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ABSTRACT 
 
The recent popularity of 3D IC technology stems from its enhanced 
performance capabilities and reduced wiring length. However, the 
problem of thermal dissipation is magnified due to the nature of 
these layered technologies. In this paper, we develop techniques to 
reduce both the local and global congestions of 3D circuit designs in 
order to alleviate thermal issues. Our approach consists of two 
phases. First, we use a multilevel min-cut based approach with a 
modified gain function in order to minimize the local congestion. 
Then, we perform simulated annealing to reduce the circuit’s global 
congestion. Experimental results show that our local congestion is 
reduced by an average of over 44% and global congestion is reduced 
by over 16%. Moreover, we only see an 11% increase in the wiring 
length and the number of vias required.  
 
1. INTRODUCTION 
 
With the recent advent of three-dimensional Integrated Circuit 
technologies, there has been a positive impact on the performance 
and wiring length of these ICs. Typically, the layered placement of 
transistors in multiple planes (i.e. 2.5D placement) allows for a more 
compact chip with inherently better performance than one fabricated 
with traditional 2D placement techniques. However, the heat 
generation from a given area increases with increasing power density 
within that area [13]. Therefore, the problem of local and global wire 
congestion in these 2.5D chips is paramount. If a chip requires a 
large amount routing resources within a local area, the resulting 
thermal dissipation within that area will increase significantly. For 
example, consider Figure 1. Clearly, the  circuit on the left is more 
problematic than the one on the right in terms of thermal 
considerations. 
 
Previous work in the area of 2.5D placement has focused on 
minimizing the intra-layer wirelength and the number of inter-layer 
connections, or “vias.” The results of [11] indicate an improvement 
in overall wirelength when implementing the 2.5D layered placement 
framework instead of equivalent traditional 2D placement. Other 
work has employed stochastic methods to determine the wirelength 
distributions, trends in power consumption, and performance 
capabilities of 2.5D-Ics [1,2,3,4,5]. The conclusions derived from 
stochastic analysis confirm that 2.5D chips will provide better 
performance with larger compaction, but also predict a non-trivial 
increase in thermal dissipation due to the current state of heat sink 
technology.  
 

 
In this paper, we provide a technique to reduce both local and global 
congestion in a 2.5D chip in order to lessen the inherent thermal 
costs of the chip. Our approach involves a two-stage refinement 
procedure: initially, we use a multilevel min-cut based method to 
minimize the congestion within confined areas of the chip. This is 
followed by a simulated annealing-based technique which works to 
minimize the amount of congestion created from global wires. We 
show that our congestion minimization does not have any significant 
negative impact on the wirelength or the number of vias.  
 
The rest of this paper is organized as follows. Section 2 provides 
preliminaries of our approach. Section 3 discusses our min-cut based 
approach to reduce local wire congestion. Section 4 explains our 
simulated annealing approach aimed for global wire congestion. 
Section 5 provides experimental results. Section 6 concludes our 
paper and describes the ongoing research in this field. 
 
2. PROBLEM FORMULATION 
 
2.1 Physical Planning for 2.5D Layouts 
 
Given a sequential gate-level netlist NL(C, N), where C is the set of 
cells representing gates, clusters and flip-flops, and N is the set of 
nets connecting the cells, the purpose of the 2.5D Physical Planning 
problem is to assign the cells in NL to a given m x n x p (=K) slots 
while preserving area constraints. The 2.5D Physical Planning 
problem has a solution P: C→ B, wherein each cell in C is assigned 
to a unique block B ∈  {B1(x1,y1,z1), B2(x2,y2,z2),..., BK(xK,yK,zK)}, 

Figure 1. Balanced vs unbalanced local/global wire 
congestion for 3D circuits. Top-down and side views are 
shown. 



where B denotes the set of blocks, and (xi,yi,zi) represents the 
geometric locations of Bi, with area constraint A(L,U), for 1 ≤ i ≤ K. 
The 2.5D-PP solution must satisfy the following conditions: 

