
Congestion-Driven Global Placement for Three Dimensional
VLSI Circuits

Vidit Nanda, Karthik Balakrishnan, Mongkol Ekpanyapong, and Sung Kyu Lim

School of Electrical and Computer Engineering,

Georgia Institute of Technology
{gte272u,gte245v,pop,limsk}@ece.gatech.edu

ABSTRACT

The recent popularity of 3D IC technology stems from its enhanced
performance capabilities and reduced wiring length. However, the
problem of thermal dissipation is magnified due to the nature of
these layered technologies. In this paper, we develop techniques to
reduce both the local and global congestions of 3D circuit designs in
order to alleviate thermal issues. Our approach consists of two
phases. First, we use a multilevel min-cut based approach with a
modified gain function in order to minimize the local congestion.
Then, we perform simulated annealing to reduce the circuit’s global
congestion. Experimental results show that our local congestion is
reduced by an average of over 44% and global congestion is reduced
by over 16%. Moreover, we only see an 11% increase in the wiring
length and the number of vias required.

1. INTRODUCTION

With the recent advent of three-dimensional Integrated Circuit
technologies, there has been a positive impact on the performance
and wiring length of these ICs. Typically, the layered placement of
transistors in multiple planes (i.e. 2.5D placement) allows for a more
compact chip with inherently better performance than one fabricated
with traditional 2D placement techniques. However, the heat
generation from a given area increases with increasing power density
within that area [13]. Therefore, the problem of local and global wire
congestion in these 2.5D chips is paramount. If a chip requires a
large amount routing resources within a local area, the resulting
thermal dissipation within that area will increase significantly. For
example, consider Figure 1. Clearly, the circuit on the left is more
problematic than the one on the right in terms of thermal
considerations.

Previous work in the area of 2.5D placement has focused on
minimizing the intra-layer wirelength and the number of inter-layer
connections, or “vias.” The results of [11] indicate an improvement
in overall wirelength when implementing the 2.5D layered placement
framework instead of equivalent traditional 2D placement. Other
work has employed stochastic methods to determine the wirelength
distributions, trends in power consumption, and performance
capabilities of 2.5D-Ics [1,2,3,4,5]. The conclusions derived from
stochastic analysis confirm that 2.5D chips will provide better
performance with larger compaction, but also predict a non-trivial
increase in thermal dissipation due to the current state of heat sink
technology.

In this paper, we provide a technique to reduce both local and global
congestion in a 2.5D chip in order to lessen the inherent thermal
costs of the chip. Our approach involves a two-stage refinement
procedure: initially, we use a multilevel min-cut based method to
minimize the congestion within confined areas of the chip. This is
followed by a simulated annealing-based technique which works to
minimize the amount of congestion created from global wires. We
show that our congestion minimization does not have any significant
negative impact on the wirelength or the number of vias.

The rest of this paper is organized as follows. Section 2 provides
preliminaries of our approach. Section 3 discusses our min-cut based
approach to reduce local wire congestion. Section 4 explains our
simulated annealing approach aimed for global wire congestion.
Section 5 provides experimental results. Section 6 concludes our
paper and describes the ongoing research in this field.

2. PROBLEM FORMULATION

2.1 Physical Planning for 2.5D Layouts

Given a sequential gate-level netlist NL(C, N), where C is the set of
cells representing gates, clusters and flip-flops, and N is the set of
nets connecting the cells, the purpose of the 2.5D Physical Planning
problem is to assign the cells in NL to a given m x n x p (=K) slots
while preserving area constraints. The 2.5D Physical Planning
problem has a solution P: C→ B, wherein each cell in C is assigned
to a unique block B ∈ {B1(x1,y1,z1), B2(x2,y2,z2),..., BK(xK,yK,zK)},

Figure 1. Balanced vs unbalanced local/global wire
congestion for 3D circuits. Top-down and side views are
shown.

