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Abstract: Quantum-dot Cellular Automata (QCA) is a novel 
computing mechanism that can represent binary 
information based on spatial distribution of electron charge 
configuration in chemical molecules. It has the potential to 
allow for circuits and systems with functional densities that 
are better than end of the roadmap CMOS, but also imposes 
new constraints on system designers. Several recent works 
concentrated on partitioning and global placement in the 
context of QCA schematics based on constraints imposed 
by this architecture. In this paper we develop the first cell-
level placement of QCA circuits, where the given circuit is 
assumed to be partitioned into 4-phase asynchronous QCA 
timing zones. We formulate the QCA cell placement in 
each timing zone as a unidirectional geometric embedding 
of k-layered bipartite graphs. We then present an analytical 
and a stochastic solution for minimizing the wire crossings 
and wire length in these placement solutions. Results 
provide designs of circuits and systems that will be used to 
develop computationally interesting designs for chemists 
who are currently preparing to build the patterns and 
substrates required for real QCA circuits. 

 
1. INTRODUCTION 

 
Nano technology and devices will have revolutionary 
impact on the CAD field. Similarly, CAD research at circuit, 
logic and architectural levels for nano devices can provide 
valuable feedbacks to nano research and illuminate ways 
for developing new nano devices. It is time for CAD 
researchers to play an active role in nano research. One 
approach to computing at the nano-scale is the quantum-dot 
cellular automata (QCA) concept that represents 
information in a binary fashion, but replaces a current 
switch with a cell having a bi-stable charge configuration. 
QCA devices can be realized in metal [2], or with chemical 
molecules [1]. A wealth of experiments have been 
conducted with metal-dot QCA, with individual devices 
[2,3], logic gates [3,4,5], wires [4], latches [3], and clocked 
devices [3,6], all having been realized. This advancement is 
followed by various recent efforts in developing CAD tools 
for QCA based circuits and systems [18,19].  

In this paper we develop the first cell-level placement of 
QCA circuits, where the given circuit is assumed to be 
partitioned into 4-phase asynchronous QCA timing zones. 
We formulate the QCA cell placement in each timing zone 

as a unidirectional geometric embedding of k-layered 
bipartite graphs. We then present an analytical and a 
stochastic solution for minimizing the wire crossings and 
wire length in these placement solutions. Results provide 
designs of circuits and systems that will be used to develop 
computationally interesting designs for chemists who are 
currently preparing to build the patterns and substrates 
required for real QCA circuits.  
 

2. PRELIMINARIES 
 

2.1. QCA Devices 
“3-dot cells” are fundamental building blocks of QCA cells, 
which been researched and simulated for the last two 
decades. This molecule shown in Figure 1 forms a ‘v’-
shape, and charge can be localized on any one of the three 
dots at the “points” of the ‘v’. If charge is localized on one 
of the top two dots, the cell will encode a binary 1 or 0. 
Whether or not charge is in the top two dots (the active state) 
or the lower dot (the null state) can be determined by an 
electric field that will raise or lower the potential of the 
central dot relative to the top two dots [1]. When 
considering basic cell-to-cell interactions, binary 1s and 0s 
are physically represented by the dipole moments of QCA 
molecules. Dipole moments are formed by the way that 
charge is localized within certain sites of a QCA molecule 
and how that charge can tunnel between these sites [7]. In 
the presence of a strong driver dipole, a larger amount of 
energy is required to excite a cell into a mistake state [8]. 
 

 
Circuit elements are shown and described here in terms 

of 4-dot QCA cells. A 4-dot cell could simply be formed by 
two adjacent 3-dot but are also being engineered as explicit 
molecules [9]. 4-dot cells are ideal because of symmetry. 
Binary information is stored and moved with quadropole 
moments. The fundamental QCA logical gate is a three-
input majority gate (Figure 2a). Computation is performed 
by driving the device cell to its lowest energy state, which 
will occur when it assumes the polarization of the majority 
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Figure 1.  Schematic representation of molecular QCA 
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of three inputs. Data can be moved in a QCA circuit with a 
row of QCA cells. A binary signal propagates from left-to-
right because of electrostatic interactions between adjacent 
cells. A QCA “wire” can also be comprised of cells rotated 
45-degrees (Figure 2c). Here, a binary signal will alternate 
between a binary 1 and a binary 0. The majority voting 
function can be reduced to an AND or OR function by 
setting an input to a 0 or a 1. Inversion is also possible and 
QCA’s logic set is thus functionally complete. Finally, 
QCA wires of different orientations possess the unique 
property that they are able to cross in the plane without 
destroying the value being transmitted on either wire 
(Figure 2c). This is most important as, at present, all layout 
is assumed to be two-dimensional. 

