
Discovering and Ranking Data Intensive Web Services:
A Source-Biased Approach

James Caverlee, Ling Liu, and Daniel Rocco
Georgia Institute of Technology

College of Computing
Atlanta, GA 30332, U.S.A.

{caverlee, lingliu, rockdj}@cc.gatech.edu

ABSTRACT
This paper presents a novel source-biased approach to auto-
matically discover and rank relevant data intensive web ser-
vices. It supports a service-centric view of the Web through
source-biased probing and source-biased relevance detection
and ranking metrics. Concretely, our approach is capable of
answering source-centric queries by focusing on the nature
and degree of the topical relevance of one service to others.
This source-biased probing allows us to determine in very
few interactions whether a target service is relevant to the
source by probing the target with very precise probes and
then ranking the relevant services discovered based on a set
of metrics we define. Our metrics allow us to determine the
nature and degree of the relevance of one service to another.
We also introduce a performance enhancement to our basic
approach called source-biased probing with focal terms. We
also extend the basic probing framework to a more gener-
alized service neighborhood graph model. We discuss the
semantics of the neighborhood graph, how we may reason
about the relationships among multiple services, and how
we rank services based on the service neighborhood graph
model. We also report initial experiments to show the effec-
tiveness of our approach.

1. INTRODUCTION
The past few years have witnessed great strides in the ac-

cessibility and manageability of vast amounts of Web data.
In particular, the widespread adoption of general purpose
search engines like Google and AllTheWeb has added a layer
of organization to an otherwise unwieldy medium. Typi-
cally, a search engine is optimized to identify a ranked list
of Web pages relevant to a user query. This page-centric
view of the Web has proven immensely successful.

But with the rise of high-quality data intensive web ser-
vices on the so-called Deep Web (or Hidden Web) and the
emergence of the web services paradigm, there is a growing
demand for a new class of queries optimized not on the page

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

level, but on the more general service level. Rather than
requesting the top-ranked Web pages containing a certain
keyword, say “autism”, a user may be more interested in
service-centric queries. For example, a user familiar with
the popular online medical literature site PubMed may be
interested in posing some of the following queries:

• What other data services are most similar to PubMed?

• Find other data services more general than PubMed?
Or more specialized?

• Find any other BLAST data services that complement
NCBI BLAST’s coverage?

We could also imagine extending these single-source-biased
service queries to more sophisticated ones that cover multi-
ple services. For example, a user interested in sports medicine
may want to discover services that are most similar to both
PubMed and the sports-related site ESPN. Additionally,
a user may simply be interested in discovering any non-
obvious relationships that may exist among a group of data
intensive web services.

Currently, there are no effective means to answer such
service-centric queries without relying on significant human
intervention or hand-tuned categorization schemes. Search
engines are not designed to handle service-level queries. Sim-
ilarly, a Yahoo!-style directory service offers general cate-
gories of data services but it does not provide service cov-
erage and service specialty ratings. With the rapid increase
in the number and variety of data intensive web services on
both the Deep Web and the emerging web services paradigm,
there is a growing demand for providing a service-centric
framework for discovering and ranking data services.

To answer these challenges, we present a novel source-
biased approach to automatically discover and rank relevant
data intensive web services. It supports a service-centric
view of the Web through source-biased probing and source-
biased relevance detection and ranking metrics. Concretely,
our approach is capable of answering source-centric queries
of the form posed above by focusing on the nature and de-
gree of the topical relevance of one service to others. Given a
service like PubMed – called the source – our source-biased
probing technique leverages the summary information of the
source to generate a series of biased probes to other services
– called the targets. This source-biased probing allows us to
determine in very few interactions whether a target service
is relevant to the source by probing the target with very fo-
cused probes. We introduce the biased focus metric to dis-

cover highly relevant data services and measure relevance
between services. For example, we may discover that one
service is more generic than another, more specialized than
another, or complementary to another service. In addition
to determine the nature and degree of the relevance of one
service to another, we also employ the biased focus metric
to rank target services. A target service with higher affinity
to the source of bias will be ranked higher. We demon-
strate how a simple implementation of our biased-probing
technique outperforms alternative methods. To further re-
duce the number of similar probes, we introduce a perfor-
mance enhancement to our basic approach, called source-
biased probing with focal terms. The main idea is to identify
terms in the unbiased summary of the source that share a
similar topical category and then to divide the source sum-
mary into k clusters, where each cluster represents a group of
similar summary terms. Our experiments show that source-
biased probing with focal terms has the same success rate
in discovering and ranking data intensive web services using
fewer source-centric probes. Furthermore, we use source-
biased probing and the biased focus measure as our funda-
mental building blocks to extend the source-biased service
discovery framework to a more generalized service neighbor-
hood graph model. We discuss the semantics of the neigh-
borhood graph model, how we may reason about the rela-
tionships among multiple services, and how we may rank
services based on this service neighborhood graph model.
We also report initial experiments to show the effectiveness
of our approach.

2. SYSTEM MODEL AND
PROBLEM STATEMENT

In this paper, a data intensive web service is a web service
that satisfies the following two requirements: (1) the service
must provide access to its underlying information repository
(typically through a request-response mechanism); and (2)
the service is defined by the data it owns, not by the interface
it provides.The first requirement is simply for practicality; a
service without access is essentially off-line and invisible for
our purposes. The second requirement merely emphasizes
that what constitutes a data intensive web service is the
data it owns. Two common examples are the Deep Web
and web services.

Both the Deep Web and web services are underrepresented
(or not represented at all) on popular search engines. A
user interested in finding a particular Deep Web site may
rely on a Yahoo!-style categorization scheme like the ones
provided by InvisibleWeb and CompletePlanet [13, 5]. Web
services are currently listed in unorganized UDDI-based di-
rectories. In both cases, a service-centric query of the form
“What other data intensive web services are most similar
to X?” is impossible to answer without significant human
intervention. The large and increasing number of web ser-
vices available on the Web today demands a service-centric
view of the Web and an efficient and effective framework for
automated service discovery and service ranking.

2.1 Modeling Services with Service Summaries
We consider a universe of discourseW consisting of D data

intensive web services: W = {S1, S2, . . . , SD} where each
service produces a set of documents in response to a par-
ticular service request. Hence, we describe each web service

Si as a set of Mi documents: Si = {doc1, doc2, · · · , docMi}.
There are N terms (t1, t2, ..., tN) in the universe of dis-
course W, where common stopwords (like ‘a’, ‘the’, and so
on) have been eliminated. Optionally, the set of N terms
may be further refined by stemming [20] to remove prefixes
and suffixes.

Adopting a vector-space model [23, 24] of the service con-
tents, we may describe each web service Si as a vector con-
sisting of the terms in the service along with a corresponding
weight: 1

Summary(Si) = {(t1, wi1), (t2, wi2), · · · , (tN , wiN)}
A term that does not occur in any documents served by

a service Si will have weight 0. Typically, for any particular
service Si, only a fraction of the N terms will have non-zero
weight. We refer to the number of non-zero weighted terms
in Si as Ni.

We call the vector Summary(Si) a service summary for
the data intensive web service Si. A service summary is a
single aggregate vector that summarizes the overall distri-
bution of terms in the set of documents produced by the
service. To find Summary(Si), we must first represent each
document docj (1 ≤ j ≤ M) as a vector of terms and the
frequency of each term in the document:

docj = {(t1, freqj1), (t2, freqj2), · · · , (tN , freqjN)}
where freqjk is the frequency of occurrence of term tk in

document j. Initially the weight for each term may be based
on the raw frequency of the term in the document, though
there are alternative occurrence-based metrics like the nor-
malized frequency of the term and the term-frequency in-
verse document-frequency (TFIDF) weight. TFIDF weights
the terms in each document vector based on the character-
istics of all documents in the set of documents.

