
Improving Peer to Peer Search With
Multi-Tier Capability-Aware Overlay Topologies

Mudhakar Srivatsa, Bugra Gedik, Ling Liu

College of Computing

Georgia Institute of Technology�
mudhakar, bgedik, lingliu � @cc.gatech.edu

Abstract. The P2P model has many potential advantages (e.g.,
large scale, fault-tolerance, low cost of administration and main-
tenance) due to the design flexibility of overlay networks and the
decentralized management of cooperative sharing of information
and resources. However, the mismatch between the randomly con-
structed overlay network topology (combined with its broadcast-
style message forwarding infrastructure) and the underlying packet
routing introduces difficult performance problems, exemplified by
the Short-Cut Effect. This paper presents two peer-to-peer (P2P)
system-level facilities to address the problems. First, we propose a
capability-aware mechanism to structure the overlay topology in the
form of layers that takes peer heterogeneity into account. Second,
we develop a Probabilistic Broadening search technique, empowered
with capability-sensitive query forwarding scheme which integrates
gracefully with result caching techniques to improve the search per-
formance of a P2P system. We believe that efforts on bridging the
gap (mismatch) between overlay networks and underlying Internet
will bring P2P services beyond pure “best effort” and closer to seri-
ous applications with quality of service requirements.

1 Introduction
With applications such as Gnutella and Freenet, the peer-to-
peer (P2P) model is quickly emerging as a significant com-
puting paradigm of the future Internet. Unlike traditional dis-
tributed computing, P2P networks aggregate large number of
computers and possibly mobile or hand-held devices, which
join and leave the network frequently. This new breed of sys-
tems creates application-level virtual networks with their own
overlay topology and routing protocols. The overlay topology
provides mechanisms to create and maintain the connectiv-
ity of an individual peer (node) to the network by establishing
neighbor relationship with a subset of other nodes (neighbors)
in the overlay network. The P2P routing protocols allow in-
dividual computers and devices to share information and re-
sources directly, without dedicated servers. Although P2P
networking technologies may provide some desirable system
properties for supporting pervasive and cooperative applica-
tion sharing across the Internet, such as anonymity, fault tol-
erance, low maintenance and low administration cost, as well
as transparent and dynamic operability, there are some known
problems with most of the current P2P systems.

� The first known problem is the topology mismatch. The

stunning growth and the bandwidth intensive nature of
Gnutella-like P2P applications coupled with naive ap-
proaches such as Gnutella’s random power-law topol-
ogy presents an inherent mismatch between a P2P ap-
plication and the physical Internet infrastructure [11].

� The second known problem is the so called short-cut
effect [2], which occurs primarily due to the diversity
in the network resources available to each peer [12].

� The third known problem is the inefficient utilization of
network bandwidth in pure broadcast-based P2P search
[16].

In this paper we address these problems by developing a
number of system-level facilities. First, we propose multi-
tier capability-aware overlay topologies, aiming at reducing
short-cut effect, the topology mismatch and improving the
utilization of network resources available to peers. The key
idea is two folds. We distinguish low bandwidth peers from
high bandwidth peers, assuming higher bandwidth peers will
connect to more peers and lower bandwidth peers will have
sparse connections in the P2P overlay network. In addition,
we advocate a multi-tier network-connection aware topology
such that the number of lookup queries served by a peer is
commensurate with its capability, and peers with higher band-
width are assigned to serve more lookup queries, and at the
same time are served more efficiently. Such a topology ad-
vocates that sparsely connected peers will not be on the path
of highly connected peers, thereby avoiding or significantly
reducing the short-cut effect. Second, we propose a Proba-
bilistic Broadening search technique, which exploits the huge
variances observed in terms of the number of resources (files
in Gnutella) shared by each peer [1], for improving search
quality and efficiency in the P2P system. Combined with re-
sult caching, this technique can obtain query answers with
significant reduction on P2P traffic and latency. The main
idea is to use capability-sensitive metrics to rank neighbors
and select a subset of neighbors to forward the query at each
step. Our initial experimental results show that the probabilis-
tic broadening is very effective for locating moderately large
number of matches with reduced bandwidth consumption and
processing cost.

1

2 Problem Statement and Our Ap-
proach

Most loosely coupled P2P search techniques use a breadth
first search (bfs) (or scoped broadcast or pure bfs) algorithm.
In the pure ����� scheme a query � is specified by a quadruplet:�

originator, keywords, ID, TTL � , where �	�
�������������
�� is the
query originator, �����������
��"!�� is the list of user supplied key-
words, ��� #%$ is the unique query identifier and ��� &'& (is the
Time-to-Live of the query. The query originator assigns the
query � a unique ID (��� #%$) and sets the scope of the query
��� &'& (to �����)&'& (. When a peer * receives a query � from
any neighbor peer + , peer * checks if it is a duplicate query
(using ��� #�$). If so, peer * drops the query � ; else peer *
sends results from its local file index to peer + . If the query
� ’s TTL has not yet expired (��� &'& (,�.-) then peer * for-
wards the query � with its TTL decremented by one to all its
neighbors (except peer +). With the above search technique,
a Gnutella-like P2P document sharing system runs into the
following problems:

Problem I: Short-Cut Effect Due to Peer Heterogeneity:
It has been observed in [12] that peers are highly diverse in
terms of their network resources and their participation times.
Unfortunately, most decentralized P2P systems, construct an
overlay network randomly resulting in unstable and less pow-
erful peers hindering the system’s performance as exempli-
fied by the Short-Cut Effect [2]. Consider Figure 1 (note that
thicker lines represent links with higher bandwidth). Let peer
1 broadcast a query � with TTL two. The following sequence
of events may lead to peer 4 not receiving the query request
although it is two hops from peer 1.