 
A clocking mechanism that will allow for a QCA device 

to transition from a monostable, null state to a bistable, 
active state, and then back to a monostable, null state is also 
desired for molecular QCA cells. QCA’s clock is typically 
viewed to be an electric field that controls barriers within a 
QCA cell, and in turn controls whether or not excess charge 
in a QCA cell can represent a binary 1 or 0. It was first 
characterized as having 4 phases. In the switch phase, QCA 
cells begin un-polarized with inter-dot potential barriers 
low. Then, barriers are raised, QCA cells become polarized 
according to the state of their driver, and computation 
occurs. Raised barriers suppress electron tunneling and cell 
states are fixed. In the hold phase, barriers remain high so 
outputs of a subarray can be used as inputs to another 
subarray. In the release phase, barriers are lowered and 
cells relax to an unpolarized state. In the relax phase, 
barriers stay lowered and cells remain unpolarized [10].  

A physical array of QCA cells can be divided into zones 
that offer the advantage of mutli-phase clocking and group 
pipelining. For each zone, a single potential would 
modulate the inter-dot barriers in all of the cells in a given 
zone. This would allow one zone of QCA cells to perform a 
calculation, have its state frozen by the raising of inter-dot 
barriers, and have the output of that zone act as the input to 
a successor zone. For molecular QCA, the four phases of a 
clock signal could take the form of time-varying, repetitious 
voltages applied to silicon wires embedded underneath a 
substrate to which QCA cells were attached. Every fourth 
wire would simultaneously receive the same voltage and 
neighboring wires see delayed forms of the same signal 
[11]. The charge and discharge of the clocking wires will 
move the area of activity across the molecular layer of QCA 
cells. Computation occurs at the “leading edge” of the 

applied electric field. Computation would move across the 
circuit in a continuous “wave” [3,10].  
 
2.2. Motivation for QCA CAD Research 
One might argue that it would be premature to perform any 
systems-level study of an emergent device while the 
physical characteristics of a device continue to evolve. 
However, it is important to note that many emergent, nano-
scale devices are targeted for computational systems – and 
to date, most system-level studies have been proposed by 
physical scientists, and usually end with a demonstration of 
a functionally complete logic set or a simple adder. Useful 
and efficient computation will involve much more than this, 
and, in general, it is important to provide scientists with a 
better idea of how their devices should function. This 
coupling can only lead to an accelerated development of 
functional and interesting systems at the nano-scale. More 
specifically, with QCA, chemists are currently preparing to 
test the self-assembly process and its building blocks 
described in Section 2. Experiments could begin within one 
year and initial work will study the selective attachment and 
patterning of molecules to DNA tiles [12]. A significant and 
desired end result of this work would be the process of 
patterning itself. (In fact, initial experiments will not even 
use QCA molecules, but rather molecules that can be 
analyzed with Forster Resonance Enhanced Transfer of 
fluorescence as applied to DNA or RNA structure 
determination problems [12]). Thus, our work can provide 
the chemists with computationally interesting patterns – the 
real and eventual desired end result. 

 
3. QCA CELL PLACEMENT 

 
3.1. Problem Formulation 
QCA placement is divided into three steps: zone 
partitioning, zone placement, and cell placement. The 
purpose of zone partitioning is to decompose an input 
circuit such that a single potential modulates the inner-dot 
barriers in all of the QCA cells that are grouped within a 
clocking zone. Unless QCA cells are grouped into zones to 
provide zone-level clock signals, each individual QCA cell 
will need to be clocked. The wiring required to clock each 
cell individually would easily overwhelm the simplicity 
won by the inherent local interconnectivity of a QCA 
architecture. However, because the delay of the biggest 
partition also determines the overall clock period, the size 
of each partition must also be determined carefully. In 
addition, four-phase clocking imposes a strict constraint on 
how to perform partitioning. The zone placement step takes 
as input a set of zones – with each zone assigned a clocking 
label obtained from zone partitioning. The output of zone 
placement is the best possible layout for arranging the 
zones on a two dimensional chip area. Finally, cell 
placement visits each zone to determine the location of each 
individual logic QCA cell—a cell used to build majority 
gates. 