Given a particular encoding for each document, we may
generate the overall service summary in a number of ways.
Initially, the weight for each term in the service summary
may be based on the overall frequency of the term across all
the documents in the service (called the service frequency,

or servFreq): wik = servFreqik =
∑M

j=1 freqjk. Alterna-
tively, the weight for each term may be based on the number
of documents in which each term occurs (called the docu-
ment count frequency, or docCount): wik = docCountik =∑M

j=1 Ij(tk) where Ij(tk) is an indicator function with value
1 if term tk is in document j and 0 otherwise.

Once we have chosen our service model, to effectively com-
pare two data intensive web services and determine the rele-
vance of one service to another, we need two technical com-
ponents: (1) a technique for generating a service summary;
and (2) a metric for measuring the relevance between the
two services.

2.2 Estimating Service Summaries
Ideally, we would have access to the complete set of doc-

uments belonging to a data intensive web service. We call
a service summary for Si built on these documents an ac-
tual service summary or ASummary(Si). However, most
services do not (or will not) publish their entire set of doc-
uments for public consumption; rather, documents are ac-
cessible only through a request-response mechanism. Many

1This vector-based approach has been popularized in the
database community by GlOSS [10] and related projects.

documents are created on-the-fly in response to a particu-
lar user query at a service. Hence, the documents them-
selves are transient objects that may not be consistent from
moment-to-moment. Furthermore, the enormous size of the
data repositories underlying many services coupled with the
non-trivial costs of collecting documents (through repetitive
requests and document download) makes it unreasonable
to expect to completely capture every document available
through a service. As a result, previous researchers have
introduced several techniques for probing a service to gener-
ate a representative summary based on a small sample of the
entire services [1, 2]. We call such a representative summary
an estimated service summary, or ESummary(Si):

ESummary(Si) = {(t1, wi1), (t2, wi2), · · · , (tN , wiN)}
The number of occurring terms (i.e. those terms that

have non-zero weight) in the estimated summary is denoted
by N ′

i . Typically, N ′
i will be much less than the number of

non-zero weighted terms Ni in the actual service summary
since only a fraction of the total documents in a service will
be examined. Hence, the goal of a prober is typically to find
ESummary(Si) such that the relative distribution of terms
closely matches the distribution of terms in ASummary(Si),
even though there will be far fewer occurring terms in the
estimated summary than in the actual summary.

We will discuss the details of these probing techniques
in great detail shortly, but for now, let us suppose that
we have a mechanism for approximating a service summary
with ESummary(Si).

Several sampling techniques have been proposed to es-
timate data source summaries. All aim at estimating the
overall summary of the data content served by a web service.
We classify them into two categories: Random sampling and
query-based sampling.

Random Sampling − No Bias
If we had unfettered access to a data intensive web service,
we could randomly select terms from the service to gener-
ate the estimated service summary ESummary(Si). Barring
that, we could randomly select documents with which to
base the estimated service summary. We will call such a ran-
dom selection mechanism an unbiased prober since all terms
(or documents) are equally likely to be selected. In prac-
tice, an unbiased prober is unrealistic since most services
only provide a query-based request-response mechanism for
extracting documents. The request-response mechanism in-
troduces bias through the ranking of returned documents
and by providing incomplete access to the entire service.
Hence, true unbiased selection is infeasible in practice.

Query-based Sampling − Query Bias
As a best approximation to unbiased probing, Callan et
al. [1, 2] have introduced a query-based sampling technique
for generating accurate estimates of data services. Their
goal is to generate an estimated summary that matches the
actual contents of the database by examining only a fraction
of the total documents. The Callan technique relies on re-
peatedly requesting documents from a source using a limited
set of queries. Since the documents extracted are not cho-
sen randomly, but are biased by the querying mechanism,
we say that the Callan technique displays query bias.

There are several ways to define the limited set of queries.
A simplest one is to randomly select a limited number of
keywords in a general dictionary. One can also start with a
randomly selected keyword and then choose the subsequent

keywords from the documents returned by the data service.
More recently, Gravano et al. [16] have introduced an ex-
tension to the Callan-style probing technique that relies on
a set of query probes learned by a classifier. Their prob-
ing method relies on a Yahoo!-style categorization hierarchy
and requires learning a set of probes specific to the hierarchy.
Probes are intended to guide placement of each service with
the appropriate node of the classification hierarchy. This
classifier-based query probing skews the service summaries
towards classifier-determined topics. This method aims at
classifying services and is effective at comparing two services
based on a given categorization hierarchy, but it is not suit-
able for direct comparison of one service (source) to another
(target) in terms of the content coverage of the target with
respect to the source.

2.3 Comparing Service Summaries:
Potential Problems

In order to determine the relevance of one data intensive
web service Si to another service Sj , we require an appro-
priate relevance metric. There are a number of possible rel-
evance metrics to compare two service summaries. A fairly
simple and straightforward approach is based on a count of
the number of common terms in the two services Si and Sj :

relevance(Si, Sj) =
|ESummary(Si) ∩ ESummary(Sj)|

max(|ESummary(Sj)|, |ESummary(Si)|)
Two services with exactly the same terms represented in

their estimated summaries will have relevance(Si, Sj) = 1,
indicating the highest possible degree of relevance. Con-
versely, two services with no terms in common will have
relevance(Si, Sj) = 0, indicating the lowest possible degree
of relevance.

We now use an example to illustrate why the existing
service summary estimation techniques are inadequate for
effectively revealing interesting relationships between two
data services, especially in terms of the content coverage
of one (target) in the context of the other (source).

Example: We collected fifty documents from the Google
web service, the PubMed web service, and ESPN’s search
site, respectively, using an effective probing technique for
service summary estimation [which we will discuss in de-
tail shortly]. Based on real-world experience, we know that
PubMed is exclusively an excellent service for health infor-
mation. Google also is a great service for health information,
although it does provide access to many other kinds of infor-
mation. In contrast, ESPN is a sports-only site and of lit-
tle relevance to PubMed. Using the service summaries con-
structed, we find that relevance(Google, PubMed) = 0.05
and relevance(ESPN, PubMed) = 0.06. In both cases
the service summaries share very few terms in common and
hence both Google and ESPN appear to be irrelevant with re-
spect to PubMed. Based on these figures, we could incorrectly
conclude two facts: (1) Google is irrelevant to PubMed; and
(2) Relatively speaking, ESPN is more relevant to PubMed
than Google.

This example underlines two critical problems with cur-
rent techniques for probing and comparing service summaries:

First, current service summary estimation techniques are
concerned with generating overall summaries of the under-
lying data services. The goal is to generate essentially an
unbiased estimate of the actual service summary. In this
example, since Google has such broad coverage, very few

terms in an unbiased estimated summary may be common
to the PubMed estimated service summary. Hence, many
topics that are relevant for context based service compar-
isons may be under-represented or overlooked completely,
since the summaries contain just a small fraction of the to-
tal terms in each service.