where B denotes the set of blocks, and (xi,yi,zi) represents the
geometric locations of Bi, with area constraint A(L,U), for 1 ≤ i ≤ K.
The 2.5D-PP solution must satisfy the following conditions:

1. Bi ⊂ C and L ≤ |Bi| ≤ U
2. B1 ∪ B2 ∪ … ∪ Bk =C.
3. Bi ∩ Bj =∅ for i ≠ j.

2.2 Congestion Objective

a. Local Congestion

Given a block B from the physical planning solution, we define the
local wiring cost LC(B) as:

∑
≠∩∋∈

−=
φBnNn
i

ii

nBLC 1)(

This value corresponds to the minimum number of wires required to
construct the tree representation of a net of size |ni|. Then, the local
congestion of the entire solution P is given by:

)}(min{)}(max{)(ji BLCBLCPLC −= , 1 ≤ i, j ≤ K

b. Global Congestion

For any two adjacent blocks Bi, Bj from the placement solution
above, we denote the common incident hyperedge set by Hij =
{h∈H: h∩ Bi ≠ ∅ and h B∩ j ≠ ∅ }. Then, the global congestion
at the boundary <Bi, Bj> is measured as GCij = | Hij |. Then, the global
congestion of the placement solution P is given by:

GC(P) = max{ GCij } – min{ GCij },

for all i, j such that Bi and Bj are adjacent.

2.3 2D Wirelength Objective

We model the netlist NL using a hypergraph H = (V, EH), where the
vertex set V represents cells, and the hyperedge set EH represents nets
in NL. Each hyperedge is a non-empty subset of V. The x-span of
hyperedge h, denoted hx, is defined as

. The y-span, denoted
h

}|{min}|{max iihciihcx BcxBcxh ∈−∈= ∈∈

y, is calculated using the y-coordinates. The sum of x-span and y-
span of each hyperedge h is the half-perimeter of the 2D bounding
box of h, denoted by hw. The wirelength W(P) of global placement
solution P is the sum of hw for all hyperedges h in H.

2.4 Via Objective

We define the set of vias as a restriction on the set of edges EH in H.
A via is a z-directional wire that connects components from multiple
layers of the circuit. Given a hyperedge h, we say that h contains a
via if and only if it contains cells c1 at (x1,y1,z1) and c2 at (x2,y2,z2)
with z1 ≠ z2. To be precise, the via count of a hyperedge h, denoted
hv, is defined as h . Our via
objective is to minimize V(P), the sum of h

}|{min}|{max iihciihcv BczBcz ∈−∈= ∈∈

v for all hyperedges in H.

The overall objective of our congestion-driven 2.5D PP problem is to
minimize LC(P) and GC(P) while maintaining an acceptable V(P)
and W(P).

3. LOCAL CONGESTION-DRIVEN GLOBAL
PLACEMENT (LC-CUT)

The purpose of this algorithm is to balance the amount of local
congestion while maintaining wirelength and via results comparable
to those of pure mincut-based techniques. The approach involves
modifying the gain function of a multi-level cutsize based partitioner
to reduce local congestion.

Our cut sequence is an extension of the two cut sequence techniques
used in [11]. Their first method performs via-minimizing interlayer
cuts (z cuts) before performing intralayer cuts (x, y) to minimize the
2D wirelength. Their second cut sequence does the opposite, making
all (x, y) cuts first before performing (z) cuts to achieve minimal
wirelength. For the purposes of maintaining a balanced combination
of via count and wirelength during our algorithm, we devise a new
cut sequence, (z, x, y, z, x, y, ...). We experimentally determined that
the best results in terms of balanced wirelength and via count were
produced by this new cut sequence.

Instead of focusing only on wirelength and via minimization while
making cell moves, LC-CUT reduces the overall local congestion as
necessary. The necessity of congestion-driven moves is determined
by a variable called thresh, which controls the nature of gain
computations. The input to this algorithm is a netlist NL(C, N),
where C represents gates or clusters of gates, and N represents the
nets that connect them. The output is a pair of blocks, Bi and Bj, each
of which contains a subset of C. Figure 3 shows a pseudocode
representation of this algorithm, which is explained in detail below.

