorithm, we traverse through
every vertex in the vertex set of the graph. For a given
vertex, if any of the outgoing edges terminate at a vertex
with topological order more than one level apart, a new
feed-through vertex is added to the vertex set. The parent of
the feed-through is set to the current vertex, and all children

of the current vertex which have a topological order
difference of more than one is set as the children of the
feed-through. We do not need to specifically worry about
the exact level difference between the feed-through and the
child nodes, since this feed-through insertion is a recursive
process. This algorithm runs in O(ΚV’), where Κ is the
degree of the graph vertex υ’ of the graph G’. Figure 4a
shows the graph before feed-through insertion and Figure
4b shows the graph after feed-through insertion. A trivial
result of this stage is that all short paths have a set of feed-
throughs between the last logical gate in the path and last
row.

INSERT-FT(G,V)
IF (V is not EMPTY)
 W = V.POP();
 K = W.OUTDEGREE;
 N = 0;
 INSERT = FALSE;
 WHILE(N < K)
 If(W.CHILD(N).LEVEL>W.LEVEL+1)
 INSERT = TRUE; BREAK;
 N = N+1;
 IF(INSERT)
 L = NEW GATE;
 L.SET_LEVEL(W.LEVEL + 1);
 L.SETPARENT(W);
 W.SETCHILD(L);
 G.ADDVERTEX(L);
 V.ADD(L);
 WHILE(N<K AND K>0)
 If(W.CHILD(N).LEVEL>W.LEVEL+1)
 W.CHILD(N).REMOVEPARENT(W);
 W.CHILD(N).ADDPARENT(L);
 L.ADDCHILD(W.CHILD(N));
 W.REMOVECHILD(W.CHILD(N));
 N = N–1;
 K = K–1;
 N = N+1;
INSERT-FT(G,V);

Figure 3: Feedthrough Insertion Algorithm

(a) (b)

Figure 4. Before and after feed-through insertion.
Shaded nodes indicate feed-throughs.

4/6

3.3 Row-folding Algorithm
After the feed-through insertion stage, some rows in G’
may have much more number of gates than the average
number of gates per row. The row with the largest number
of gates defines the width of the entire zone, and hence the
width of the global column that the zone belongs to. This
increases the circuit area by a huge factor. Hence, rows with
a large number of cells are folded into two or more rows.
This is done by inserting feed-through gates in place of the
logic gates and moving the gates to the next row. Row-
folding decreases the width of the row since feed-throughs
have a lower width than the gate it replaces. A gate, γ is
moved into the next existing row if it belongs to the row
that needs to be folded and all paths that γ belongs to
contain at least one feed-through with a higher topological
order than γ. The reason for the feed-through condition is
that γ, along with all gates between γ and the feed-through
can be pushed to a higher row, and the feed-through can be
deleted without violating the topological ordering constraint.
Figure 5 shows the pseudo-code for testing if a gate can be
moved into an existing row. The algorithm returns true if a
node can be moved, and false if a new row has to be
inserted. If this feed-through criterion is not met, and the
row containing γ has to be folded, then a new row is
inserted and γ is moved into that row.

The number of gates that need to be moved from a row

that needs folding to a new row is given by the following
trivial calculation. Let η be the number of gates that need to
be moved to the next row. Let µ be the original number of
gates in the row, and let M be the maximum number of
gates allowed in a row. Further, let α be the ratio of the
width of a feed-through to the width of the gate. Since
width of a gate is always greater than the width of a feed-
through, α < 1. For every gate that is moved to a new row, a
feed-through has to be inserted in its original place. Hence,
after moving η to the next row, the width of the original
row will now be µ–η+αη = M, so η = (µ–M)/(1–α). This
calculation is repeated for the next row if η is itself greater
than the constraint M. The principal reason for increasing
the height of a zone rather than increasing the width of the

zone is that the width of global column that the zone
belongs to is much smaller than height of the column since
the aspect ratio of the entire circuit layout is close to unity.

3.4. Wire length and Wire Crossing Minimization
At the end of the row-folding algorithm, we have a legal
QCA circuit. The next stage in the cell placement algorithm
is to optimize this layout to minimize the number of wire
crossings and net wire length. We investigated and
compared an analytical solution with a stochastic solution.
We used the barycenter heuristic [13] for the analytical
solution and simulated annealing for the stochastic
algorithm. The analytical method only considers wire
crossings since there is a strong correlation between wire
length and number of wire crossings [17].