Second, the current relevance comparison metrics are con-
cerned with how much content one service covers over the
combined content served by the two services. This type of
metric is good at capturing the size difference of two services
in terms of data content they serve but fails to indicate the
interesting relationship between two services in terms of the
content coverage of one service (target) with respect to the
other (source). Therefore, we need a relevance metric that
can describe the nature and degree of the relationship be-
tween two services. In the context of our example, it would
be interesting to discover both that Google is much more
relevant to PubMed than ESPN and that Google has much
broader coverage than PubMed. When comparing two ser-
vices using estimated summaries, a relevance metric like the
one described above is clearly inadequate.

Bearing these issues in mind, we propose a source-biased
approach to service discovery and ranking that uses a source-
biased query probing to generate biased estimated sum-
maries and a biased-focus measure for better capturing the
relationships between two services. The source-biased prob-
ing biases the service summary of a target service towards
the service summary of the source, effectively revealing the
nature and degree of the relationship between the source
service and the target service. The biased-focus metric mea-
sures the similarity of the data content served by the target
service in terms of the estimated summary of the source, suc-
cessfully highlighting the importance of source-biased sim-
ilarity in comparing services. Our experiments show that
our source-biased approach is effective in revealing interest-
ing relationships among services and efficient for discovering
and ranking services in a source-specific context (see Sec-
tion 6 for details).

3. SOURCE-BIASED SERVICE DISCOVERY:
THE BASIC ALGORITHM

With the continued increase in the number of web services
and the rapid growth in the amount of dynamic content
served from the Deep Web, the problem of discovering and
ranking services is becoming increasingly important. One
way to discover interesting web services is to start from a
given source service and try to find those target services that
are highly relevant to the source. We refer to this type of
service discovery as source-biased service discovery.

There are two fundamental steps in performing source-
biased service discovery. First, in order to find the target
data services that have high relevance to a source, we need
to generate a source-biased summary of the target services
instead of using unbiased summaries of the targets. We
propose a source-biased probing algorithm that can com-
pute the relevance of the target services with respect to
the source in very few probes. Second, we need an effi-
cient mechanism to measure the source-biased relevance of
target services with respect to the source. We propose a
so-called biased focus metric, taking a source-centric view of
the target services. We next discuss each of these two steps
in detail.

ESummarySource (Target)

term 1, 0.03

term 2, 0.04

term 3, 0.10

term 4, 0.00

…

Source Target

Probe
Selection

Stopping
Condition

Figure 1: Source-Biased Probing

3.1 Source-Biased Probing
Given a service – called the source – the source-biased

probing technique leverages the information available within
the source to generate a series of biased probes to send to
another service – called the target. This source-biased prob-
ing allows us to determine in very few interactions whether a
target service is relevant to the source by probing the target
with highly focused probes.

To help differentiate the source-biased approach from oth-
ers discussed in Section 2, in this section we use σ to denote
the source service and τ to denote the target service instead
of Si and Sj . The source-biased probing algorithm works
as follows: We use the unbiased service summary of the
source, denoted by ESummary(σ), as a dictionary of can-
didate probe terms. We then send a series of probe terms,
selected from ESummary(σ), to the target service τ until a
stopping condition is met. The final product of the source-
biased probing is a service summary for τ that is biased
towards σ. We denote this source-biased summary of the
target service by ESummaryσ(τ), where:

ESummaryσ(τ) = {(t1, wσ
1), (t2, w

σ
2), · · · , (tN′ , wσ

N)}
For any target service τ , let ESummary(τ) denote its un-

biased summary obtained using either random sampling or
query sampling as discussed earlier:

ESummary(τ) = {(t1, w1), (t2, w2), · · · , (tN′ , wN)}
It is important to note that typically the inequality wj �=

wσ
j does hold. To distinguish the term weight wj from the

corresponding term weight in the biased target summary,
we denote the bias by wσ

j . Figure 1 illustrates the source-
biased probing process. A sketch of the source-biased prob-
ing algorithm is given in Figure 2. The performance and
effectiveness of the algorithm depends upon a number of
factors, including the selection criterion used for choosing
source-specific candidate probe terms, and the type of stop
condition used to terminate the probing process.

In Figure 1, The arrow indicates that probes are drawn
from the source σ and sent to the target τ for generating
source-biased summary estimate ESummaryσ(τ). In the
rest of the paper, we sometimes use the shorthand σ → τ to
indicate that σ is used as a source of bias to probe a target
service τ .

Now let us use the following example to illustrate the
power of source-biased probing. For simplicity we are con-
sidering a simplistic world of only very few terms per service

SourceBiasedProbing(Service σ, Service τ)
For target service τ , initialize ESummaryσ(τ) = ∅.
repeat

Invoke the probe term selection algorithm
to select a one-term query probe q from the

source of bias ESummary(σ).
Construct a service request for τ with query q.
Send the request to the target service τ .
Retrieve the top-m documents from τ .
Update ESummaryσ(τ) with the terms and

frequencies from the top-m documents.
until Stop probing condition is met.
return ESummaryσ(τ)

Figure 2: Source-Biased Probing Algorithm

summary. In reality, each service summary would consist of
orders of magnitude more terms:

Example: Suppose that our goal is to determine the rel-
evance of Google to the health service PubMed. We have an
estimated summary for PubMed: ESummary(PubMed) =
{arthritis, bacteria, cancer} (where for simplicity we have
dropped the term weights from the summary). Now sup-
pose that Google provides access to only three types of in-
formation: health, animals, and cars. In the actual ser-
vice summary for Google, each topic is represented by three
terms: ASummary(Google) = {arthritis, bacteria, cancer,
dog, elephant, frog, garage, helmet, indycar}. If we were
to estimate Google by using an unbiased prober, we would
essentially randomly select terms from Google to serve as
an approximation for the actual summary. Constraining the
estimate to three terms, one such unbiased estimate could
be: ESummary(Google) = {arthritis, frog, helmet} which
shares only one term with PubMed. Hence we could conclude
that Google is not relevant to PubMed. In contrast, if we
were to use a PubMed-biased prober, we could focus on only
those terms in Google that are relevant to PubMed by send-
ing only health-related probes: ESummaryPubMed(Google)
= {arthritis, bacteria, cancer}. Hence, the source-biased
probing accentuates the commonality between the two ser-
vices.

From Algorithm 2, it is clear that there are two com-
ponents that have critical impact on the performance of
the source-biased probing algorithm: the selection of query
probing terms and the type of stop probing condition to use.

Mechanisms to Select Probe Terms
There are several possible ways to select the probes based
on the statistics stored with each service summary, includ-
ing uniform random selection and selection based on top-
weighted terms. In general, the selection criterion will rec-
ommend a query term drawn from the set of all non-zero
weighted terms in the unbiased source summary ESummary(σ).

Uniform Random Selection: In this simplest of selection
techniques, each term that occurs in ESummary(σ) has an
equal probability of being selected, i.e.
Prob(selecting term j) = 1

N′ .
Weight-Based Selection: Rather than randomly selecting

query terms, we could instead rely on a ranking of the terms
by one of the statistics that are stored with each service sum-
mary. For example, all terms in ESummary(σ) could be

ranked according to the weight of each term. Terms would
then be selected in descending order of weight. Depend-
ing on the type of weight stored (e.g. servFreq, docCount,
etc.), several flavors of weight-based selection may be con-
sidered.
Different Types of Stop Probing Conditions
The stop probing condition is the second critical component
in the source-biased probing algorithm. We consider four
different types of conditions that might be used in practice:

Number of Queries: After some fixed number of query
probes (MaxProbes), end the probing. This condition is
agnostic to the number of documents that are examined for
each service.