1. At time � , peer 3 receives the query via peer 2. Peer 3
does not forward this query to peer 4 since its TTL is
now equal to zero.

2. At a later time instant �0/ (��/1�2�), peer 3 receives the
same query � directly from peer 1 with �	� &'&3(5476 .
This query is dropped at peer 3 as a duplicate query.

Hence, the presence of short-cuts in the overlay network
may harm the performance of the system in two ways. First,
the number of peers visited by a scoped-broadcast query is
lesser, and consequently the number of results obtained by
the query decreases. Second, the presence of a weakly con-
nected node on a path between two highly connected nodes
(i.e., short-cut) can suffocate the throughput between the pow-
erful nodes.

One way to tackle this problem is to store the query
� ’s TTL along with the its unique ID on every peer vis-
ited by the query and broadcast a duplicate query !%8%*:9;�=<
iff !%8%*:9;�=<�� & & (>�?��� & & (. Although, this ensures that all
peers within the scope of the query originator indeed receive
the query, it leads to several redundant messages. If @ is the
set of peers visited by query � , !A8�*B9��=< would visit all peers
in set @ and each of them would in turn broadcast such re-
dundant queries (since !A8�*B9��=<C� &'& (D�.��� & & (). This trig-

1

2 3

4

Result File

Higher Bandwidth

Lower Bandwidth

K: Keyword List

ID: Query ID

Query Q(originator, keywords, ID, TTL)

Q(1,K,ID,0)

Query Originator
Q(1,K,ID,1)

Drop Q

Figure 1: Short-Cut Effect

gers a chain of such duplicate query messages (with different
TTLs), making such a solution infeasible in view of its band-
width consumption.

In this paper, we propose to handle the short-cut effect and
other problems caused due to peer heterogeneity by structur-
ing the overlay topology into a multi-tier capability aware P2P
network, with each tier consisting of a collection of peers with
certain capability level.

Problem II: Inefficient Utilization of Network Bandwidth:
A pure broadcast based search is known to consume lots of
bandwidth. The iterative-deepening [16] and the random walk
[8] technique exploit the fact that a typical user is satisfied
with a certain threshold of query results. The former per-
forms search by iteratively increasing the scope of the search,
starting with �����)&'& (E4F6 and incrementing �����)&'& (by
one on every iteration with the hope that the query is satis-
fied within a smaller scope (at some �����)&'& (�HG ��IJ&'& ().
The later technique performs a random walk on the overlay
network until the query is satisfied. However, these schemes
do not exploit the huge variances observed in peer capabilities
with respect to resources such as bandwidth and the number of
documents shared by each peer [12]. In order to obtain results
with reduced traffic and latency, we propose a Probabilistic
Broadening search technique for the document search phase,
aiming at utilizing the varying degree of resource sharing ex-
hibited in the present P2P networks. We also demonstrate that
this capability-sensitive query forwarding scheme provides an
elegant solution for the stale results problem in result caching
[14].

In comparison with the iterative deepening scheme, our ex-
periments show that the broadening algorithm is suitable for
locating moderately large number of matches, while the itera-
tive deepening performs better when the search is intended
to locate a small number of matches. Hence, we propose
to use the probabilistic broadening technique for the docu-
ment search phase and the iterative deepening technique for
the replica search phase. The document search phase cor-
responds to the first phase of Gnutella search, which refers
to the process of querying the P2P network for user-supplied
keywords. The replica search phase corresponds to the sec-
ond phase wherein the file is download from multiple file
providers using a technique called swarming [4]. In order
to implement swarming, the results collected in document
search phase are required to include a hash of the matched

2

documents. When the user chooses a certain result for down-
load, the second phase of search requiring a small number of
matches is performed using the hash value of the selected doc-
ument to find peers having exact replicas of that document.

3 Capability-Aware Overlay Topolo-
gies

3.1 Overview

Before we describe the design of multi-tier capability-aware
overlay topologies, we introduce the concept of Heterogeneity
Levels, which is used as a guideline to construct connection
aware topologies, and a set of Performance Metrics, which
serve as the basic model to evaluate and compare different
classes of overlay topologies.

We classify nodes into Heterogeneity Levels based on their
capabilities with level zero used to denote the least powerful
set of nodes. Peers at the same heterogeneity level are as-
sumed to be almost homogeneous in terms of their capability.
The key idea is to ensure that two nodes whose � (s vary sig-
nificantly are not directly connected in the overlay network.
So, we allow a connection between two nodes and � only if� � (9 �<���� (9���< ��� 6 .

It is observed in Gnutella [12] that nodes show several or-
ders of magnitude difference in the amount of network band-
width available to them (slow dial-up connection versus high
speed cable connection). Hence, we categorize peers into dif-
ferent heterogeneity levels based on their available network
bandwidth. However, noting that the network bandwidth of
interest to us is the amount of bandwidth expended in query
forwarding on the P2P network, we assume that the capability
of a peer with a 1Mbps connection is say 8 times that of a
peer � with a 25Kbps dial-up connection (as against 40 times).