(a)                               (b)                               (c) 
 

Figure 2.  (a) Majority gate, (b) 90º wire, (c) wire crossing. 
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The input to the cell placement is zone placement result, 
where all logic/wire blocks at the same clocking level are 
placed in the same row. Then the output of cell placement is 
an arrangement of QCA cells in each logic block such that 
the wire length, wire crossing, and congestion are 
minimized while satisfying the timing, area, signal direction, 
terminal constraints as well as QCA specific design rules. 
The reconvergent path problem does not exist in cell 
placement—it is perfectly fine to have unbalanced 
reconvergent path lengths among the logic gates in each 
logic block. The reason is that correct output values will 
eventually be available at the output terminals in each block 
if the clock period is longer than the maximum path delay 
in each block. We determine the clock period based on the 
maximum path delay among all logic/wire blocks, so the 
reconvergent path problem does not exist anymore. 

However, the following set of constraints exists during 
QCA cell placement: (i) timing constraint: signal 
propagation delay from the beginning to the end of the zone 
should be kept under the clock period computed from zone 
partitioning (maximum zone delay), (ii) area constraint: the 
placement area/dimension for each logic block is fixed, (iii) 
terminal constraint: the IO terminals are located on the top 
and bottom boundaries of each logic block, (iv) signal 
direction constraint: the signal flow among the logic QCA 
cells needs to be unidirectional—from the input to the 
output boundary for each zone, and (v) design rules: we 
enforce various layout rules for QCA circuits including 
minimum/maximum cell/wire spacing and wire length, 
allowable cell off-centeredness and rotation, circuit 
densities, power dissipation, etc. The area and terminal 
constraints are inherited from zone partitioning and zone 
placement results. Each zone may have multiple inputs and 
multiple outputs, which requires that the topological 
ordering must match between the input and output of 
neighboring zones. The signal direction is caused by QCA’s 
clocking scheme, where an electric field E created by 
underlying CMOS wire is propagating in uni-directionally 
within each block. Thus, cell placement needs to be done in 
such a way to propagate the logic outputs in the same 
direction as E.  
 
3.2 Construction of K-layer Bipartite Graphs 
In order to satisfy the relative ordering and to satisfy the 
signal direction constraint, the original graph G(V,E) is 
mapped into a k-layered bipartite graph G’(V’,E’) which is 
obtained by insertion of feed-through gates, where V’ is the 
union of the original vertex set V and the set of feed-
through gates, and E’ is the corresponding edge set. Figure 
3 gives the pseudo-code for the recursive feed-through 
insertion algorithm. In this algorithm, we traverse through 
every vertex in the vertex set of the graph. For a given 
vertex, if any of the outgoing edges terminate at a vertex 
with topological order more than one level apart, a new 
feed-through vertex is added to the vertex set. The parent of 
the feed-through is set to the current vertex, and all children 

of the current vertex which have a topological order 
difference of more than one is set as the children of the 
feed-through. We do not need to specifically worry about 
the exact level difference between the feed-through and the 
child nodes, since this feed-through insertion is a recursive 
process. This algorithm runs in O(ΚV’), where Κ is the 
degree of the graph vertex υ’ of the graph G’. Figure 4a 
shows the graph before feed-through insertion and Figure 
4b shows the graph after feed-through insertion. A trivial 
result of this stage is that all short paths have a set of feed-
throughs between the last logical gate in the path and last 
row. 

 
 

 

--------------------------------------- 
INSERT-FT(G,V) 
IF (V is not EMPTY) 
   W = V.POP(); 
   K = W.OUTDEGREE; 
   N = 0; 
   INSERT = FALSE;  
   WHILE(N < K) 
      If(W.CHILD(N).LEVEL>W.LEVEL+1) 
         INSERT = TRUE; BREAK; 
      N = N+1; 
   IF(INSERT) 
      L = NEW GATE; 
      L.SET_LEVEL(W.LEVEL + 1); 
      L.SETPARENT(W); 
      W.SETCHILD(L); 
      G.ADDVERTEX(L); 
      V.ADD(L); 
      WHILE(N<K AND K>0) 
         If(W.CHILD(N).LEVEL>W.LEVEL+1) 
            W.CHILD(N).REMOVEPARENT(W); 
            W.CHILD(N).ADDPARENT(L); 
            L.ADDCHILD(W.CHILD(N));  
            W.REMOVECHILD(W.CHILD(N)); 
            N = N–1;  
            K = K–1; 
         N = N+1; 
INSERT-FT(G,V); 
--------------------------------------- 
 