Documents Returned: In contrast to the first technique,
the second condition considers not the number of queries,
but the total number of documents (MaxDocs) returned by
the service. Since some queries may return no documents,
this stopping condition will require more query probes than
the first alternative when MaxProbes = MaxDocs.

Document Thresholding: Rather than treating each doc-
ument the same, this third alternative applies a thresh-
old value to each document to determine if it should be
counted toward MaxDocs. For each document, we may cal-
culate the relevance of the document to the source of bias
ESummary(σ). If the document relevance is greater than
some threshold value, then the document is counted. Oth-
erwise, the document is discarded.

Steady-State: Rather than relying on a count of queries or
documents, this final stopping condition alternative instead
relies on the estimated summary reaching a steady-state.
After each probe, we calculate the difference between the
new value of ESummaryσ(τ) and the old value. If the dif-
ference (which may be calculated in a number of ways) is
less than some small value ε, then we consider the summary
stable and stop the probing.

In the experiments section, we report the results of vary-
ing both of these key parameters.

3.2 Evaluating Relevance: Biased Focus
We previously asserted that to effectively determine the

relevance of one service to another, we would require both
a technique for generating a source-biased service summary
and a source-biased metric for measuring the relevance of
a target service in the context of the source. In the pre-
vious section, we presented the algorithm and the factors
that impact the performance of the algorithm for generating
source-biased summary estimates of a data service. In this
section we present several flavors of a biased focus measure
for better understanding the relationship between a source
and a target.

Given a source service and a target service, we begin by
discussing the requirements of an appropriate biased focus
measure and then discuss several possible variations.

Definition 1 (biased focus). Let σ denote a source
service modeled by an unbiased summary and τ denote a tar-
get service with a σ-biased summary, and let focusσ(τ) de-
note the source-biased focus measure. We define focusσ(τ)
to be a measure of the topical focus of the target service
τ with respect to the source of bias σ. The focus metric
ranges from 0 to 1, with lower values indicating less focus
and higher values indicating more focus.

In general, focus is not a symmetric relation. Hence

we may describe any two services σ and τ with the fo-
cus in terms of σ (i.e. focusσ(τ)) and in terms of τ (i.e.
focusτ (σ)).

There are several ways to calculate the biased focus for
a source and a target. One approach is to approximate the
focus measure by computing the ratio of common terms be-
tween source and target over the source summary estimate.
We call this method the common-term based focus measure,
denoted by CTfocusσ(τ).

CTfocusσ(τ) =
|ESummary(σ) ∩ ESummaryσ(τ)|

|ESummary(σ)|
This approximation counts the number of common terms

between the source of bias and the target and divides by the
size of the source of bias. So if all terms in the source of bias
occur in the target, then the target is perfectly focused on
the source and CTfocusσ(τ) = 1. Conversely, if no terms in
the source of bias occur in the target, then the target has no
focus on the source and CTfocusσ(τ) = 0. Unfortunately, a
common-term based focus measure will tend to understate
the importance of highly-weighted terms and overvalue the
importance of lowly-weighted terms. Consider the following
example:

Example: Let σ be a source service and its associated ser-
vice summary be given below: ESummary(σ) = {(a, 100),
(b, 1), (c, 1), (d, 1), (e, 1)}. Assume that we also have two
source-biased summaries for targets τ1 and τ2 that are gen-
erated by source σ-biased probing queries: ESummaryσ(τ1)
= {(a, 100)} and ESummaryσ(τ2) = {(b, 1), (c, 1), (d, 1),
(e, 1), (f, 100)} Calculating the common term-based focus,
we find CTfocusσ(τ1) = 0.2 and CTfocusσ(τ2) = 0.8. So
even though τ2 is heavily weighted towards the term f, it is
considered more relevant to σ than τ1.

An obvious solution to address the above-mentioned prob-
lem is to use the term-weight based focus measure, denoted
by TWfocusσ(τ):

TWfocusσ(τ) =

∑
k∈ESummaryσ(τ)

wσk

∑
k∈ESummary(σ)

wσk

where wσk is the weight for term k in ESummaryσ. The
term weight based focus measure can be seen as a general-
ization of the ctfratio introduced in [1].2

While the TWfocusσ(τ) approximation overcomes the
problems of the CTfocusσ(τ), it introduces new issues. For
example, the term weights used in the TWfocusσ(τ) ap-
proximation are from the unbiased summary of the source.
Thus it does not give a good estimate on the source-biased
measure.

We propose to use the well-known cosine similarity (or
normalized inner product) to approximate the source-biased
focus measure. We define the cosine-based focus as follows:

Cosine focusσ(τ) =




∑N
k=1 wσkwσ

τk√∑N
k=1 (wσk)2 ·

√∑N
k=1 (wσ

τk)2




2The ctfratio is presented in the context of comparing an
estimated database summary DB′ to an actual database
summary DB. ctfratio =

∑
i∈DB′ ctfi/

∑
i∈DB ctfi, where

ctfi = number of times term i occurs in the source. Here,
we have generalized this formulation for comparison of sum-
maries from different services, and for use with term weight-
ings other than the ctf .

where wσk is the weight for term k in ESummary(σ) and
wσ

τk is the σ-biased weight for term k in ESummaryσ(τ).
The cosine ranges from 0 to 1, with higher scores indicating
a higher degree of similarity. In contrast, the cosine between
orthogonal vectors is 0, indicating that they are completely
dissimilar. The cosine measures the angle between two vec-
tors, regardless of the length of each vector. Intuitively, the
cosine-based biased focus is appealing since it more reason-
ably captures the relevance between two services.

The biased focus metrics is not only used for measuring
service relevance but also used for ranking the set of target
services τ1, τ2, . . . , τN with respect to a source σ. In Sec-
tion 5, we shall show how to use the biased-focus for draw-
ing interesting inferences about the relationships between
different but relevant services.

4. SOURCE-BIASED PROBING WITH
FOCAL TERMS

Recall the discussions in the previous section, one of the
critical parameters to the success of source-biased probing
is the choice of probe terms from the source of bias σ. We
discussed several random selection techniques as well as dif-
ferent ways to define stop-probing conditions. In all cases
considered so far, the estimated source summary is treated
as a single repository of candidate probe terms. In this sec-
tion we introduce a refinement over these simple selection
techniques whereby the source summary is segmented into
k groups of co-occurring terms. The main idea is to itera-
tively select one term from each of the k groups to probe
the target. We call this term the focal term of the corre-
sponding group. When used in conjunction with the general
source-biased probing algorithm, we have an enhanced ver-
sion called source-biased probing with focal terms. Like the
basic algorithm of source-biased probing, the goal remains
to produce source-biased target service summaries that are
effective for detecting interesting relationships between a
source of bias and a target service. A unique advantage of
using focal terms is that these source-biased summaries of
target services can be generated in far fewer queries and with
higher quality. We below describe this enhanced source-
biased probing algorithm in detail and will show the benefit
of this algorithm through experiments in Section 6.

4.1 Focal Terms and Focal Term Groups
Let σ denote a source service with its unbiased service

summary ESummaryσ. We denote the set of terms with
non-zero weight in ESummaryσ (i.e. the terms that actu-
ally occur in the service σ) as Terms(σ), where Terms(σ)
consists of n terms t1, t2, ..., tn.

A focal term group is a subset of terms in the set Terms(σ)
that co-occur in the documents of σ. We denote a focal term
group i as FTermsi. The main idea behind source-biased
probing with focal terms is to partition the set Terms(σ)
into k disjoint term groups such that the terms within each
term group co-occur in documents of σ more frequently than
they do with terms from other term groups.