To compute the net wire length in a circuit we traverse

through every vertex and accumulate the difference
between the column numbers of the vertex and all of its
children. This runs in O(N), where N is the number of
vertices. But, during the first calculation, we store the sum
of all outgoing wire lengths in every vertex. This enables us
to incrementally update if the position of only one node
changes. A node cannot change its row number since at this
stage the topological level is fixed. If a node changes its
position within a level, then it is enough to calculate the
difference in position with respect to its neighbors alone.
Hence, subsequent wire length calculation is reduced to
O(K) where K is the node’s vertex degree.

Wire crossing computation can be done with either the
adjacency list or matrix, depending on the sparseness of the
graph. We used the adjacency matrix to compute the
number of wire crossings in a graph. In a graph, there is a
wire crossing between two layers v and u if vi talks to uj and
vx talks to uy, where i, j, x, and y denote the relative
positional ordering in the nodes, and either, i<x<j<y or
i<x<y<j or x<i<y<j or x<i<j<y without loss of generality.
In terms of an adjacency matrix, this can be regarded as if

CHECK_FT(G,W)
IF(W IS A FEEDTHROUGH)
 RETURN TRUE;
IF(W.LEVEL = G.MAX_LEVEL)
 RETURN FALSE;
RETVAL = TRUE;
K = W.OUTDEGREE;
I = 0;
WHILE(RETVAL & I<K)
 RETVAL = CHECK_FT(G,W.CHILD(I));
 I = I+1;
RETURN RETVAL;

Figure 5. Row folding algorithm

A B C D

1 2 3

 1 2 3
A 1 1 0
B 0 0 1
C 1 0 0
D 0 1 0

 1’ 2’ 3’
A’ 1 2 2
B’ 0 0 1
C’ 1 1 1
D’ 0 1 1

 1’’ 2’’ 3’’
A’’ 2 4 5
B’’ 1 2 3
C’’ 1 2 2
D’’ 0 1 1

(b) (a)

(d) (c)

Figure 6. Illustration of wire crossing computation. (a)
given graph, (b) initial adjacency matrix, (c) row-wise

sum, (d) column-wise sum.

5/6

either the point (i,j) is in the lower left sub-matrix of (x,y) or
vice versa, there is a crosstalk. Hence, our solution is to
count the number of such occurrences. If this counting is
done unintelligently, it can be in the order of O(n4). Our
algorithm to compute the number of wire crossings runs in
O(n2).

Figure 6 shown and example of wire crossing
computation. The graph in Figure 6a can be represented by
the adjacency matrix shown in Figure 6b. The number of
crossings in the diagram is 3. This can be obtained from the
matrix by adding the product of every matrix element and
the sum of its left lower matrix elements. i.e. the number of
crossings = Σ(Aij×ΣΣAxy), where i+1<x<n and 1<y<j–1. This
formula gives a good intuition of the process but is
computationally very expensive. We illustrate our method
of calculating the same result. First we take the row-wise
sum of all entries. Then we compute the column-wise sum.
Finally, we multiply all the entries in the matrix with its
lower-left neighbor’s value and the sum of these products
gives us the number of crossings. Then, we traverse through
the original matrix and multiply every element with the
element corresponding to its lower-left neighbor in the
above matrix O(n2). i.e. A1×(-) + A2×(B´´1´´) + B3×(C´´2´´)
+ C1×(-) + D2×(-) = 3. In the simulated annealing process,
when we swap two nodes in G”, it is identical to swapping
the corresponding rows in the above matrices. Hence, it is
enough if we just update the values of the rows in between
the two rows that are being swapped. The pseudo-code for
this incremental algorithm is given in Figure 7.

3.5. Optimization Engine
A widely used method for minimizing wire crossings in a
graph (introduced by Sugiyama et al. [13] and Carpano [14])
is to map the graph into a k-layer bipartite graph. The
vertices within a layer are then permuted to minimize wire
crossings. This method maps well to this problem as we
need to only consider the latter part of the problem (since

the clocking constraint yields us the k-layer bipartite graph).
Still, even in a two-layer graph, minimizing wire-crossings
is NP-hard [13]. Some of the common heuristics used to
solve the one-sided crossing minimization are the
barycenter heuristic [13], the split heuristic [14], the
greedy-switch heuristic [15], median heuristic [16],
stochastic heuristic [15], and the assign heuristic [14].
Amongst many heuristics proposed, the barycenter heuristic
has been found to be the best heuristic in the general case
for this class of problems. Therefore, an analytical wire
crossing minimization method based on the barycenter
algorithm was implemented.