3.1 Initialization Phase

The first stage of the LC-CUT algorithm involves the initialization
of a bucket structure, which stores the weighted gains of all cells in
C. In line 1 of Figure 3, all cells in the netlist NL(C, N) are inserted
into either Bi or Bj such that the area constraints are satisfied. Each
cell will have the opportunity to move from its current block to a
neighboring block in the later stages of the algorithm. Line 2
involves the computation of gα(ci), the cutsize gain. Additionally, the
local congestion gain (defined below) is also computed. For a given
cell c, moved from Bi to Bj, the change in congestion for blocks Bi
and Bj are given by and , respectively. Then, ic∆ jc∆

}){\()(cBLCBLCc iii −=∆ , and c }){\()(cBLCBLC jjj −=∆

Finally, the local congestion gain of moving c from its current block
Bi to a neighboring block Bj is given by:

ji ccBLCBLCBLCBLCcg jiji ∆∆ ++−−−=)()()()()(β

In line 3, the local congestion values for the two blocks Bi and Bj are
calculated. Line 4 involves the initialization of two important
variables that will determine the frequency of congestion-driven
moves. The first is thresh, for which the maximum cell degree must
be a lower bound. We use this lower bound value plus 4% of LC(Bi)
+ LC(Bj). This is to ensure the accuracy of congestion gain
computations. The second is cong_mode, a boolean which, if true,

will initiate local congestion-driven cell moves. Otherwise, the
moves will be made purely on the basis of gα, the cutsize gain. In
line 5, the difference between the local congestions of the two blocks
is stored.

3.2 Cell Movement Phase

The second stage of the LC-CUT algorithm continuously moves
cells of maximum gain until there is no more positive gain left. In
line 7, the cell of maximum gain, c, is extracted from the bucket.
Then, lines 8-9 make sure that moving c will not result in an area
constraint violation. Line 10 updates Bi and Bj, making the cell
move, and updates gα(ci) for all cells ci that neighbor c. Line 11
checks to see if the balance gain computations are necessary, and if
so, updates all gβ(ci), for all ci neighboring c, according to the above
equation. These updates for local congestion gain can be done
incrementally since the values of LC for each block are stored after
every move and the calculations for and c are trivial. ic∆ j∆

 In line 12 of the LC-CUT algorithm, the overall gain is
calculated as a weighted cost function of gα and gβ. If this gain value
is less than zero, then the loop is exited and Bi and Bj are returned.
Otherwise, the values of LC are updated, and ∆LCnew is becomes
LC(Bi) – LC(Bj) (line 13). As shown in Figure 2, the magnitude of
the difference between LC(Bi) and LC(Bj) determines whether or not
congestion-based moves are made. Line 14 updates the value of
cong_mode accordingly.

 During the next portion of the algorithm, the values of gβ(c) are
updated if necessary. Figure 2 shows the four regions of possible
values for ∆LC: A, B, C and D. When ∆LC is in B or C, the
congestions in Bi and Bj are relatively equal. However, when ∆LC is
in A or D, one block is significantly more locally congested than the
other. For this reason, local congestion is considered when ∆LC is in
A or D, and it is ignored when ∆LC is in B or C. This serves to
improve runtime since congestion gain calculations are unnecessary
when ∆LC is in [-thresh, thresh].

Certain moves that cause ∆LC to shift from one particular region to
another will necessitate a bucket re-initialization. In line 15, the
moves A→D and D→A result in the re-computation of gβ(c) for
every cell c and a bucket reset. This is necessary since the sign of ∆-
LC has changed, and according to the equation above, gβ(c) will
change. In line 17, the algorithm checks for a cell move from {B, C}
to {A, D}. For this case, local congestion must again be considered,
so gβ is computed and the bucket is reset (line 18). Line 19 checks
for a transition of ∆LC from {A, D} to {B, C}. In this situation, the
local congestion gains for all cells are set to zero and the bucket is
reset, and therefore contains only cutsize gain information. Line 21
updates the value of ∆LC, line 22 is the stopping condition for the
movement phase, and line 23 returns Bi and Bj.