Formally, we need an algorithm that can find a partition
of Terms(σ) into k focal term groups:
Terms(σ) = {FTerms1, . . . , FTermsi, . . . , FTermsk|
k⋃

i=1

FTermsi = {t1, ..., tn} and FTermsi ∩ FTermsj = ∅}
In Table 1, we show an example of five focal term groups

for a collection of 100 PubMed documents. Note that k

Table 1: Example Focal Terms for PubMed
Term Group Terms

1 care, education, family, management, ...
2 brain, gene, protein, nucleotide, ...
3 clinical, noteworthy, taxonomy, ...
4 experimental, molecular, therapy, ...
5 aids, evidence, research, winter, ...

is intended to be very small since the focal term groups
are meant to be very coarse. We will describe the concrete
algorithm to find k partitions of the set Terms(σ) in the
next section.

Given k focal term groups, by selecting a focal term from
each term group FTermsi as a probing query, we hope to re-
trieve documents that also contain many of the other words
in that focal term group. For example, suppose we are using
a frequency-based measure for query probe selection from
PubMed. The top four query terms may be “brain”, “gene”,
“protein”, and “nucleotide”. Suppose these four terms tend
to co-occur with each other as indicated in Table 1. By
sending the first query “brain” to a target service, we could
reasonably expect to find the other three terms since our
analysis of the source indicates that these four terms tend
to co-occur. A naive source-biased prober would ignore this
co-occurrence information and, instead, send the other three
queries “gene”, “protein”, and “nucleotide”, even though we
might reasonably expect for those queries to generate doc-
uments similar to the first query “brain”. In essence, we
will have used four queries when a single query would have
sufficed at adequately exploring the term space of the target.

The sophistication of source-biased probing with focal terms
is to identify these co-occurrence relationships in order to re-
duce the number of queries necessary to efficiently detect re-
lationships between a source and a target service. By using
focal terms, we may generate more accurate biased sum-
maries of target services in far fewer probe queries and with
higher quality.

In an ideal case, every focal term group would consist of
terms that only co-occur with each other and not with any
other terms in the other focal terms groups. By selecting a
single term from each perfectly segmented term group, we
ideally could send no more than k probes, one for each focal
term group. Each probe would produce a document that
contained every other term in that focal term group. In the
more realistic setting, we will need to handle varying degrees
of co-occurrence, but we still expect a good reduction in the
number of probes necessary to generate a high-quality biased
summary estimate for each target service.

It is important to note that, unlike previous research in
grouping terms – for query-expansion [28, 22] or finding sim-
ilar terms [25] – our goal is not to find close semantic rela-
tionships between terms, but rather to find very coarse co-
occurrence associations among terms to support a more ef-
ficient and effective biased service summary estimation. For
example, though we may discover that “brain” and “pro-
tein” tend to co-occur in a service, we do not claim that
there is a close semantic relationship between the two terms.

4.2 Finding Focal Terms
Now that we have discussed the motivation of finding focal

terms, we are still faced with the task of actually segmenting

Terms(σ) into k groups of focal terms. In this section, we
discuss how we may adapt a popular clustering technique to
the problem of focal term discovery.

Recall Section 2.1, we view a data intensive web service
Si as a set of documents, each of which is described by a
vector of terms and weights. We now invert our view of
a service using the same set of information. We consider a
service Si as a collection of terms, each of which is described
by a vector of the documents in which the term occurs and
a weight describing the occurrence frequency of the term in
the corresponding document. Hence, we have:

Terms(Si) = {term1, term2, · · · , termN}
For the N terms in the service, each termj (1 ≤ j ≤ N)

is a vector of documents and weights:

termj = {(doc1, wj1), (doc2, wj2), · · · , (docM , wjM)}
We can define a segmentation technique for finding focal

term groups by clustering the set Terms(Si) into k clusters.
Given the term vectors of services, and the similarity func-
tion, a number of clustering algorithms can be applied to
partition the set Terms(Si) of N terms into k clusters. We
choose Simple K-Means since it is conceptually simple and
computationally efficient. The algorithm starts by generat-
ing k random cluster centers. Each term is assigned to the
cluster with the most similar (or least distant) center. The
similarity is computed based on the closeness of the term
and each of the cluster centers. Then the algorithm refines
the k cluster centers based on the centroid of each cluster.
Terms are then re-assigned to the cluster with the most sim-
ilar center. The cycle of calculating centroids and assigning
terms in Terms(Si) to k clusters repeats until the cluster
centroids stabilize. Let C denote both a cluster and the set
of terms in the cluster. The centroid of cluster C is:

centroidC =




(doc1,
1

|C|
∑
i∈C

wj1)

(doc2,
1

|C|
∑
i∈C

wj2)

· · ·
(docM , 1

|C|
∑
i∈C

wjM)




where wjl is the weight of term j in document l, and
the formula 1

|C|
∑

l∈C wjl denotes the average weight of the

document l in the cluster C. A sketch of the K-Means term
clustering based on term-vector of a service is provided in
Figure 3.

The similarity function used in Figure 3 can be defined
using a number of functions. In this paper, we use the cosine
similarity function. Given a set of N terms and a set of
M documents, where wik denotes the weight for term k in
document i (1 ≤ k ≤ N , 1 ≤ i ≤ M), the cosine function
prescribes:

sim(termi, termj) =




∑N
k=1 wikwjk√
w2

ik ·
√

w2
jk




4.3 Selecting k Source-biased Probes
Once the k focal term groups have been constructed for

a source, the remaining problem is how to select the best
k terms for probing a target service. We propose a simple

FocalTerms(Number of Clusters k, Input Vectors D)
Let D = {d1, ..., dn} denote the set of n term vectors
Let M denote the total number of documents in D
Let dj = < (doc1, wj1), . . . , (docM , wjM) > denote a

term vector of M elements, wjl is the TFIDF weight
of the docl in term j (l = 1, . . . , M)

Let C = {C1, ..., Ck} denote a clustering of D
into k clusters.

Let µi denote the center of cluster Ci

foreach cluster Ci

Randomly pick a term vector, say dj from D
Initialize a cluster center µi = dj , where dj ∈ D

repeat
foreach input term vector dj ∈ D

foreach cluster Ci ∈ C i = 1, . . . , k
compute δi = sim(dj , mui)

if δh is the smallest among δ1, δ2, . . . , δk

muh is the nearest cluster center to dj

Assign dj to the cluster Ch

// refine cluster centers using centroids
foreach cluster Ci ∈ C

foreach doc l in dj (l = 1, . . . , M))

cwij ← 1
|Ci|

∑M
l=1 wjl

µi ←< (doc1, cwi1), . . . , (docM , cwiM) >
until cluster centers no longer change
return C

Figure 3: Focal Term Clustering Algorithm

round-robin selection technique whereby a single term is se-
lected from each focal term group in turn. Once a single
term has been selected from each group, the cycle repeats
by selecting a second term from each group, a third term,
and so on.

Given this basic strategy, we may use a number of tech-
niques for determining the order by which to select terms
from the k groups and for selecting probe terms from each
focal term group. One way to determine the order of focal
term groups is based upon the size of each group. We begin
with the group with the most terms and end each cycle with
the group that has the smallest number of terms. For each
focal term group, we may decide which term to select for
each cycle by using one of the selection criteria discussed in
Section 3.