  
1. Bi ⊂ C and L ≤ |Bi| ≤ U 
2. B1 ∪ B2 ∪ … ∪ Bk =C. 
3. Bi ∩ Bj =∅ for i ≠ j.  

 
2.2 Congestion Objective 
 
a. Local Congestion 
  
Given a block B from the physical planning solution, we define the 
local wiring cost LC(B) as: 
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This value corresponds to the minimum number of wires required to 
construct the tree representation of a net of size |ni|. Then, the local 
congestion of the entire solution P is given by: 
 

)}(min{)}(max{)( ji BLCBLCPLC −= , 1 ≤ i, j ≤ K 
 
b. Global Congestion 
 
For any two adjacent blocks Bi, Bj from the placement solution 
above, we denote the common incident hyperedge set by Hij = 
{h∈H: h∩ Bi ≠ ∅ and h B∩ j ≠ ∅ }. Then, the global congestion 
at the boundary <Bi, Bj> is measured as GCij = | Hij |. Then, the global 
congestion of the placement solution P is given by: 
 

GC(P) =  max{ GCij } – min{ GCij }, 
 

for all i, j such that Bi and Bj are adjacent. 
 
2.3 2D Wirelength Objective 
 
We model the netlist NL using a hypergraph H = (V, EH), where the 
vertex set V represents cells, and the hyperedge set EH represents nets 
in NL. Each hyperedge is a non-empty subset of V. The x-span of 
hyperedge h, denoted hx, is defined as 

. The y-span, denoted 
h
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y, is calculated using the y-coordinates. The sum of x-span and y-
span of each hyperedge h is the half-perimeter of the 2D bounding 
box of h, denoted by hw. The wirelength W(P) of global placement 
solution P is the sum of hw for all hyperedges h in H. 
 
2.4 Via Objective 
 
We define the set of vias as a restriction on the set of edges EH in H. 
A via is a z-directional wire that connects components from multiple 
layers of the circuit. Given a hyperedge h, we say that h contains a 
via if and only if it contains cells c1 at (x1,y1,z1) and c2 at (x2,y2,z2) 
with z1 ≠ z2. To be precise, the via count of a hyperedge h, denoted 
hv, is defined as h . Our via 
objective is to minimize V(P), the sum of h

}|{min}|{max iihciihcv BczBcz ∈−∈= ∈∈

v for all hyperedges in H.   
 

The overall objective of our congestion-driven 2.5D PP problem is to 
minimize LC(P) and GC(P) while maintaining an acceptable V(P) 
and W(P). 
 
3. LOCAL CONGESTION-DRIVEN GLOBAL 
PLACEMENT (LC-CUT) 
 
The purpose of this algorithm is to balance the amount of local 
congestion while maintaining wirelength and via results comparable 
to those of pure mincut-based techniques. The approach involves 
modifying the gain function of a multi-level cutsize based partitioner 
to reduce local congestion.  
 
Our cut sequence is an extension of the two cut sequence techniques 
used in [11]. Their first method performs via-minimizing interlayer 
cuts (z cuts) before performing intralayer cuts (x, y) to minimize the 
2D wirelength. Their second cut sequence does the opposite, making 
all (x, y) cuts first before performing (z) cuts to achieve minimal 
wirelength. For the purposes of maintaining a balanced combination 
of via count and wirelength during our algorithm, we devise a new 
cut sequence, (z, x, y, z, x, y, ...). We experimentally determined that 
the best results in terms of balanced wirelength and via count were 
produced by this new cut sequence. 
 
Instead of focusing only on wirelength and via minimization while 
making cell moves, LC-CUT reduces the overall local congestion as 
necessary. The necessity of congestion-driven moves is determined 
by a variable called thresh, which controls the nature of gain 
computations. The input to this algorithm is a netlist NL(C, N), 
where C represents gates or clusters of gates, and N represents the 
nets that connect them. The output is a pair of blocks, Bi and Bj, each 
of which contains a subset of C. Figure 3 shows a pseudocode 
representation of this algorithm, which is explained in detail below. 
 