Figure 3: Feedthrough Insertion Algorithm 
 

(a)                                                 (b) 
 

Figure 4. Before and after feed-through insertion. 
Shaded nodes indicate feed-throughs. 
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3.3 Row-folding Algorithm 
After the feed-through insertion stage, some rows in G’ 
may have much more number of gates than the average 
number of gates per row. The row with the largest number 
of gates defines the width of the entire zone, and hence the 
width of the global column that the zone belongs to. This 
increases the circuit area by a huge factor. Hence, rows with 
a large number of cells are folded into two or more rows. 
This is done by inserting feed-through gates in place of the 
logic gates and moving the gates to the next row. Row-
folding decreases the width of the row since feed-throughs 
have a lower width than the gate it replaces. A gate, γ is 
moved into the next existing row if it belongs to the row 
that needs to be folded and all paths that γ belongs to 
contain at least one feed-through with a higher topological 
order than γ. The reason for the feed-through condition is 
that γ, along with all gates between γ and the feed-through 
can be pushed to a higher row, and the feed-through can be 
deleted without violating the topological ordering constraint. 
Figure 5 shows the pseudo-code for testing if a gate can be 
moved into an existing row. The algorithm returns true if a 
node can be moved, and false if a new row has to be 
inserted. If this feed-through criterion is not met, and the 
row containing γ has to be folded, then a new row is 
inserted and γ is moved into that row.  
 

 
The number of gates that need to be moved from a row 

that needs folding to a new row is given by the following 
trivial calculation. Let η be the number of gates that need to 
be moved to the next row. Let µ be the original number of 
gates in the row, and let M be the maximum number of 
gates allowed in a row. Further, let α be the ratio of the 
width of a feed-through to the width of the gate. Since 
width of a gate is always greater than the width of a feed-
through, α < 1. For every gate that is moved to a new row, a 
feed-through has to be inserted in its original place. Hence, 
after moving η to the next row, the width of the original 
row will now be µ–η+αη = M, so η = (µ–M)/(1–α). This 
calculation is repeated for the next row if η is itself greater 
than the constraint M. The principal reason for increasing 
the height of a zone rather than increasing the width of the 

zone is that the width of global column that the zone 
belongs to is much smaller than height of the column since 
the aspect ratio of the entire circuit layout is close to unity. 
 
3.4. Wire length and Wire Crossing Minimization 
At the end of the row-folding algorithm, we have a legal 
QCA circuit. The next stage in the cell placement algorithm 
is to optimize this layout to minimize the number of wire 
crossings and net wire length. We investigated and 
compared an analytical solution with a stochastic solution. 
We used the barycenter heuristic [13] for the analytical 
solution and simulated annealing for the stochastic 
algorithm. The analytical method only considers wire 
crossings since there is a strong correlation between wire 
length and number of wire crossings [17].  
 

 
To compute the net wire length in a circuit we traverse 

through every vertex and accumulate the difference 
between the column numbers of the vertex and all of its 
children. This runs in O(N), where N is the number of 
vertices. But, during the first calculation, we store the sum 
of all outgoing wire lengths in every vertex. This enables us 
to incrementally update if the position of only one node 
changes. A node cannot change its row number since at this 
stage the topological level is fixed. If a node changes its 
position within a level, then it is enough to calculate the 
difference in position with respect to its neighbors alone. 
Hence, subsequent wire length calculation is reduced to 
O(K) where K is the node’s vertex degree.  