Now that we have discussed source-biased probing with
focal terms, we next discuss how to build a service neighbor-
hood using source-biased probing as a primitive and discuss
how to infer interesting relationships among service nodes
from the structure of the service neighborhood graph.

5. SERVICE NEIGHBORHOOD
In this section, we extend the basic source-biased probing

algorithm to a service neighborhood graph of interconnected
services. We show how services may be ranked relative to
a source, how a neighborhood graph of interconnected data
services may be constructed, and how other interesting re-
lationships may be inferred from the neighborhood graph.

5.1 The Graph Model
We model the world of data intensive web services as a

graph, where the nodes in the graph are services and the
edges in the graph indicate biased probing from a source to
a target:

Definition 2 (Service Neighborhood Graph). A ser-

A B
focus

A
(B)

Figure 4: Simple Service Graph

A

C

B

D

E

0.2

0.6

0.9

0.1

(i)

A

C

B

D

E

0.1

0.8

0.5

0.3

(ii)

A B

x

y

(iii)

Figure 5: Reasoning about Service Neighborhoods
with Source-Biased Probing

vice neighborhood graph is a weighted, directed graph G =
(V, E) where V is a finite set of data intensive web services
and E is the edge set of G. Each edge e ∈ E is an ordered
set of vertices (u, v), where u, v ∈ V . Each edge has an asso-
ciated weight, given by the weight function w : E → R. The
weight w(u, v) of the edge (u, v) ∈ E is given by focusu(v).

As an example, we show in Figure 4 a simple service neigh-
borhood consisting of two services – A and B. The arrow
from A to B indicates that the service A has been used as
a source of bias to probe the target service B. The arrow is
annotated with a weight for focusA(B).

For a universe of discourse W consisting of D data ser-
vices: W = {W1, W2, . . . , WD}, we may have a service neigh-
borhood graph consisting of D nodes and up to D(D − 1)
edges in the case that every service has served as a source of
bias for every other service in the graph. In practice, we ex-
pect the number of edges to be much less, as many services
may never be used as a source of bias.

5.2 Graph Semantics
Given the basic graph model, we now discuss several im-

portant inferences that may be made over the graph.
Ranking Target Services

In Figure 5(i), we show a single source of bias A and multiple
target services B, C, D, and E. For each target service, we
have an appropriate focus measure (focusA(B), focusA(C),
focusA(D), and focusA(E)) annotating the link from A to
the target. We may then rank the target services in descend-
ing order in terms of their focus with respect to the source
of bias A. In this case, we would order the target services D,
C, B, E. In other words, the biased estimate of D contains
90% of the terms in A, whereas E contains only 10% of the
terms in A.

Evaluating a Source of Bias
In Figure 5(ii), we reverse the situation and show a single
target service A and multiple sources of bias B, C, D, and
E. The single target A has one incoming arrow for each
source of bias, annotated with the appropriate focus measure
(focusB(A), focusC(A), focusD(A), and focusE(A)). We
may then rank the sources of bias in descending order in
terms of their focus with respect to the target A. In this
case, we would order the sources of bias C, D, E, B. In
other words, the C-biased estimate of A contains 80% of

the terms in C, whereas the B-biased estimate of A contains
only 10% of the terms in B.

Inferring Pairwise Relationships
In Figure 5(iii), we consider two services where each has
served as a source of bias to probe the other. Let focusA(B) =
x. Let focusB(A) = y. We define threshold values λhigh and
λlow, where 0 < λlow < λhigh < 1. These threshold values
are intended to evaluate the quality of the relevance of one
service to another as we illustrate next.

If x > λhigh and y > λhigh, then we may conclude that A
is sufficiently focused on B and B is sufficiently focused on
A. Hence, the two services are approximately the same in
terms of their content coverage. We call this approximate
equality λ-equivalence to indicate that the equivalence is not
total, but a function of the parameter λhigh.

If x > λhigh and y < λlow, then a sufficient portion of
A is contained in B, but very little of B is contained in A.
Hence, we may conclude that A is a λ-subset of B and B is a
λ-superset of A, where again we use the λ prefix to indicate
that A is not a strict subset, but rather that A’s relationship
to B is parameterized by λ.

If x < λlow and y < λlow, then we may conclude that A
and B are sufficiently concerned with different topics since
neither is very focused on the other. We call this approxi-
mate inequality λ-disjointness to indicate that the disjoint-
ness is not total, but a function of the parameter λlow.

6. EXPERIMENTS
In this section, we present experimental results to show

how source-biased probing compares to competing techniques
and how various parameters affect the behavior and perfor-
mance of source-biased probing. Additionally, we illustrate
the advantages of the two extensions to source-biased prob-
ing discussed above – namely, focal term based probing and
the service neighborhood graph model.

6.1 Experimental Data and Setup
We evaluate source-biased probing over a dataset that is

designed to emulate the diversity and scope of real-world
data intensive web services and that also remains under our
control for experimental validation.

We collected articles from 1,000 usenet newsgroups over
the period June to July 2003. We randomly chose news-
groups from the top-level categories of bionet, comp, gnu,
humanities, k12, misc, news, rec, sci, soc, and talk. We
eliminated overly small newsgroups containing fewer than
100 articles, heavily spammed newsgroups, and newsgroups
with primarily binary data. After filtering out these groups,
we were left 593 newsgroups, representing over 2GB of data.
Each newsgroup ranged in size from 100 to 16,000 articles,
with an average of 1,400 articles per newsgroup. Since each
of these newsgroups is focused on a single topic, we refer to
these 593 newsgroups as the single topic collection.

In an effort to match the heterogeneity inherent in many
real-world data intensive web services, we constructed 100
new groups by randomly combining articles from the single
topic collection. For each new group, we randomly selected
four collections from the single topic dataset to populate a
new group with on average 1,400 articles. We refer to these
100 newsgroups as the mixed topic collection.

Finally, we created a third type of collection called the
aggregate collection. Again, we aimed for a group average
of 1,400 articles. For any group of three or more news-

groups with a common prefix from the single topic collection
(e.g. comp.databases.informix, comp.databases.oracle,
and comp.databases.sybase), we constructed a new aggre-
gate collection (e.g. comp.databases.aggregate) contain-
ing randomly selected articles from each component news-
group. This step resulted in 56 aggregate groups. To em-
ulate a Google-like service with wide coverage, we created
a single collection called ’root’ that contained 10 random
articles from each newsgroup in the single topic collection.

In total, the combined newsgroup collections consists of
2.5GB worth of articles in 750 groups.

We built a probing engine in Java 1.4 for use in all of our
experiments. For each group in the dataset, we constructed
the actual service summary based on the overall service fre-
quency of each term (servFreq). We eliminated a set of
common stopwords (e.g. ‘a’, ‘the’, and so on) as well as a
specialized list of newsgroup-specific stopwords (e.g. ‘wrote’,
‘said’, ‘reply’, and so on). Terms were not stemmed.

6.2 Experimental Results

6.2.1 Probing Effectiveness and Efficiency
For our first set of experiments, we compare source-biased

probing with three alternative probing techniques – two fla-
vors of query-biased probers and an unbiased prober.

For the source-biased prober (Source Bias), we consider a
basic version that uses a weight-based selection mechanism
to choose the most highly weighted terms as probes. For
this experiment we consider weights based on the overall
service frequency (servFreq) of terms in the source’s service
summary. We evaluate alternative selection techniques in
Section 6.2.2.