Now we show that the notion of heterogeneity level can be
used to counter the short-cut effect. Recall the fundamental
reason for the occurrence of short-cut effect: a weak peer ly-
ing on the shortest path (in terms of the number of hops in
the overlay network) between two powerful peers. Given the
fact that we construct the overlay network by only connecting
nodes of comparable � (s, we can avoid short-cuts by con-
structing topologies such that the connectivity of the nodes
increases with their � (; thereby making it less likely for a
lower level node to appear on the shortest path between two
higher level nodes. Further, this is not only important but also
very feasible because nodes at higher � (are more powerful
and hence are capable of handling more neighbors (connec-
tions).

We now introduce our performance metrics:

� Load Distribution: Distribution of the ratio of the load
experienced by a node to its capability.

� Coverage: Number of nodes that receive a scoped-
broadcast message. Coverage is an indicator of the ex-
tent to which short-cuts are mitigated by the topology.

� Amortized Bandwidth: Ratio of total bandwidth con-
sumed by a query to the number of results obtained.

� Amortized Latency: Ratio of total response time for a
query to the number of results obtained.

� Fault-Tolerance: Fault-tolerance is measured as the
fraction of the number of results obtained when a ran-
dom set of nodes fail.

We first present an analytic model for designing capability-
based multi-tier topologies that minimize the variance of load
distribution. We then formally define three classes of over-
lay topologies: Hierarchical Topology, Layered Sparse Topol-
ogy and Layered Dense Topology. Each of these topologies
enforces certain degree of control over the overlay network
structure (with hierarchical topology being the most rigid and
restrictive and the dense topology being the least) and is con-
structed based on the analytical model.

3.2 Analytical Model

Given a collection of heterogeneous nodes with the character-
istics discussed above, we would like to construct an overlay
topology that minimizes the variance of load to capability ra-
tio. We characterize the overlay topology using the degree of
each node in the system, where degree refers to the number of
open connections maintained by a node. In principle, nodes at
the same heterogeneity level have the same (or very similar)
capability; it is quite reasonable to assume that they maintain
the same (or very similar) number of connections (degree).

Let 	 be the total number of nodes in the system, ��8 G � (
be the number of HLs,
�� be the capability of a node at level
 (- � � ��8 G � (� 6), ��� be the fraction of nodes at level
and !�� be the degree of any node at level . Degree !�� consists
of three components, namely, !����� , !��������� and ! � �� such that
! ������ !��������� � ! � �� 42! � ; ! ���� denotes the number of edges
from a node at level to nodes at level � 6 , !��������� denotes
the number of edges from a node at level to nodes at level
�� 6 and ! � �� denotes the number of edges from a node at level
 to other nodes at the same HL level .

We derive the load on every node * as a function of
its heterogeneity level, the initial value of TTL and the de-
gree parameters !��� (- � � ��8 G � (�E6 and @ !" 8�*$# !%
��'�%# ��'&). Given the load on every node * in the sys-
tem and its capability one can compute the variance of load
distribution, namely, (=����9*);
"��!J9 * <�+,
�-/.�0 ��1 < over all nodes * .
We resort to optimization techniques like simulated annealing
[6] to obtain near optimal solutions for the degree parame-
ters !2�� that minimize the variance of load distribution. Refer
to Appendix A and [15] for further details on our analytical
model.

This analytical model serves as the basis for our multi-tier
topology design. In the following sections we discuss three
classes of multi-tier topologies that are derived using our an-
alytical model with additional restrictions on the degree pa-
rameters !��� .

3

3.3 Three Classes of Multi-Tier Topologies

In this section we describe three classes of capability-
aware multi-tier topologies: Hierarchical, Sparse, and Dense
topologies, each of which exhibit certain restrictions on the
topology parameters, namely, !����� , !��������� and ! � �� (6 � �
��8 G � (� 6). These restrictions are important with respect to
the design of an overlay topology in (i) Reducing the search
space for our optimization problem. (ii) Constructing over-
lay topologies that not only distribute load evenly, but also
perform reasonably well with respect to other performance
metrics presented in Section 3.1.

To simplify the discussion without loss of generality, we
assume in all examples used in the rest of the paper that we
have three classes (��8 G � (4 �) of nodes (with � (s rang-
ing from 0 to 2). We also assume that the capabilities of peers
at � (= 0, 1 and 2 are in the ratio 1:4:8 (in tune with our ar-
gument in Section 3.1). For instance, one could classify peers
as indicated in Table 1.

-/. Peer Class

0 56Kbps Modem/ISDN and 112Kbps Dual ISDN
1 256 to 768Kbps DSL
2 1Mbps Cable, 1.5Mbps T1/Intranet/LAN

Table 1: Peer Classes

In the following portions of this section, we define and an-
alyze the hierarchical, sparse and dense topologies.