Wire crossing computation can be done with either the 
adjacency list or matrix, depending on the sparseness of the 
graph. We used the adjacency matrix to compute the 
number of wire crossings in a graph. In a graph, there is a 
wire crossing between two layers v and u if vi talks to uj and 
vx talks to uy, where i, j, x, and y denote the relative 
positional ordering in the nodes, and either, i<x<j<y or 
i<x<y<j or x<i<y<j or x<i<j<y without loss of generality. 
In terms of an adjacency matrix, this can be regarded as if 

------------------------------------ 
CHECK_FT(G,W) 
IF(W IS A FEEDTHROUGH) 
    RETURN TRUE; 
IF(W.LEVEL = G.MAX_LEVEL) 
    RETURN FALSE; 
RETVAL = TRUE; 
K = W.OUTDEGREE; 
I = 0; 
WHILE(RETVAL & I<K) 
    RETVAL = CHECK_FT(G,W.CHILD(I)); 
    I = I+1; 
RETURN RETVAL; 
------------------------------------ 
 

Figure 5. Row folding algorithm 
 

A B C D

1 2 3 

 1 2 3 
A 1 1 0 
B 0 0 1 
C 1 0 0 
D 0 1 0 

 1’ 2’ 3’ 
A’ 1 2 2 
B’ 0 0 1 
C’ 1 1 1 
D’ 0 1 1 

 1’’ 2’’ 3’’ 
A’’ 2 4 5 
B’’ 1 2 3 
C’’ 1 2 2 
D’’ 0 1 1 

(b) (a) 

(d) (c) 

Figure 6. Illustration of wire crossing computation. (a) 
given graph, (b) initial adjacency matrix, (c) row-wise 

sum, (d) column-wise sum. 
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either the point (i,j) is in the lower left sub-matrix of (x,y) or 
vice versa, there is a crosstalk. Hence, our solution is to 
count the number of such occurrences. If this counting is 
done unintelligently, it can be in the order of O(n4). Our 
algorithm to compute the number of wire crossings runs in 
O(n2).  

Figure 6 shown and example of wire crossing 
computation. The graph in Figure 6a can be represented by 
the adjacency matrix shown in Figure 6b. The number of 
crossings in the diagram is 3. This can be obtained from the 
matrix by adding the product of every matrix element and 
the sum of its left lower matrix elements. i.e. the number of 
crossings = Σ(Aij×ΣΣAxy), where i+1<x<n and 1<y<j–1. This 
formula gives a good intuition of the process but is 
computationally very expensive. We illustrate our method 
of calculating the same result. First we take the row-wise 
sum of all entries. Then we compute the column-wise sum. 
Finally, we multiply all the entries in the matrix with its 
lower-left neighbor’s value and the sum of these products 
gives us the number of crossings. Then, we traverse through 
the original matrix and multiply every element with the 
element corresponding to its lower-left neighbor in the 
above matrix O(n2). i.e. A1×(-) + A2×(B´´1´´) + B3×(C´´2´´) 
+ C1×(-) + D2×(-) = 3. In the simulated annealing process, 
when we swap two nodes in G”, it is identical to swapping 
the corresponding rows in the above matrices. Hence, it is 
enough if we just update the values of the rows in between 
the two rows that are being swapped. The pseudo-code for 
this incremental algorithm is given in Figure 7. 

 

 
3.5. Optimization Engine 
A widely used method for minimizing wire crossings in a 
graph (introduced by Sugiyama et al. [13] and Carpano [14]) 
is to map the graph into a k-layer bipartite graph. The 
vertices within a layer are then permuted to minimize wire 
crossings. This method maps well to this problem as we 
need to only consider the latter part of the problem (since 

the clocking constraint yields us the k-layer bipartite graph). 
Still, even in a two-layer graph, minimizing wire-crossings 
is NP-hard [13]. Some of the common heuristics used to 
solve the one-sided crossing minimization are the 
barycenter heuristic [13], the split heuristic [14], the 
greedy-switch heuristic [15], median heuristic [16], 
stochastic heuristic [15], and the assign heuristic [14]. 
Amongst many heuristics proposed, the barycenter heuristic 
has been found to be the best heuristic in the general case 
for this class of problems. Therefore, an analytical wire 
crossing minimization method based on the barycenter 
algorithm was implemented. 

 In simulated annealing, a move is done by randomly 
choosing a level in the graph and then swapping two 
randomly chosen gates [g1, g2] in that level in order to 
minimize the total wire length and wire crossing. In our 
implementation, the initial calculation of the wire length 
takes O(n) and updating wire crossing takes O(n2) where n 
is the number of nodes in a layer of the bipartite graph. In 
our approach, we initially compute the wire length and wire 
crossing and incrementally update these values after each 
move so that the update can be done much faster as 
illustrated above. This speedup allows us to explore a 
greater number of candidate solutions, and as a result, 
obtain better quality solutions. We set the initial 
temperature such that roughly 50% of the bad moves were 
accepted. The final temperature was chosen such that less 
than 5% of the moves were accepted. We used three 
different cost functions. The first cost function only 
optimized based on the net wire length. The second cost 
function evaluated the number of wire crossings, while the 
last cost function looked at a weighted combination of both. 
The weights used were the ratio between the wirelength and 
the number of wire crossings obtained in the analytical 
solution.  
 