LC-CUT
Input: NL(C, N)
Output: Bi, Bj
1. Insert cells from C into Bi
 and Bj ∋ L < Bi,Bj < U
2. Compute gα(ci) and gβ(ci) ∀ ci ∈ C, add to Bkt
3. Initialize LC(Bi) and LC(Bj)
4. Initialize thresh and cong_mode
5. ∆LC ← LC(Bi) – LC(Bj);
6. loop
7. c ← Bkt.extract_max;
8. if (Moving c violates area constraint)
9. goto loop
10. Update Bi and Bj and gα(c) ∀ ci ∈ nets(c)
11. Update gβ(ci) ∀ ci ∈ nets(c) if cong_mode is true
12. gain ← wα⋅gα(c) + wβ⋅gβ(c);
13. update LC(Bi), LC(Bj) and ∆LCnew
14. cong_mode ← true if ∆LCnew> thresh, else false
15. if ∆LC, ∆LCnew > thresh and ∆LC · ∆LCnew < 0
16. compute gβ(ci) ∀ ci ∈ C and reset Bkt;
17. else if ∆LC ≤ thresh < ∆LCnew
18. compute gβ(ci) ∀ ci ∈ C and reset Bkt;
19. else if ∆LCnew ≤ thresh < ∆LC
20. gβ(ci) ← 0 ∀ ci ∈ C and reset Bkt;
21. ∆LC ← ∆LCnew ;
22. until gain < 0
23. return Bi, Bj;

end LC-CUT

Figure 3. LC-CUT, algorithm for local congestion.

∆LC
0 -thresh thresh

A B C D

Figure 2. Congestion-driven move control.

3.3 Example Cell Move

Figure 4 depicts an example of a stage in LC-CUT where the
highlighted cell, K, is the one to be moved. Currently, LC(Bi) is 5
and LC(Bj) is 3. Therefore, ∆LC is (5 – 3) = +2. Now, we will
compute the values of gα(K) and gβ(K).

 gα(K) = 1 – 1 – 1 = -1,
 c = -2 and = +1, and i∆ jc∆
 gβ(K) = | 5 – 3 | – | 5 – 3 + (-2) + (1) | = +1.

After moving cell K, LC(Bi) = 3 and LC(Bj) = 4. Then,
∆LCnew will be equal to (3 – 4) = -1. Additionally, the cell gains for A,
B, C, D, E and H must be updated before the next cell move is made.

A
B
K D C E H

I J

G F
B1 B2

Figure 4. Illustration of balance gain computation

4. GLOBAL CONGESTION-BASED
SOLUTION REFINEMENT

4.1 Overview of the Approach

We use a simulated annealing-based block movement technique for
minimization of global wirelength, via count and overall congestion
of the placement solution obtained above. Since local pair-wise
congestion, 2D wirelength and via count have already been
minimized, it is sufficient to swap entire blocks (rather than
individual gates, or clusters of gates) and check for improvements
over the previous solutions. We use the min-cut results as the initial
solution and compute initial temperature T0. The temperature is then
decremented in a standard one-parameter exponential format (Ti+1 =
αTi, α < 1). We let N(T) be the number of random block swaps made
at every temperature T. The cost C after the Ith move made at
temperature T is computed using the following linear function of
wirelength, via count and global congestion:

C[I(T)] = a1·∆V(I) + a2·∆W(I) + a3·∆GC(I).