Definitions
Strongly Connected Layer: In all these three topologies the
nodes in the highest � (are strongly connected. Namely,
! � ���� - for 4 ��8 G � (� 6 .
Hierarchical Topology: In a hierarchical topology every node
below the highest � (is connected to exactly one node in the
immediate higher level. Namely, !����� 4 6 and ! � �� 4 - for
- � � ��8 G � (��� . See Figure 2.
Sparse Topology: In a sparse topology every node below
the highest � (is connected to one or more nodes in the
immediate higher level. Namely, !����� � 6 , ! � �� 4 - for
6 � � ��8 G � (��� . See Figure 3.
Dense Topology: In a dense topology every node below the
highest � (is connected to one or more nodes at the same
and/or the immediately higher level. Namely, !����� � 6 and
! � ���� - for - � � ��8 G � (��� . See Figure 4.

Performance Analysis
Short-Cuts: The main motivation to consider a hierarchical
topology is because it is short-cut free. Consider Figure 2, for

Strongly

Connected

HL = 2

HL = 1

HL = 0

q b

dc

ap

Figure 2: Hierarchical
Topology

Strongly

Connected

HL = 1

HL = 2

HL = 0

a

b

c

Figure 3: Sparse
Topology

Strongly

Connected

HL = 1

HL = 2

HL = 0

Figure 4: Dense
Topology

any two nodes * and + which can be reached without involving
a node at the highest � (, there is a unique path (because of
tree structure); And for nodes � and � that have to be reached
through the highest � (, there is a unique path from node �
to a node � in the highest � (and from node � to a corre-
sponding node ! in the highest � (and there is no short-cut
between nodes � and ! . Observe that the sparse and dense
topologies are not short-cut free. Referring to Figure 3, let the
shortest path between nodes � and � be a-b-c. But, it is al-
ways possible that there exists a path a-x � -x 	 -x
 -c (where x � ,
x 	 and x
 belong to � (4��) which has lower latency than a-
b-c. Also, the dense topology will have more short-cuts than
a sparse topology since it is closer to a random topology in
terms of the randomness in its overlay topology.
Load Distribution: In a hierarchical topology, due to its tree-
like structure, the nodes at the highest � (are likely to be
more heavily loaded (relative to their capability) than the
nodes at lower levels, thereby making the load distribution
somewhat skewed. The sparse topology would display much
better load distribution since the restriction on the degree pa-
rameters is much weaker than that of a hierarchical topology.
Finally the dense topology, which has no additional degree
constraints, would display the best load distribution. Never-
theless, all the three topologies show remarkably better load
distribution when compared to a random topology that is ag-
nostic to peer heterogeneity.
Coverage: A hierarchical topology is short-cut free, but its
tree-like structure, which increases the diameter of the overlay
network, tends to bring down the coverage when compared to
a random topology. A sparse (or dense) topology has much
higher coverage because it permits more connections thereby
bringing down the diameter of the overlay network. However,
if one compares the coverage of a sparse (or a dense) topol-
ogy with a random topology of the same diameter one would
observer that the former has larger coverage since they avoid
short-cuts to a great extent.
Amortized Bandwidth: Bandwidth consumption of a query �
can be estimated by the sum of the coverage of the query
� and the number of duplicates of the query � . In a hier-
archical topology, the tree structure ensures that there is no
duplication of queries (except for the nodes at the strongly
connected highest � (). Hence, this topology consumes min-
imum aggregate bandwidth when a scoped-broadcast algo-
rithm is used. However, when iterative algorithms are used,
each iteration visits fewer nodes (lesser coverage) in the hier-
archical topology; therefore, a larger number of iterations are
required to obtain a given threshold of results, leading to an
increase in the required bandwidth. Along the same lines of
argument, the sparse and dense topologies consume more ag-
gregate bandwidth when a pure-broadcast algorithm because
they have larger coverage; but, their larger coverage rewards
them with more results thereby bringing down the amortized
bandwidth consumption. Also, when the iterative algorithms
are used their larger coverage brings down the expected num-
ber of iterations, and hence the bandwidth, required to satisfy

4

a given query.
Amortized Latency: Latency is inversely related to coverage.
Larger coverage implies that more nodes (and hence more re-
sults) can be visited in a smaller number of hops. Hence, the
expected amortized latency in a hierarchical topology would
be larger than a random topology, which would in turn be
larger than a sparse/dense topology
Fault-Tolerance: In a hierarchical topology, if a node fails,
then the entire sub-tree rooted at that node gets disconnected
from the P2P network temporarily. Hence, maintaining a
hierarchical topology is very costly. The sparse and dense
topologies show increasingly higher fault tolerance, but still
they assign higher responsibility to higher level nodes thereby
making them marginally weaker than the random topology.
However, the uniform faults assumption, wherein all nodes
are equally likely to fail, is particularly not true in the case
of Gnutella-like systems. Note that in a large-scale decen-
tralized P2P system like Gnutella, most failures are due to
nodes leaving the P2P system. It is observed in [12] that nodes
with powerful network connections stay longer in the system
as against nodes with weak network connections (like dial-
up users). Hence, the probability of failure of a higher-level
node (because of it leaving the system) is much lower than
that of a lower-level node. Under this assumption of non-
uniform faults the multi-tier topologies are likely to be more
fault-tolerant since they assign more responsibility to more
capable nodes that are less likely to fail.

Summary: Table 2 presents a summarization of a compari-
son between the overlay topologies. In conclusion, we pro-
mote the sparse topology as the best structure for building a
multi-tier capability-aware overlay network since it strikes a
good balance between load distribution, short-cuts and other
performance metrics.