 In simulated annealing, a move is done by randomly
choosing a level in the graph and then swapping two
randomly chosen gates [g1, g2] in that level in order to
minimize the total wire length and wire crossing. In our
implementation, the initial calculation of the wire length
takes O(n) and updating wire crossing takes O(n2) where n
is the number of nodes in a layer of the bipartite graph. In
our approach, we initially compute the wire length and wire
crossing and incrementally update these values after each
move so that the update can be done much faster as
illustrated above. This speedup allows us to explore a
greater number of candidate solutions, and as a result,
obtain better quality solutions. We set the initial
temperature such that roughly 50% of the bad moves were
accepted. The final temperature was chosen such that less
than 5% of the moves were accepted. We used three
different cost functions. The first cost function only
optimized based on the net wire length. The second cost
function evaluated the number of wire crossings, while the
last cost function looked at a weighted combination of both.
The weights used were the ratio between the wirelength and
the number of wire crossings obtained in the analytical
solution.

4. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++/STL, compiled
with gcc v2.96 run on Pentium III 746 MHz machine. The
benchmark set consists of six circuits from ISCAS89 and
two circuits from ITC99 suites. We performed cell
placement for these circuits based on QCA’s structure and
building blocks. There was an average of around 100±10
gates per partition in each of the circuits. Table 1 shows our
cell placement results where we report net wire length and
number of wire crossings for the circuits using our
analytical solution and all three flavors of our simulated
annealing algorithm. We further tried simulated annealing
from analytical start, and the results were identical to
analytical solution. We observe in general that analytical
solution is better than all three flavors of the Simulated
Annealing methods, except in terms of wire length in the
case of the weighted Simulated Annealing process. But, the
tradeoff in wire crossings makes the analytical solution

CALCXROWS(R1, R2, MATRIX)
IF(R2<R1)
 RETURN CALCXROWS(R2,R1,MATRIX);
LET SUM = POS = NEG = DIFF = j = 0;
WHILE(J < NumRows)
 TEMP = DIFF;
 I = R2-1;
 WHILE(I > R1)
 SUM = SUM + MATRIX[I][j]*(POS–NEG);
 DIFF = DIFF + MATRIX[i][j];
 I = I + 1;
 SUM = SUM – MATRIX[R1][j]*(TEMP+NEG);
 SUM = SUM + MATRIX[R2][j]*(TEMP+POS);
 POS = POS + MATRIX[i][j];
 NEG = NEG + MATRIX[R2][j];
RETURN SUM;

Figure 7. Incremental wire-crossing computation.

6/6

more viable, since wire crossings pose a bigger barrier than
wire length in QCA architecture.

One interesting note is that when comparing amongst
the three flavors of simulated annealing we find that
simulated annealing with wire crossing minimization alone
has the best wire crossing number, but surprisingly, in
terms of wire length, the simulated annealing procedure
with wire length alone as the cost function is not as good as
the simulated annealing procedure which optimizes both
wire length and wire crossing. We speculate that this
behavior is because lower number of wire crossings has a
strong influence on wire length, but smaller wire length
does not necessarily dictate lower number of crossings in
our circuits.

5. CONCLUSIONS AND ONGOING WORKS

In this paper, we presented an algorithm that addressed the
QCA cell placement problem. This will help automate the
process of design within the constraints imposed by
physical scientists. We are currently working on wire
routing for QCA circuits. We are also studying logic
duplication heuristics to completely remove all wire
crossings. We hope this systems-level research can
integrate with the physical device development to speed up
the lab to market time of QCA circuits.

References
[1] Lieberman M., Chellamma S., Varughese B., Wang Y., Lent C.,

Bernstein G.H., Snider G., and Peiris F.C. Quantum-dot cellular
automata at a molecular scale. Annals of the New York Academy of
Science, 960 (April 2002), 225-239.

[2] Amlani I., Orlov A. O., Snider G., and Lent C.S.. Demonstation of a
func. quantum-dot cellular automata cell. J. Vac. Sci. Technol. B, 16
(1998), 3795-3799.