3.1 Initialization Phase 
 
The first stage of the LC-CUT algorithm involves the initialization 
of a bucket structure, which stores the weighted gains of all cells in 
C. In line 1 of Figure 3, all cells in the netlist NL(C, N) are inserted 
into either Bi or Bj such that the area constraints are satisfied. Each 
cell will have the opportunity to move from its current block to a 
neighboring block in the later stages of the algorithm. Line 2 
involves the computation of gα(ci), the cutsize gain. Additionally, the 
local congestion gain (defined below) is also computed. For a given 
cell c, moved from Bi to Bj, the change in congestion for blocks Bi 
and Bj are given by and , respectively. Then,  ic∆ jc∆
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Finally, the local congestion gain of moving c from its current block 
Bi to a neighboring block Bj is given by:  
          

ji ccBLCBLCBLCBLCcg jiji ∆∆ ++−−−= )()()()()(β  

 
In line 3, the local congestion values for the two blocks Bi and Bj are 
calculated. Line 4 involves the initialization of two important 
variables that will determine the frequency of congestion-driven 
moves. The first is thresh, for which the maximum cell degree must 
be a lower bound. We use this lower bound value plus 4% of LC(Bi) 
+ LC(Bj). This is to ensure the accuracy of congestion gain 
computations. The second is cong_mode, a boolean which, if true, 



will initiate local congestion-driven cell moves. Otherwise, the 
moves will be made purely on the basis of gα, the cutsize gain. In 
line 5, the difference between the local congestions of the two blocks 
is stored.  
 
3.2 Cell Movement Phase 
 
The second stage of the LC-CUT algorithm continuously moves 
cells of maximum gain until there is no more positive gain left. In 
line 7, the cell of maximum gain, c, is extracted from the bucket. 
Then, lines 8-9 make sure that moving c will not result in an area 
constraint violation. Line 10 updates Bi and Bj, making the cell 
move, and updates gα(ci) for all cells ci that neighbor c. Line 11 
checks to see if the balance gain computations are necessary, and if 
so, updates all gβ(ci), for all ci neighboring c, according to the above 
equation. These updates for local congestion gain can be done 
incrementally since the values of LC for each block are stored after 
every move and the calculations for and c  are trivial.  ic∆ j∆

    In line 12 of the LC-CUT algorithm, the overall gain is 
calculated as a weighted cost function of gα and gβ. If this gain value 
is less than zero, then the loop is exited and Bi and Bj are returned. 
Otherwise, the values of LC are updated, and ∆LCnew is becomes 
LC(Bi) – LC(Bj) (line 13). As shown in Figure 2, the magnitude of 
the difference between LC(Bi) and LC(Bj) determines whether or not 
congestion-based moves are made. Line 14 updates the value of 
cong_mode accordingly. 
 

 
 
    During the next portion of the algorithm, the values of gβ(c) are 
updated if necessary. Figure 2 shows the four regions of possible 
values for ∆LC: A, B, C and D. When ∆LC is in B or C, the 
congestions in Bi and Bj are relatively equal. However, when ∆LC is 
in A or D, one block is significantly more locally congested than the 
other. For this reason, local congestion is considered when ∆LC is in 
A or D, and it is ignored when ∆LC is in B or C. This serves to 
improve runtime since congestion gain calculations are unnecessary 
when ∆LC is in [-thresh, thresh]. 
 
Certain moves that cause ∆LC to shift from one particular region to 
another will necessitate a bucket re-initialization. In line 15, the 
moves A→D and D→A result in the re-computation of gβ(c) for 
every cell c and a bucket reset. This is necessary since the sign of ∆-
LC has changed, and according to the equation above, gβ(c) will 
change. In line 17, the algorithm checks for a cell move from {B, C} 
to {A, D}. For this case, local congestion must again be considered, 
so gβ is computed and the bucket is reset (line 18). Line 19 checks 
for a transition of ∆LC from {A, D} to {B, C}. In this situation, the 
local congestion gains for all cells are set to zero and the bucket is 
reset, and therefore contains only cutsize gain information. Line 21 
updates the value of ∆LC, line 22 is the stopping condition for the 
movement phase, and line 23 returns Bi and Bj.  
 