Here,

• I(T) < N(T) represents the Ith move made at temperature T,
• ∆V(I) is the total change in via count after the Ith move,
• ∆W(I) is the total change in wirelength after the Ith move,
• ∆GC(I) is the total change in global congestion after the Ith

move, and
• a1, a2, a3 are graph-dependent experimentally obtained weight

values.

As is standard with all annealing algorithms, improvements are
guaranteed only at a significant runtime expense. In order to make
the procedure as efficient as possible, it becomes necessary to
perform highly optimized incremental evaluation, which is described
in detail below.

4.2 Incremental Evaluation:

a) Congestion

Recall the global congestion metric: Given a boundary <Bi, Bj>
between neighboring blocks Bi and Bj, we defined the boundary
congestion to be the number of hyperedges crossing that boundary,
denoted by |Hij|. Consider such a hyperedge h in Hij. Let its bounding
box lie between (xmin, ymin, zmin) and (xmax, ymax, zmax), as shown in
Figure 5 below.

Then, we assume that h is routed randomly along one of 6 shortest
outer edge paths. This model is exact for two-pin nets and fairly
accurate for three-pin nets, which comprise a clear majority of all
nets in any given benchmark circuit. On average, 83% of all nets
in a benchmark circuit are either two-pin nets (69%) or three-pin
nets (14%). Note that when two blocks are swapped, boundaries
need to be updated only for nets in Hij. This property allows us to
conveniently ignore all nets that are not incident upon the two
blocks central to the current move, thereby achieving remarkable
improvements in overall runtime. Once Bi and Bj have been
randomly selected for the Ith move, the boundary congestion
contribution of all nets in the corresponding Hij is computed. The

difference in global congestions of the solutions before and after
the move is measured, and ∆C(I) is updated.

Figure 5. 3D Bounding Box Routing paths (eg. A-L3-L5-B).

b) Wirelength and Via Count

Given Bi and Bj, the blocks to be swapped for the Ith move at
temperature T, we only update hw and hv, the wirelength and via
contributions of every hyperedge h in Hij. Thus, ∆V(I) and ∆W(I)
can be incrementally updated at relatively low runtime costs.

5. EXPER

Our algorithm
v2.96 with –O
benchmark se
circuits from
the benchma
experiments u
block placeme
our own mult
sequence, wh
suggested in [
framework as
Table 1. Benchmark circuits.

ckt gates nets
s5378 2828 3026
s9234 5597 5844
s13207 8027 8727
s15850 9786 10397
s35932 16353 18116
s38417 22397 24061
s38584 19407 20871
b14_opt 5401 5678
b15_opt 7092 7577
b17_opt 22854 24305
b20_opt 11979 12501
b21_opt 12156 12678
b22_opt 17351 18086

IMENTAL RESULTS

s were implemented in C++/STL, compiled with gcc
3, and run on Pentium III 746 MHz machines. The

t consisted of seven circuits from ISCAS89 and six
ITC99 suites. The relevant statistical information of
rk circuits is shown in Table 1. We ran our
sing 4 x 4 x 4 block placement as well as 8 x 8 x 4
nt. The pure mincut method was implemented using

ilevel recursive bipartitioning with a (z, x, y, …) cut
ich is a balanced combination of the two techniques
11]. The LC-CUT algorithm was run under the same
 the aforementioned, with a wα value of 3.5 and a wβ

value of 1. As shown in Figure 6, these weights tend to work best
in terms of the overall quality of the solution.

5.1 Impact of LC-CUT on Congestion

As seen in Tables 2 and 3, LC-CUT achieves significant reduction
in overall local congestion when compared to the traditional
mincut approach. However, there is a slight increase in wirelength
and via count, which adversely impacts the global congestion.

5.2 Impact of Simulated Annealing on Congestion

Simulated annealing achieves remarkable decrease in the global
congestion without impacting local congestion. Due to the nature
of the combined cost function, the wirelength and via count are
also reduced to within 15% of the original mincut results.