[3] Lent C.S., Snider G.L., Bernstein G., Porod W., Orlov A., Lieberman
M., Fehlner T., Niemier T., and Kogge P. Quantum-Dot Cellular
Automata. (2003).

[4] Snider G.L., Orlov A.O., Amlani I., Bernstein G.H., Lent C.S., Merz
J.L, and Porod W.. Quantum-dot cellular automata: Line and
majority gate logic. Jpn. J. of Applied Physics, 38 (199) 7227-7229.

[5] Amlani I., Orlov A., Toth G., Bernstein G., Lent C.S., and Snider
G.L. Digital logic gate using quantum-dot cellular automata. Science,
284 (1999), 289-291.

[6] Kummamuru R.V., Timler J., Toth G., Lent C.S., Ramasubramaniam
R., Orlov A., and Bernstein G.H. Power gain in a quantum-dot
cellular automata latch. Applied Physics Letters, 81(2002), 1332-
1334.

[7] Mathews C.K., van Holde K.E., and Ahren K.G. Biochemistry. Add.
Wesley Longman, San Francisco, 2000.

[8] Lent C.S., Isaksen B., and Lieberman M. Molecular Quantum-dot
Cellular Automata. J. Am. Chem. Soc., 125, (2003), 1056-1063.

[9] LaBean T. H., Jens Kopatsch H.Y., Liu F., Winfree E., Reif J.H., and
Seeman N.C. Construction, analysis, ligation, and self-assembly of
dna triple crossover complexes. J. Am. Chem. Soc., 122 (2000),
1848-1860.

[10] Tougaw P.D. and Lent C.S. Logical devices implemented using
quantum cellular automata. Journal of Applied Physics, 75 (1994),
1818.

[11] Hennessy K. and Lent C.S. Clocking of molecular quantum-dot
cellular automata. Journal of Vacuum Science and Technology B,
19,5(Sept-Oct 2001), 1752-1755.

[12] Clegg R.M., Murchie A.I.H., Zechel A., and Lilley D.M.J..
Observing the helical geometry of double-stranded DNA in Solution
by Fluorescence Resonance. Proceedings of the National Academy of
Sciences of the United States of America, 90(7): 2994-2998, Apr 1,
1993.

[13] Sugiyama K., Tagawa S., and Toda M. Methods for Visual
Understanding of Hierarchical System Structures. IEEE Trans. Syst.
Man,. Cybern., SMC-11 (1981), 109-125.

[14] Carpano M.J. Automatic display of hierarchized graphs for computer
aided decision analysis. IEEE Trans. on Syst. Man., Cybern., 10,11,
(1980), 705-715.

[15] Eades P. and Wormald N. Edge crossings in drawing of bipartite
graphs. Algorithmica, 10, (1994), 379-403.

[16] Junger M. and Mutzel P. 2-Layer Straightline Crossing
Minimizations: Perf. of Exact and Heuristic Alg. (1997).

[17] Kapur N. Cell Placement and Minimization of Crossing Numbers.
M.S. Thesis, North Carolina State University, Raleigh, NC, 1998.

[18] Gergel N., Craft S., and Lach J. Modeling QCA for Area
Minimization in Logic Synthesis. Great Lakes Symposium on VLSI,
(2003), 60-63.

[19] Gary Bernstein, “Quantum-dot Cellular Automata: Computing by
Polarized Systems”, Proc. Design Automation Conference, 2003.

Table 1. Cell placement results. We report wirelength (wl) and wire crossing (wc) for
both analytical and Simulated Annealing based methods.

 Analytical SA+WL SA+WC SA+WL+WC

ckts wl wc wl wc wl wc wl wc
b14 5586 1238 28680 23430 54510 3740 5113 4948
b15 9571 1667 23580 40400 69030 7420 8017 8947

s13207 3119 548 14060 15530 30610 1450 3250 1982
s15850 3507 634 18610 22130 42700 2140 3919 2978
s38417 9414 1195 45830 48400 80240 7320 9819 9929
s38584 19582 4017 59220 75590 140130 9820 20101 33122
s5378 1199 156 6280 6690 13600 730 1344 841
s9234 2170 205 10720 11540 23290 980 1640 2159
Ave 4192 741 16980 19950 38950 2740 3880 6878

Ratio 1.00 1.00 4.05 26.9 9.29 3.69 0.92 9.27
runtime 180 604 11280 12901