Topology Type Load Distribution Short-Cuts Coverage

Random very poor very large medium
Hierarchical poor nil low

Layered Sparse good very small high
Layered Dense very good small high

Topology Type Bandwidth Latency Fault Tolerance

Random high medium good
Hierarchical medium high very poor

Layered Sparse low low good
Layered Dense low low-medium good

Table 2: Summary: Overlay Topologies

3.4 Topology Construction and Maintenance

The multi-tier topology construction consists of two main
components: (i) bootstrapping a new node. (ii) maintaining
the overlay topology in the presence of node departures and
network failures.

Topology Construction
In a typical decentralized P2P system, a collection of pub-
licly well-known bootstrap servers maintain a cache of re-
cently joined nodes. Now, when a new node * wants to join
the P2P system, we require the bootstrap server to provide it

with an appropriate set of nodes + (depending on � (39 * <) ac-
cording to table 3 and the node degree information required
to be maintained by node * according to the topology degree
parameters, namely !��- . 0 ��1 , @ !

" 8%* # !�
��'�%#0��'& .
Topology ���������� - . � ������� -/.

Hierarchical -/.�0
	 1�� - . 0 ��1 � 	 ������� - .
Sparse - . 0
	 1�� - . 0 ��1 � 	 ������� - .
Dense -/. 0�	 1�� - . 0 ��1 ��� - . 0
	 1�� -/. 0 ��1 	 ������� - .

Table 3: Bootstrapping node � in a Multi-Tier Topology

A new node * proactively opens connections to nodes that
are at the same or higher level than node * . However, the
connections from a node * to a node + at a lower heterogeneity
level (� (9;+ < � � (9 * <) than node * are initiated by node +
rather than node * . Since the nodes with larger bandwidth
are likely to stay connected to the system for a longer period
of time, the probability that a node would loose a connection
with a higher-level node is quite low, thereby reducing the
topology maintenance costs discussed below.

Topology Maintenance
Once a node has joined the overlay network, it may loose con-
nections with some or all of its neighbors due to various rea-
sons including faults in the underlying network, departure or
failure of the neighbors themselves. In the event of such fail-
ures, if a peer * were to still retain connection(s) with a subset
of its neighbors, then these peers (and recursively their neigh-
bors) can provide a set of peers to whom peer * can potentially
connect to; else peer * contacts one of the bootstrap servers to
obtain a new entry point peer. Note that a node only needs to
maintain the required number of connections with other nodes
at the same or higher levels. Also, observe that the mainte-
nance cost of a sparse or a dense topology would be much
lower than a hierarchical topology.

Due to the space restriction, we have omitted the discus-
sion on formal properties of the three classes of multi-tier
topologies and the concrete algorithms for construction and
maintenance of such topologies. Readers may refer to [15]
for more technical details.

4 Probabilistic Broadening Search

4.1 Design Ideas

Recall the scoped ����� search technique (pure-bfs) used in
most Gnutella-like P2P systems today, query originator ini-
tializes ��� & & (to G ��I & & (and consequently the query
� reaches all peers that are at most G ��I & & (hops from
the originator. Alternatively, the restricted depth first search
(�"!)���) or the iterative deepening technique attempts to be
lucky by satisfying the query within a smaller scope (fewer
hops). Each query is associated with another parameter
��� ��� �"�"���
);! , specifying the number of results required.
The query originator iterates over query’s �����)&'& (, starting
from ��� �����)& & (= G ���&'& (to G �%IJ&'& ((G ���& & (andG ��IJ&'& (are system parameters) until the query � is satis-

5

fied. However, all these search techniques do not exploit the
huge variances observed in terms of both the number of doc-
uments shared by each peer and the bandwidth capability of
different peers. In an open P2P system like Gnutella in which
a large number of non-cooperating peers are present, it has
been observed that a large number of peers (70%) are free-
riders [1] and that about 90% of documents is shared by about
10% of the nodes [12]. This means that most of the peers do
not contribute to the peer community but merely utilize the
resources provided by a small subset of peers in the commu-
nity.

The key idea behind our probabilistic broadening algo-
rithm is to promote a focused search through selective broad-
cast. The selection takes into account the peer heterogeneity
and the huge variances in the number of documents shared by
different peers. Our search algorithm iterates over the num-
ber of neighbors to whom the query is forwarded at each step.
This is accomplished by adding a breadth parameter � to the
query. The query originator iterates over the breadth param-
eter ��� � from G ���� to G ��I�� (G ���� and G �%I�� is a sys-
tem defined parameter). In each iteration the query � takesG ��IJ&'& (hops but is forwarded only to ��� � neighbor peers
at each hop. A main distinction of our algorithm, in contrast
to other existing search schemes, is that, in a given iteration
when the query is required to be forwarded to say � neighbors,
conscious effort is put forth to ensure that the query is sent to
the best subset of � neighbors, rather than any or all of the
� neighbors. We use a capability-aware ranking algorithm to
select the best � neighbors from a set of neighbor peers. The
ranking algorithm also takes into account the performance of
peers in the recent past and dynamically updates the rankings
as peers join or leave the system.

The probabilistic broadening search algorithm comprises
of three major components: Ranking neighbor peers, Process-
ing a query using the ranking information, and Maintaining
the rankings up-to-date. We below describe the ideas of the
algorithmic design of these three components. Readers may
refer to [15] for the algorithm details.