For the query-biased probers, we consider two versions.
For the first (Query Bias 1), probe terms are randomly se-
lected from the standard Unix dictionary of English terms.
For the second (Query Bias 2), the initial probes are se-
lected from the standard Unix dictionary, but once the first
document has been retrieved from the target, all subsequent
probes are selected based on the estimated servFreq of the
target service.

For the unbiased prober (No Bias), we consider a prober
that selects documents at random from each target.

We selected 10 source services and 10 target services at
random from the entire dataset, resulting in 100 source-
target pairs. For each pair, we ran each of the four probing
techniques, collecting a maximum of 5 documents per query
from each target. We collected data for up to 100 total docu-
ments retrieved from each target. In Figure 6, we show the
average Cosine focusσ(τ) over all 100 source-target pairs
as a function of the number of documents examined in each
target. In this case, we can think of Cosine focusσ(τ) as a
proxy for the quality of the documents being extracted from
each target. Since we are comparing the same set of targets
across all four probing techniques, a higher focus indicates
that a prober has identified a more relevant set of docu-
ments than another. The Source Bias prober displays the
highest Cosine focusσ(τ) for all values of examined docu-
ments. The No Bias and Query Bias 1 probers are bunched
together below Source Bias. The lowest in all cases is Query
Bias 2.

As you can see, the source-biased prober finds on average a
higher degree of relevance between each target and source.
The reason is that source-biased probing hones in on the

0.00

0.10

0.20

0.30

0.40

0 20 40 60 80 100
Documents Examined

C
o

si
n

e_
fo

cu
s

Source Bias

No Bias
Query Bias 1

Query Bias 2

Figure 6: Comparing Four Probers

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 20 40 60 80 100
Documents Examined

D
o

cu
m

en
ts

 P
as

si
n

g
 T

h
re

sh
o

ld

Source Bias
Query Bias 1
Query Bias 2

No Bias

Figure 7: SBP Identifies Higher-Quality Documents

most relevant documents between a given source and target.
To further explain why Source Bias outperforms the other

probing techniques, consider Figure 7. Here we show the
average quality of the documents examined for each of the
four probers. For every ten documents examined, we calcu-
late the fraction that pass a 0.1 Cosine focusσ(τ) threshold
with the source’s unbiased service summary. The source-
biased prober identifies documents of higher quality than the
other techniques. As the number of documents examined in-
creases, the source-biased approach begins to approach the
other probers, since most of the quality documents have al-
ready been extracted.

Hence, we may conclude that source-biased probing is
more effective at discerning relevant documents to a source
of bias than are either a query-biased prober or an unbiased
prober.

6.2.2 Varying Key Parameters
In this section, we discuss the impact of several param-

eters on the success of source-biased probing. Again, we
selected 10 source services and 10 target services at random
from the entire dataset, resulting in 100 source-target pairs.
For each of these experiments, we consider only source-
biased probing.

The first parameter we consider is the choice of query
selection for source-biased probing. We consider three al-
ternatives: random probe selection (Source Bias (random)),
probe selection based on the overall service frequency of the
source summary (Source Bias (servFreq)), and probe selec-
tion based on the document count of each term in the source

0.00

0.10

0.20

0.30

0.40

0 20 40 60 80 100
Documents Examined

C
o

si
n

e_
fo

cu
s

Source Bias (servFreq)

Source Bias (docCount)

Source Bias (random)

Figure 8: Query Selection Comparison

0.00

0.10

0.20

0.30

0.40

0.50

10 20 30 40 50 60 70 80 90 100
Documents Examined

C
o

si
n

e_
fo

cu
s

retrieve 5

retrieve 10
retrieve 15

retrieve 20

Figure 9: Documents Retrieved Comparison

summary (Source Bias (docCount)). We show the results in
Figure 8.

Again, we can think of Cosine focusσ(τ) as a proxy for
the quality of the documents being extracted from each tar-
get. The two frequency-based measures result in approxi-
mately the same quality of extracted document. Interest-
ingly, the random selection technique performs significantly
worse. Since the set of candidate probes in a source’s ser-
vice summary is large, it seems reasonable to conclude that
a random prober misses out on the critical discriminating
terms.

The second parameter we consider is the number of doc-
uments retrieved for each query. We considered a basic
version of source-biased probing using the overall service
frequency as the probe selection mechanism. We vary the
number of documents we retrieve, from 5 up to 20.

As you can see in Figure 9, there is little change, so varying
retrieved documents appears not to have a significant impact
on the quality of source-biased probing.

The third parameter we compare is the choice of focus
measure. In Figure 10, we compare the three versions of fo-
cus first discussed in Section 3.2: Cosine focusσ(τ), TWfocusσ(τ),
and CTfocusσ(τ).

The dashed lines indicate the actual value of the overall
focus measures calculated based on the actual service sum-
maries of the sources and targets. The upper dashed line
corresponds to the actual TWfocusσ(τ). The other two
dashed lines correspond to Cosine focusσ(τ) and CTfocusσ(τ)
and are overlapping. The first critical point to note is that
both the TWfocusσ(τ) and CTfocusσ(τ) are slow to ap-

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 20 40 60 80 100
Documents Examined

C
o

si
n

e_
fo

cu
s

Cosine_focus

 TWfocus

CTfocus

Figure 10: Comparison of Three Focus Measures

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5

No Bias

Query Bias

Source Bias

Figure 11: Comparison of Ranking Quality

proach the overall focus as indicated by the dashed lines. In
contrast, the cosine-based focus approaches the actual fo-
cus in only 45 documents on average. Additionally, we note
that Cosine focusσ(τ) slightly overestimates the actual fo-
cus. This is reasonable, since for source-biased estimates
based on very few documents, we would expect to identify
high-quality documents first. Hence, the focus should be an
overestimate. As the number of documents examined in a
target nears the total available in the target, this upward
bias should disappear.

6.2.3 Ranking Evaluation
As we have seen, source-biased probing is effective at iden-

tifying source-relevant documents in a target service. But
how well does source-biased probing compare with the alter-
native techniques when it comes to ranking targets based on
their relevance to a source? We randomly selected 5 sources
to compare to the entire set of 750 groups. We compared
the three probers Source Bias, Query Bias 1, and No Bias
discussed above.

For each of the 5 sources, we identified the number of
relevant groups in the entire dataset (call this total r for
each source). For non-obvious cases, we determined rel-
evance by the consensus opinion of three volunteers. We
then evaluated the three probers by collecting 20 documents
for each candidate target and ranking the targets by the
Cosine focusσ(τ) metric. We calculated the effectiveness
for each source as the percentage of relevant targets ranked
in the top-r.

As you can see, the source-biased approach outperforms

both the query-biased and unbiased probers. Upon further
inspection, we discovered that all probers performed approx-
imately the same when comparing two nearly identical ser-
vices (e.g. comp.unix.admin vs. comp.unix.misc) from the
single topic collection. The source-biased approach far out-
stripped the others when evaluating a newsgroup from ei-
ther the mixed topic collection or the aggregate collection.
In these two cases, source-biased probing proved effective at
honing in on relevant documents that an unbiased or query-
biased prober might overlook.

6.2.4 Source-Biased Probing Extensions
In our final set of experiments, we illustrate the advan-

tages of source-biased probing with focal terms and the ser-
vice neighborhood graph model.

To evaluate source-biased probing with focal terms, we
compared basic source-biased probing with random term se-
lection versus two flavors of focal term probing – focal term
probing with 3 focal term groups and with 5 focal term
groups. For each of the focal term versions, we selected fo-
cal term groups in decreasing order of size. For each group,
we randomly selected a probe term. We selected 5 source
services and 10 target services at random from the entire
dataset, resulting in 50 source-target pairs. For each query,
we collected a maximum of 5 documents from each target
for each query.