 

LC-CUT 
Input: NL(C, N) 
Output: Bi, Bj 
1. Insert cells from C into Bi  
 and Bj ∋ L < Bi,Bj < U 
2. Compute gα(ci) and gβ(ci) ∀ ci ∈ C, add to Bkt  
3. Initialize LC(Bi) and LC(Bj) 
4. Initialize thresh and cong_mode 
5. ∆LC ← LC(Bi) – LC(Bj); 
6. loop 
7.      c ← Bkt.extract_max; 
8.      if ( Moving c violates area constraint ) 
9.          goto loop 
10. Update Bi and Bj and gα(c) ∀ ci ∈ nets(c) 
11. Update gβ(ci) ∀ ci ∈ nets(c) if cong_mode is true 
12. gain ← wα⋅gα(c) + wβ⋅gβ(c); 
13. update LC(Bi), LC(Bj) and ∆LCnew 
14. cong_mode ← true if ∆LCnew> thresh, else false 
15. if ∆LC, ∆LCnew > thresh and ∆LC · ∆LCnew < 0 
16.      compute gβ(ci) ∀ ci ∈ C and reset Bkt; 
17. else if ∆LC ≤ thresh < ∆LCnew 
18.      compute gβ(ci) ∀ ci ∈ C and reset Bkt; 
19. else if ∆LCnew ≤ thresh < ∆LC     
20.      gβ(ci) ← 0 ∀ ci ∈ C and reset Bkt; 
21. ∆LC ← ∆LCnew ; 
22. until gain < 0 
23. return Bi, Bj; 

end LC-CUT 
 
Figure 3. LC-CUT, algorithm for local congestion.  
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Figure 2. Congestion-driven move control. 

 
 

 
3.3 Example Cell Move 
 
Figure 4 depicts an example of a stage in LC-CUT where the 
highlighted cell, K, is the one to be moved. Currently, LC(Bi) is 5 
and LC(Bj) is 3. Therefore, ∆LC is (5 – 3) = +2. Now, we will 
compute the values of gα(K) and gβ(K). 
 
   gα(K) = 1 – 1 – 1 = -1,   
       c = -2 and = +1, and     i∆ jc∆
   gβ(K) = | 5 – 3 | – | 5 – 3 + (-2) + (1) | = +1. 
 
After moving cell K, LC(Bi) = 3 and LC(Bj) = 4. Then,   
∆LCnew will be equal to (3 – 4) = -1. Additionally, the cell gains for A, 
B, C, D, E and H must be updated before the next cell move is made. 
 

A 
B 
K D C E H 

I J 

G F 
B1 B2 

Figure 4. Illustration of balance gain computation 

 



4. GLOBAL CONGESTION-BASED 
SOLUTION REFINEMENT 
 
4.1 Overview of the Approach  
 
We use a simulated annealing-based block movement technique for 
minimization of global wirelength, via count and overall congestion 
of the placement solution obtained above. Since local pair-wise 
congestion, 2D wirelength and via count have already been 
minimized, it is sufficient to swap entire blocks (rather than 
individual gates, or clusters of gates) and check for improvements 
over the previous solutions. We use the min-cut results as the initial 
solution and compute initial temperature T0. The temperature is then 
decremented in a standard one-parameter exponential format (Ti+1 = 
αTi, α < 1). We let N(T) be the number of random block swaps made 
at every temperature T. The cost C after the Ith move made at 
temperature T is computed using the following linear function of 
wirelength, via count and global congestion: 
 

C[I(T)] = a1·∆V(I) + a2·∆W(I) + a3·∆GC(I). 
 