6. CONCLUSIONS

We devised a two-step approach to reduce local and global
congestion for three dimensional Integrated Circuits without
adversely impacting the pure mincut wirelength and via results.
The LC-CUT algorithm reduced local congestion by over 44% on
average. The simulated annealing-based refinement improved
global congestion by over 16% without affecting LC-CUT’s local
congestion results. We also devised a new 3D cut sequence that
allows for a balanced wirelength and via count. Our solution is
flexible with respect to the desired amount of congestion
minimization. We are currently developing efficient routing
techniques to generate more accurate global congestion metrics.

Impact of LC-CUT on LC, W, and V

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.00 2.50 3.00 3.50

Cut to Congestion Weight Ratio

W
ire

 /
Vi

a
/ L

C

4x4x4 wire
8x8x4 wire
4x4x4 via
8x8x4 via
4x4x4 lc
8x8x4 lc

Figure 6. Impact of weight ratio on LC

Table 2. 4 x 4 x 4 Global Placement Results, with 2D wirelength (W), via count (V),
local congestion (LC) and global congestion (GC)

 Pure Mincut LC-CUT LC-CUT with SA

ckts W V LC GC W V LC GC W V LC GC
s5378 934 259 36 23 968 283 23 20 912 288 23 15
s15850 1072 330 162 28 1335 431 77 33 1245 427 77 26
s9234 888 253 123 33 1087 269 80 25 1169 252 80 19
s13207 967 271 297 32 1116 390 77 27 1022 379 77 20

b14_opt 2126 657 83 55 2635 808 31 56 2299 822 31 42
b15_opt 3365 915 116 89 3946 1181 62 89 3598 1186 62 78
b17_opt 6327 1681 350 176 9044 2415 201 220 7945 1755 201 161
b20_opt 3871 1071 226 75 4431 1085 67 80 4001 989 67 68
b21_opt 3630 1117 221 75 4199 1080 46 91 3783 1037 46 71
b22_opt 4541 1305 255 122 5076 1779 109 103 4812 1269 109 85
s38417 1403 421 242 33 1972 768 152 44 1574 794 152 32
s35932 1002 284 159 28 1397 428 150 39 1240 419 150 28
s38584 1770 504 281 43 2338 818 148 77 2207 688 148 41

avg 2454 698 196 62 3042 903 94 70 2754 793 94 53
wt avg 1.00 1.00 1.00 1.00 1.24 1.29 0.48 1.11 1.12 1.14 0.48 0.84
time(s) 1864 15289 37784

Table 3. 8 x 8 x 4 Global Placement Results, with 2D wirelength (W), via count (V),
local congestion (LC) and global congestion (GC)

 Pure Mincut LC-CUT LC-CUT with SA

ckts W V LC GC W V LC GC W V LC GC
s5378 2193 229 22 26 2324 283 15 32 2105 265 15 16
s15850 2617 278 67 33 3139 399 36 50 2784 392 36 24
s9234 2183 245 61 34 2557 305 33 37 2039 308 33 31
s13207 2461 262 90 36 3002 382 35 45 2941 286 35 32

b14_opt 5298 700 31 60 6447 866 21 95 6355 851 21 48
b15_opt 7759 1023 43 90 8939 1112 31 101 8407 1004 31 88
b17_opt 15407 1681 123 182 20549 2989 84 226 16564 2344 84 159
b20_opt 9332 1071 59 97 10369 1292 31 140 10054 1148 31 68
b21_opt 8963 1122 66 88 10280 1174 34 140 9345 1014 34 65
b22_opt 10975 1346 92 143 13387 1773 53 177 12144 1058 53 97
s38417 3818 514 141 40 5138 769 67 72 4991 694 67 31
s35932 3113 354 71 35 3879 459 44 60 3208 415 44 29
s38584 4680 574 102 63 6426 798 55 92 6219 582 55 59

avg 6061 723 74 71 7418 969 41 97 6704 797 41 57
wt avg 1.00 1.00 1.00 1.00 1.22 1.34 0.56 1.37 1.11 1.10 0.56 0.81
time(s) 2034 21151 51746

7. REFERENCES

[1] Rongtian Zhang, Kaushik Roy, Cheng-Kok Koh, and
David B. Janes, ``Stochastic Wire-Length Distribution
and Delay Distribution of 3-Dimensional Circuits,'' Proc.
International Conference on Computer-Aided Design,
November 2000, pp. 208-213.