4.2 Ranking Neighbor Peers

In a P2P system, peers are constantly interacting with their
neighbors as a part of their query forwarding responsibility.
Also, the results of a query retrace the path to the query origi-
nator. Note that the results forwarded to peer * by its neighbor
peer + not only includes the results from the local file index
of peer + , but also includes the results from other peers which
received the query via peer + . A peer * could build the fol-
lowing metrics to rank the goodness of a neighboring peer +
based on its interactions with peer + :

� Max Degree: Degree refers to the number of neighbors
to which a peer is connected. Peers maintaining large
degree can be expected to have high processing power
and network bandwidth.

� Max Results: The number of results returned per query

RV2

RV3

RV4

RV6

RV5

RV6

RV1 > RV2 > RV3 > RV4 and RV5 > RV6
RV1 > RV2 > RV3 > RV4 and RV5 > RV6

Q.B = 2Q.B = 1

x1

x2

x3

x4

RV5
x5

x6

x1

x2

x3

x4

x5

x6
RV1

pqpq
RV2

RV3

RV4

RV1

Figure 5: Broadening Algorithm: Illustration

by a neighbor over the last & time units.
� Max Rate: The ratio of the number of results returned

per query to the time taken to return them over the last
& time units.

In addition to use each metric independently as a ranking
criterion, one could use a weighted combination of the above
parameters to obtain a more sophisticated ranking metric:� (9 * < 4H� ��� $ � ��������9 * < � � 	�� � �"� 8) �0��9 * < � �
�� � �%����9 * <
where � � � � 	 � �
 4>6 . From our experiments, we observed
that in a random topology, all the metrics suggested above
have very similar performance. However, the connectivity in-
formation (Max Degree) is inbuilt in our multi-tier topologies;
hence Max Results and Max Rate show better performance on
our topologies. Hence, without loss of generality, in the rest
of the paper we use �D��I � �"� 8) �0� as the metric for all discus-
sions.

4.3 Query processing by Probabilistic Broad-
ening

Query processing using the probabilistic broadening search
technique consists of three steps: (i) The query originator
iterates through the breadth parameter ��� � from G ���� toG ��I�� until the query � is satisfied. In each iteration (if
the query is not yet satisfied), the query originator issues
the query with the query’s TTL set to G ��I &'&3(. (ii) When
a peer * receives a query � from peer + , peer * chooses
the best ��� � neighbors (excluding peer +) and forwards the
query only to them. (iii) When a peer + receives the results
for a query � from its neighbor peer * it updates the good-
ness metric for peer * . Figure 5 illustrates our algorithm
at peer * for ��� � 4F6 and ��� � 4 � with ranking values� (�61� � (� � � (� � � (� and

� (�
 � � (�� .
4.4 Maintaining Rankings Up-To-Date

The key problem in maintaining the rankings up-to-date is the
following: Say at time instant � , a peer * ranks its neighbors
@ 4 " I � #0I 	 #���$#0I � & as I ��� I 	�� �� � I � . Let the
average breadth parameter (��� �) at which a typical query is
satisfied be � . So, peer * sends most of its queries to peers
I � #0I 	2#����# I�� at time ��/ (��/ �D�). Consequently, the ranking
measures of peers I�� � # I�� 	�#��� #0I � are not updated by peer
* since peer * did not forward queries to (and thus not get
results from) these peers. Hence, changes to the file indices

6

of peers in the overlay network that are accessible through
peers I � � #0I � 	 #����#0I � are not considered subsequently.

To capture the dynamics of the P2P network we modify
neighbor selection step as follows: Instead of deterministi-
cally selecting the best ��� � peers, peer * selects ��� � peers
probabilistically, that is, each of the neighbor peer I�� is se-
lected with a probability proportional to its ranking value� (9 I���< . Hence, most of the queries get routed through the
neighbors who have performed well before; yet, by proba-
bilistically sending the query to some inferior neighbors, peer
* can figure out if they can provide us better results now.

4.5 Discussion

In comparison with other iterative-algorithms and random
walks, the probabilistic broadening algorithm (* �������) is sim-
ilar in its attempts to make the query processing more sequen-
tial at the cost of increased latency. A unique feature of the
probabilistic broadening algorithm is that it performs a fo-
cused search starting with a small number of (highly ranked)
very capable peers and proceeding towards larger number of
less capable peers. But, * ������� is not quite suitable when the
number of query results required is smaller (like in the replica
search phase). This is because the coverage of the �"!)��� (or
random-walk) scheme is lower for smaller number of itera-
tions as against * ������� ; and usually a small threshold can be
satisfied within a small number of iterations. To illustrate this:
assume that the average connectivity (number of agents) of a
peer is equal to ! . Hence, the number of peers that can be vis-
ited in � iterations of �"!)��� (or random-walk) is of the order
of !�� , whereas the number of peers visited by * ��� ��� in � it-
erations would be of the order of � ��������� . . For small values
of � , * ������� visits more peers and hence fetches much more
results than the threshold required. But, for moderate values
of threshold (around the average number of results returned
by � ���), * ������� performs better because of the focused nature
in its search technique.