Here, 
 
• I(T) < N(T) represents the Ith move made at temperature T, 
• ∆V(I) is the total change in via count after the Ith move, 
• ∆W(I) is the total change in wirelength after the Ith move,  
• ∆GC(I) is the total change in global congestion after the Ith 

move,  and 
• a1, a2, a3 are graph-dependent experimentally obtained weight 

values. 
  
As is standard with all annealing algorithms, improvements are 
guaranteed only at a significant runtime expense. In order to make 
the procedure as efficient as possible, it becomes necessary to 
perform highly optimized incremental evaluation, which is described 
in detail below.     
 
4.2 Incremental Evaluation: 
 
a) Congestion 
 
Recall the global congestion metric: Given a boundary <Bi, Bj> 
between neighboring blocks Bi and Bj, we defined the boundary 
congestion to be the number of hyperedges crossing that boundary, 
denoted by |Hij|. Consider such a hyperedge h in Hij. Let its bounding 
box lie between (xmin, ymin, zmin) and (xmax, ymax, zmax), as shown in 
Figure 5 below.  
 

Then, we assume that h is routed randomly along one of 6 shortest 
outer edge paths. This model is exact for two-pin nets and fairly 
accurate for three-pin nets, which comprise a clear majority of all 
nets in any given benchmark circuit. On average, 83% of all nets 
in a benchmark circuit are either two-pin nets (69%) or three-pin 
nets (14%). Note that when two blocks are swapped, boundaries 
need to be updated only for nets in Hij. This property allows us to 
conveniently ignore all nets that are not incident upon the two 
blocks central to the current move, thereby achieving remarkable 
improvements in overall runtime. Once Bi and Bj have been 
randomly selected for the Ith move, the boundary congestion 
contribution of all nets in the corresponding Hij is computed. The 

difference in global congestions of the solutions before and after 
the move is measured, and ∆C(I) is updated. 

 

 
Figure 5. 3D Bounding Box Routing paths (eg. A-L3-L5-B). 

 
 

 
 
b) Wirelength and Via Count 
 
Given Bi and Bj, the blocks to be swapped for the Ith move at 
temperature T, we only update hw and hv, the wirelength and via 
contributions of every hyperedge h in Hij. Thus, ∆V(I) and ∆W(I) 
can be incrementally updated at relatively low runtime costs. 
 

5. EXPER
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Table 1. Benchmark circuits. 
 

ckt gates nets 
s5378 2828 3026 
s9234 5597 5844 
s13207 8027 8727 
s15850 9786 10397 
s35932 16353 18116 
s38417 22397 24061 
s38584 19407 20871 
b14_opt 5401 5678 
b15_opt 7092 7577 
b17_opt 22854 24305 
b20_opt 11979 12501 
b21_opt 12156 12678 
b22_opt 17351 18086 
 
IMENTAL RESULTS 

s were implemented in C++/STL, compiled with gcc 
3, and run on Pentium III 746 MHz machines. The 

t consisted of seven circuits from ISCAS89 and six 
ITC99 suites. The relevant statistical information of 
rk circuits is shown in Table 1. We ran our 
sing 4 x 4 x 4 block placement as well as 8 x 8 x 4 
nt. The pure mincut method was implemented using 

ilevel recursive bipartitioning with a (z, x, y, … ) cut 
ich is a balanced combination of the two techniques 
11]. The LC-CUT algorithm was run under the same 
 the aforementioned, with a wα value of 3.5 and a wβ 



value of 1. As shown in Figure 6, these weights tend to work best 
in terms of the overall quality of the solution.  
 
5.1 Impact of LC-CUT on Congestion  
 
As seen in Tables 2 and 3, LC-CUT achieves significant reduction 
in overall local congestion when compared to the traditional 
mincut approach. However, there is a slight increase in wirelength 
and via count, which adversely impacts the global congestion. 
 
5.2 Impact of Simulated Annealing on Congestion 
 
Simulated annealing achieves remarkable decrease in the global 
congestion without impacting local congestion. Due to the nature 
of the combined cost function, the wirelength and via count are 
also reduced to within 15% of the original mincut results.  