[2] Rongtian Zhang, Kaushik Roy, Cheng-Kok Koh, and
David B. Janes, ``Power Trend and Performance
Characterization of 3-Dimensional Integration for Future
Technology Generations,'' Proc. 2001 International
Symposium on Quality of Electronic Design, March
2001, pp. 217-222.

[3] Rongtian Zhang, Kaushik Roy, Cheng-Kok Koh, and
David B. Janes, ``Stochastic Interconnect Modeling,
Power Trends, and Performance Characterization of 3-
Dimensional Circuits,'' IEEE Trans. on Electron
Devices, 48(4), April 2001, pp. 638-652.

[4] Rongtian Zhang, Kaushik Roy, Cheng-Kok Koh, and
David B. Janes, ``Power Trend and Performance
Characterization of 3-Dimensional Integration,'' Proc.
2001 International Symposium on Circuits and Systems,
May 2001, Volume 4, pp. 414-417.

[5] Rongtian Zhang, Kaushik Roy, Cheng-Kok Koh, and
David B. Janes, ``Exploring SOI Device Structures and
Interconnect Architectures for 3-Dimensional
Integration,'' Proc. 2001 Design Automation Conference,
June 2001, pp. 846-851.

[6] Shukri J. Souri, Kaustav Banerjee, Amit Mehrotra, and
Krishna C. Saraswat, "Multiple Si Layer ICs:
Motivation, Performance Analysis, and Design
Implications", DAC00.

[7] M Alexander, J Cohoon, J Colflesh, J Karro, E Peters,
and G Robins, "Placement and Routing for Three-
Dimensional FPGAs",

[8] Arnold Rosenberg, "Three-Dimensional VLSI: A Case
Study", Journal of ACM, 1983.

[9] Thitipong Tanprasert, "An Analytical 3-D Placement
That Reserves Routing Space", ISCAS00.

[10] Yangdong Deng, Wojciech Maly, "Physical Design of
the 2.5D Stacked System", ICCD03.

[11] Shamik Das, Anantha Chandrakasan, Rafael Reif,
"Design Tools for 3-D Integrated Circuits", ASPDAC03.

[12] Krishna C. Saraswat, K. Banerjee, A. R. Joshi, P.
Kalavade, P. Kapur and S. J. Souri, " 3-D ICs:
Motivation, Performance Analysis, and
Technology."ESSCIRS 2000

[13] K. Banerjee,P. Kapur, S. J. Souri ,and Krishna C.
Saraswat, " 3-D ICs: A Novel Chip Design for
Improving Deep-Submicrometer Interconnect
Performance and Systems-on-Chip
Integration".Proceedings IEEE Vol. 89, 2001

[14] S. J. Souri,K. Banerjee,A. Mehrotra, ,and Krishna C.
Saraswat, " Multiple Si Layer ICS: Motivation,
Performance Analysiis, and Design Implications". DAC
2000 (pdf)

[15] M. C. Yildiz, and P. H. Madden, , " Improved Cut
Sequences for Partitioning Based Placement". DAC01

[16] Maogang Wang and Majid Sarrafzadeh, "Congestion
Minimization During Placement," Proceedings of
International Symposium on Physical Design,
1999

[17] Xiaojian Yang, Ryan Kastner, and Majid Sarrafzadeh,
"Congestion Reduction During Placement Based on
Integer Programming", in Proc. International
Conference on Computer-Aided Design, 2001.

http://www.gtcad.gatech.edu/share/3d-place/souri00multiple.pdf