4.6 Integrating ���	��
� with Result Caching

It is observed by many [9, 13] that the query traffic on a
Gnutella network is short, infrequent and bursty. Also, a sub-
stantially large fraction of the queries are repeated in a short
interval of time. The major hurdle in caching results in a
highly dynamic nature like Gnutella is the problem of effec-
tively handling stale-results [9].

The key motivation for using * ������� with result caching
arises from the fact that both of these techniques share a com-
mon design philosophy. Result caching is a fine-grained rank-
ing system in which, a peer * can estimate the number of re-
sults that could be obtained through each of its neighbors for
any given query � . Also, the ranking metric �D��I � �"� 8) �0�
used in the broadening scheme can be computed as aggre-
gates of the cached results. Hence, the techniques used to
maintain peer rankings up-to-date in the * ��� ��� scheme can
be effectively adapted to solve the stale-results problem in the
result caching. For example, sudden fluctuations in the rank-

ings of a neighbor (say I��) are highly likely to be due to the
fact that some peers accessible through I�� left the network.
Hence, the confidence level on the cached entries obtained
from I�� could be reduced. This could be implemented, for
example, by decreasing the time-to-live counter for the rel-
evant entries at a larger rate. Hence, the amicability of re-
sult caching with * � ����� and the benefit from improved per-
formance under bursty traffic makes it very attractive for us to
use the two in conjunction.

5 Experiments and Results
We have performed three sets of simulation-based experi-
ments. The first set evaluates the effectiveness of multi-
tier capability-aware topologies against a random topology.
The second set compares probabilistic broadening algorithm
(* �������) with iterative deepening (�"!)���) and the pure breadth
first search technique (�����). The third set shows the effect
of combining * ��� ��� with result caching and our solution for
handling the stale results problem.

5.1 Simulation Set Up

Our simulation setup comprises of three main modules: the
Network Generator, the Document Generator, and the Search
Simulator. Tables 4, 5 and 6 present the major tunable param-
eters, most of which are obtained from observations made on
the real Gnutella network.
Network Generator. We use our multi-tier bootstrap algo-
rithm and construct the overlay network incrementally by
adding one node at a time. For our simulation we use 50%,
30% and 20% of the peers for the corresponding � (= 0, 1
and 2. Document Generator. We use Zipf-like distribution
wherein the number of documents that match the ���� most
popular query is proportional to 6 +"�� (with parameter � 4>6).
We use Document Bias ($ �) to specify non-uniform distribu-
tion of documents amongst peers ($ � of 20%-80% means that
20% of the peers hold about 80% of the documents).

Search Simulator. The search simulator implements one of
the following search techniques: scoped broadcast (�����),
probabilistic broadening (* ��� ���), restricted deepening (��!)���),
and probabilistic broadening with result caching.

5.2 Evaluation of Overlay Topologies

We compare the overlay topologies using five performance
metrics: Coverage, Mean Bandwidth Consumption, Search
Latency, Fault Tolerance, and Load Distribution using the
probabilistic broadening algorithm with �����)& & (equal to 7.
Our last experiment overlay topologies demonstrates the im-
portance of partitioning peers into the right set of heterogene-
ity levels.

Load Distribution
Figure 6 shows the variation of load distribution among the
four overlay topologies that are normalized with respect to a
	 4 6 -%-A- node random topology. For 	 4 6 - # -A-%- the
sparse and topology show 80 times lower variance, while a hi-

7

Parameter Description Default�
Number of Nodes 10,000- . Number of Peer Classes 3� ��� � Maximum Peer Degree 10� � �2� Minimum Peer Degree 1� � Degree Distribution Power Law

(Random/Power Law)

Table 4: Network Generator

Parameter Description Default� � Number of Documents 100,000� ��� Number of Distinct 10,000
Documents� � Document Bias 20%-80%

Table 5: Document Generator

Parameter Description Default� -�� � Phase I result threshold 32� -�� 	 Phase II result threshold 4

Table 6: Search Simulator

erarchical topology shows 10 times lower variance. The dense
topology shows marginally higher variance than the sparse
topology because the presence of more short-cuts decreases
the accuracy of its analytical model.

0

1

2

3

4

5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Lo
ad

 D
is

tr
ib

ut
io

n

Number of Peers

’maxload.random’
’maxload.dense’
’maxload.sparse’

’maxload.hierarchical’

Figure 6: Variance of load/capability

500

1000

1500

2000

2500

3000

3500

4000

1000 2000 3000 4000 5000 6000 7000 8000 900010000

Q
ue

ry
 C

ov
er

ag
e

Number of Peers

’coverage.random’
’coverage.dense’
’coverage.sparse’

’coverage.hierarchical’

Figure 7: Query Coverage

Coverage
We have performed two tests on coverage: The first test com-
pares the coverage among different overlay topologies. The
second test shows the distribution of the coverage with respect
to the heterogeneity level of peers.

Figure 7 shows the average coverage of a peer in the net-
work, with scope �����)&'& (4 �

. For 	 4>6�- # -A-A- nodes, the
layered dense and sparse topologies show 20% more cover-
age, while the hierarchical topology shows 15% lower cover-
age because of its increased diameter, even though it is short-
cut free.

Table 7 shows the variation of coverage with different � (s
of peers that are normalized with respect to � (.4 - peers.
One key conclusion drawn from this table is that the extra
work done by the higher � (peers rewards them with larger
coverage (and thus more results).