 
6. CONCLUSIONS 
 
We devised a two-step approach to reduce local and global 
congestion for three dimensional Integrated Circuits without 
adversely impacting the pure mincut wirelength and via results. 
The LC-CUT algorithm reduced local congestion by over 44% on 
average. The simulated annealing-based refinement improved 
global congestion by over 16% without affecting LC-CUT’s local 
congestion results. We also devised a new 3D cut sequence that 
allows for a balanced wirelength and via count. Our solution is 
flexible with respect to the desired amount of congestion 
minimization. We are currently developing efficient routing 
techniques to generate more accurate global congestion metrics. 
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Figure 6. Impact of weight ratio on LC 

 
 

Table 2. 4 x 4 x 4 Global Placement Results, with 2D wirelength (W), via count (V),  
local congestion (LC) and global congestion (GC) 

  
 Pure Mincut LC-CUT LC-CUT with SA 

ckts W V LC GC W V LC GC W V LC  GC  
s5378 934 259 36 23 968 283 23 20 912 288 23 15 
s15850 1072 330 162 28 1335 431 77 33 1245 427 77 26 
s9234 888 253 123 33 1087 269 80 25 1169 252 80 19 
s13207 967 271 297 32 1116 390 77 27 1022 379 77 20 

b14_opt 2126 657 83 55 2635 808 31 56 2299 822 31 42 
b15_opt 3365 915 116 89 3946 1181 62 89 3598 1186 62 78 
b17_opt 6327 1681 350 176 9044 2415 201 220 7945 1755 201 161 
b20_opt 3871 1071 226 75 4431 1085 67 80 4001 989 67 68 
b21_opt 3630 1117 221 75 4199 1080 46 91 3783 1037 46 71 
b22_opt 4541 1305 255 122 5076 1779 109 103 4812 1269 109 85 
s38417 1403 421 242 33 1972 768 152 44 1574 794 152 32 
s35932 1002 284 159 28 1397 428 150 39 1240 419 150 28 
s38584 1770 504 281 43 2338 818 148 77 2207 688 148 41 

avg 2454 698 196 62 3042 903 94 70 2754 793 94 53 
wt avg 1.00 1.00 1.00 1.00 1.24 1.29 0.48 1.11 1.12 1.14 0.48 0.84 
time(s) 1864 15289 37784 

 
 

 



Table 3. 8 x 8 x 4 Global Placement Results, with 2D wirelength (W), via count (V),  
local congestion (LC) and global congestion (GC) 

 
 Pure Mincut LC-CUT LC-CUT with SA 

ckts W V LC  GC W V LC GC W V LC GC 
s5378 2193 229 22 26 2324 283 15 32 2105 265 15 16 
s15850 2617 278 67 33 3139 399 36 50 2784 392 36 24 
s9234 2183 245 61 34 2557 305 33 37 2039 308 33 31 
s13207 2461 262 90 36 3002 382 35 45 2941 286 35 32 

b14_opt 5298 700 31 60 6447 866 21 95 6355 851 21 48 
b15_opt 7759 1023 43 90 8939 1112 31 101 8407 1004 31 88 
b17_opt 15407 1681 123 182 20549 2989 84 226 16564 2344 84 159 
b20_opt 9332 1071 59 97 10369 1292 31 140 10054 1148 31 68 
b21_opt 8963 1122 66 88 10280 1174 34 140 9345 1014 34 65 
b22_opt 10975 1346 92 143 13387 1773 53 177 12144 1058 53 97 
s38417 3818 514 141 40 5138 769 67 72 4991 694 67 31 
s35932 3113 354 71 35 3879 459 44 60 3208 415 44 29 
s38584 4680 574 102 63 6426 798 55 92 6219 582 55 59 

avg 6061 723 74 71 7418 969 41 97 6704 797 41 57 
wt avg 1.00 1.00 1.00 1.00 1.22 1.34 0.56 1.37 1.11 1.10 0.56 0.81 
time(s) 2034 21151 51746 
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