4. EXPERIMENTAL RESULTS 
 
Our algorithms were implemented in C++/STL, compiled 
with gcc v2.96 run on Pentium III 746 MHz machine. The 
benchmark set consists of six circuits from ISCAS89 and 
two circuits from ITC99 suites. We performed cell 
placement for these circuits based on QCA’s structure and 
building blocks. There was an average of around 100±10 
gates per partition in each of the circuits. Table 1 shows our 
cell placement results where we report net wire length and 
number of wire crossings for the circuits using our 
analytical solution and all three flavors of our simulated 
annealing algorithm. We further tried simulated annealing 
from analytical start, and the results were identical to 
analytical solution. We observe in general that analytical 
solution is better than all three flavors of the Simulated 
Annealing methods, except in terms of wire length in the 
case of the weighted Simulated Annealing process. But, the 
tradeoff in wire crossings makes the analytical solution 

-----------------------------------------
CALCXROWS(R1, R2, MATRIX) 
IF(R2<R1) 
   RETURN CALCXROWS(R2,R1,MATRIX); 
LET SUM = POS = NEG = DIFF = j = 0; 
WHILE(J < NumRows) 
   TEMP = DIFF; 
   I = R2-1; 
   WHILE(I > R1) 
      SUM = SUM + MATRIX[I][j]*(POS–NEG);
      DIFF = DIFF + MATRIX[i][j]; 
      I = I + 1; 
   SUM = SUM – MATRIX[R1][j]*(TEMP+NEG); 
   SUM = SUM + MATRIX[R2][j]*(TEMP+POS); 
   POS = POS + MATRIX[i][j]; 
   NEG = NEG + MATRIX[R2][j]; 
RETURN SUM; 
-----------------------------------------
 

Figure 7. Incremental wire-crossing computation.  
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more viable, since wire crossings pose a bigger barrier than 
wire length in QCA architecture. 

One interesting note is that when comparing amongst 
the three flavors of simulated annealing we find that 
simulated annealing with wire crossing minimization alone 
has the best wire crossing number, but surprisingly, in 
terms of wire length, the simulated annealing procedure 
with wire length alone as the cost function is not as good as 
the simulated annealing procedure which optimizes both 
wire length and wire crossing. We speculate that this 
behavior is because lower number of wire crossings has a 
strong influence on wire length, but smaller wire length 
does not necessarily dictate lower number of crossings in 
our circuits.  
 

5. CONCLUSIONS AND ONGOING WORKS 
 
In this paper, we presented an algorithm that addressed the 
QCA cell placement problem. This will help automate the 
process of design within the constraints imposed by 
physical scientists. We are currently working on wire 
routing for QCA circuits. We are also studying logic 
duplication heuristics to completely remove all wire 
crossings. We hope this systems-level research can 
integrate with the physical device development to speed up 
the lab to market time of QCA circuits. 
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Table 1. Cell placement results. We report wirelength (wl) and wire crossing (wc) for 
both analytical and Simulated Annealing based methods. 

 
 Analytical SA+WL SA+WC SA+WL+WC 

ckts wl wc wl wc wl wc wl wc 
b14 5586 1238 28680 23430 54510 3740 5113 4948 
b15 9571 1667 23580 40400 69030 7420 8017 8947 

s13207 3119 548 14060 15530 30610 1450 3250 1982 
s15850 3507 634 18610 22130 42700 2140 3919 2978 
s38417 9414 1195 45830 48400 80240 7320 9819 9929 
s38584 19582 4017 59220 75590 140130 9820 20101 33122 
s5378 1199 156 6280 6690 13600 730 1344 841 
s9234 2170 205 10720 11540 23290 980 1640 2159 
Ave 4192 741 16980 19950 38950 2740 3880 6878 

Ratio 1.00 1.00 4.05 26.9 9.29 3.69 0.92 9.27 
runtime 180 604 11280 12901 