The two focal term techniques resulted in slightly higher
quality documents being extracted for each target.

Finally, to illustrate the power inherent in the service
neighborhood graph, we show in Table 2 a few sample infer-
ences that can be made when services A and B are used
to probe each other, and Cosine focusσ(τ) is the focus
metric. Consider the first pair of Mac-related newsgroups.
For λhigh = 0.70, we would conclude that the two are λ-
equivalent. In contrast, the sewing and perl groups are quite
dissimilar, as indicated by the low focus values.

7. RELATED WORK
In the database community, considerable research has been

dedicated to the database selection problem. [10, 11, 3, 6, 7,
8, 9, 12, 17, 18, 21, 29] In database selection, the prob-
lem is to take a query and match it to potentially relevant
databases for processing. Typically the database exports
a description to help guide database selection. Instead of
matching a query to a set of services, we are concerned with
grouping and ranking data services based on their relevance
to a source of bias.

As mentioned before, our source-biased probing technique
builds on the work of Callan et al. Other researchers have
previously studied the problem of repeatedly querying an
unknown database in an effort to generate a summary of the
database internals [16, 14, 15, 1, 27, 2, 12, 26, 19, 4]. The
main purpose of these techniques is to generate a represen-
tative content summary of the underlying database. Query-
ing methods suggested include the use of random queries,
queries learned from a classifier, and queries based on a feed-
back cycle between the query and the response.

More recently, Gravano et al. [16, 14] have introduced
an extension to the Callan-style probing technique that re-
lies on a learned set of queries for database classification.
Their probing method is effective for classifying Deep Web
sites into a pre-determined Yahoo!-style rigid hierarchy, but
requires the potentially burdensome and inflexible task of

Table 2: Inferring Semantics
A B focusA(B) focusB(A) Conclusion

comp.sys.mac.apps comp.sys.mac.system 0.80 0.77 λ-equivalent
rec.crafts.textiles.sewing comp.lang.perl.misc 0.35 0.32 λ-disjoint

rec.boats.paddle mixed11 0.88 0.57 λ-subset
rec.sport.volleyball rec.sport.cricket 0.47 0.46 undetermined

labelling training data for learning the classifier probes in
the first place. Additionally, if new categories are added or
old categories removed from the hierarchy, new probes must
be learned and each source re-probed.

Previous research on grouping terms (as in our source-
biased probing with focal terms) has tended to focus on
finding terms that are effective for query-expansion [28, 22]
or finding lexically similar terms [25]. In both cases, the goal
is to find close semantic relationships between terms (e.g. to
discover that “Microsoft” and “Windows” are semantically
similar). In contrast, our focal term groups are much more
coarse-grained, and we make no assertion as to the closeness
of the semantic relationship among the terms.

8. CONCLUSIONS
In this paper, we have presented a novel approach for dis-

covering relevant data intensive web services that is based
on a service-centric view of the Web. Using source-biased
probing allows us to answer service-level queries about the
relative size, scope, and relevance of one service to another.
In addition, we have discussed how a biased focus measure
can serve as a meaningful benchmark of relevance. We have
discussed an enhancement to source-biased probing called
source-biased probing with focal terms. Our efforts have also
extended the basic relevance algorithm to a service neighbor-
hood graph for inferring interesting semantic relationships
among multiple services. We are interested in exploring fur-
ther avenues for the automatic crawling and identification of
data intensive web services with which to seed our source-
biased probing approach.

9. REFERENCES
[1] J. Callan, M. Connell, and A. Du. Automatic

discovery of language models for text databases. In
SIGMOD ’99.

[2] J. P. Callan and M. E. Connell. Query-based sampling
of text databases. Information Systems, 19(2):97–130,
2001.

[3] J. P. Callan, Z. Lu, and W. B. Croft. Searching
Distributed Collections with Inference Networks . In
SIGIR ’95, Seattle, WA, 1995.

[4] W. W. Cohen and Y. Singer. Learning to query the
web. In AAAI Workshop on Internet-Based
Information Systems. 1996.

[5] CompletePlanet.com.
http://www.completeplanet.com.

[6] N. Craswell, P. Bailey, and D. Hawking. Server
selection on the World Wide Web. In ACM Digital
Libraries, 2000.

[7] R. Dolin, D. Agrawal, and A. Abbadi. Scalable
collection summarization and selection. In ACM
Digital Libraries, 1999.

[8] J. C. French, A. L. Powell, J. P. Callan, C. L. Viles,
T. Emmitt, K. J. Prey, and Y. Mou. Comparing the
performance of database selection algorithms. In
SIGIR ’99.

[9] N. Fuhr. A decision-theoretic approach to database
selection in networked IR. ACM TOIS, 17(3):229–229,
1999.

[10] L. Gravano and H. Garćıa-Molina. Generalizing
GlOSS to vector-space databases and broker
hierarchies. In VLDB ’95.

[11] L. Gravano, H. Garćıa-Molina, and A. Tomasic.
GlOSS: text-source discovery over the Internet. ACM
TODS, 24(2):229–264, 1999.

[12] D. Hawking and P. Thistlewaite. Methods for
information server selection. ACM TOIS, 17(1):40–76,
1999.

[13] InvisibleWeb.com. http://www.invisibleweb.com.
[14] P. G. Ipeirotis and L. Gravano. Distributed search

over the hidden web: Hierarchical database sampling
and selection. In VLDB ’02, August 2002.

[15] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe,
count, and classify: Categorizing hidden-web
databases. In SIGMOD ’01, May 2001.

[16] P. G. Ipeirotis, L. Gravano, and M. Sahami. QProber:
A system for automatic classification of hidden-web
databases. ACM TOIS, 21(1):1–41, 2003.

[17] L. Liu. Query routing in large-scale digital library
systems. In ICDE ’99.

[18] W. Meng, K.-L. Liu, C. T. Yu, X. Wang, Y. Chang,
and N. Rishe. Determining text databases to search in
the internet. In VLDB ’98.

[19] W. Meng, C. T. Yu, and K.-L. Liu. Detection of
heterogeneities in a multiple text database
environment. In CoopIS ’99.

[20] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[21] A. L. Powell, J. C. French, J. P. Callan, M. E.
Connell, and C. L. Viles. The impact of database
selection on distributed searching. In SIGIR ’00.

[22] Y. Qiu and H.-P. Frei. Concept-based query
expansion. In SIGIR ’93.

[23] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. In Readings in Information
Retrieval. Morgan Kauffman, San Francisco, CA, 1997.

[24] G. Salton, A. Wong, and C. Yang. A vector space
model for automatic indexing. CACM,
18(11):613–620, 1971.

[25] H. Schutze and J. O. Pedersen. A cooccurrence-based
thesaurus and two applications to information
retrieval. Information Processing and Management,
33(3):307–318, 1997.

[26] A. Sugiura and O. Etzioni. Query routing for web
search engines: Architecture and experiments. In
WWW ’00.

[27] W. Wang, W. Meng, and C. Yu. Concept hierarchy
based text database categorization in a metasearch
engine environment. In WISE ’00.

[28] J. Xu and W. B. Croft. Query expansion using local
and global document analysis. In SIGIR ’96.

[29] B. Yuwono and D. L. Lee. Server ranking for
distributed text retrieval systems on the internet. In
Database Systems for Advanced Applications, 1997.