Topology - . �
� - . � � -/. � 	

Hierarchical 1.0 5.2 15.3
Layered Sparse 1.0 3.6 7.7
Layered Dense 1.0 2.9 6.0

Table 7: Coverage Vs -/. for
�
� �

���	�
���
nodes

Amortized Bandwidth Consumption
Figure 8 presents the average number of messages required
for a given result threshold for a search on various topologies.
For 	 4D6�- # -%-A- nodes, the sparse topology consumes almost
25% lesser bandwidth than the random topology; whereas the
dense and the hierarchical topology consume about 12.5%
lesser bandwidth compared to the random topology. Also,
observe that the difference in the amortized bandwidth con-
sumption increases with the number of nodes in the system.

Amortized Latency
Figure 9 shows the plot between amortized latency and the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
an

dw
id

th
 (

P
ac

ke
t H

op
s

x1
03)

Number of Peers

’bw.random’
’bw.dense’
’bw.sparse’

’bw.hierarchical’

Figure 8: Amortized Bandwidth

50

60

70

80

90

100

110

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

La
te

nc
y

(N
um

be
r

of
 H

op
s)

Number of Peers

’latency.random’
’latency.dense’
’latency.sparse’

’latency.hierarchical’

Figure 9: Amortized Latency

number of peers for different topologies. For 	 4 6�- # -%-A-
nodes, the figure shows that the sparse and dense topology
save about 20% and 15% latency respectively when compared
to a random topology; however, the hierarchical topology in-
curs about 5% additional latency. Also, similar to the amor-
tized bandwidth consumption, the difference in the latency
incurred between the topologies increases with the number of
nodes in the system.

0

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
au

lt-
T

ol
er

an
ce

Number of Peers

’fault.random’
’fault.dense’
’fault.sparse’

’fault.hierarchical’

Figure 10: Fault Tolerance with uniform
faults

0

0.2

0.4

0.6

0.8

1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

F
au

lt-
T

ol
er

an
ce

Number of Peers

’fault.random’
’fault.dense’
’fault.sparse’

’fault.hierarchical’

Figure 11: Fault Tolerance with
non-uniform faults

Fault Tolerance
We study the fault-tolerance of the four topologies under two
conditions: Uniform Faults and Non-Uniform Faults.

Figure 10 shows the quality of the results obtained when
a random 10% of the peers fail under uniform faults. Qual-
ity of results is expressed as the ratio of the number of results
obtained under faulty conditions to that obtained when all the
peers were functional. For 	 4>6�- # -A-A- nodes, the hierarchi-
cal topology shows about 50% lower fault-tolerance than the
random topology; while the sparse and dense topology exhibit
only 2-3% lesser fault-tolerance.

Figure 11 shows the fault-tolerance of the topologies under
non-uniform faults with 10% of failed peers, where the prob-
ability of peer failure at HL = 0, 1 and 2 are in ratio 3:2:1.
For 	 4 6 - # -A-%- nodes, the sparse and dense topology show
about 4-5% more fault-tolerant than the random topology and
the hierarchical topology shows 20% improvement as against
the uniform faults case.

8

Topology Coverage Amortized Amortized Fault-Tolerance Load Distribution
Type Bandwidth Latency (non-uniform faults) load/capacity variance

Hierarchical 0.97 1.06 0.96 1.06 21.0
Sparse 0.99 1.17 1.16 0.92 11.0
Dense 0.99 1.13 1.12 0.91 9.0

Table 8: Importance of choosing correct � � � - .

Importance of Choosing Correct numHL
To demonstrate the importance of determining the correct
value of ��8 G � (, we compare the performance of a sys-
tem with an incorrect value for ��8 G � (to that of a system
which used the right value. Assume that the number of gen-
uine peer classes in the system is three. We constructed a
hierarchical, a sparse, and a dense topology using these peers
for ��8 G � (4 � and ��8 G � (?4 � . Table 8 shows ratios
of the performance measures obtained for ��8 G � (4 � to
those obtained for ��8 G � (4 � . For instance, a sparse topol-
ogy with ��8 G � (4�� shows 1% lesser coverage, 17% more
bandwidth, 16% more latency, 8% lesser fault-tolerant, and 11
times more variance in load distribution than a sparse topol-
ogy with ��8 G � (4 � .
5.3 Evaluation of Search Techniques

We evaluate the performance of the probabilistic broaden-
ing search technique (* �������) by comparing it with the pure
����� and the iterative deepening (�"!����) approaches in terms of
their bandwidth and latency requirements. Figure 12 shows
the amount of bandwidth consumption (in Packet Hops) for
�����)& & (equal to 7. We observe that when the threshold is
set to the average number of results returned by a scoped �����
search, probabilistic broadening (* � �����) shows 23.1% lesser
bandwidth requirement.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

B
an

dw
id

th
 (

P
ac

ke
t H

op
s

x1
03)

Search Threshold

’bfs’
’pbbfs’

’rdfs’
’bfs-numResults’

Figure 12: Search Techniques:
Bandwidth (TTL = 7)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40

La
te

nc
y

(N
um

be
r

of
 H

op
s)

Search Threshold

’bfs’
’pbbfs’

’rdfs’
’bfs-numResults’

Figure 13: Search Techniques: Latency
(TTL = 7)

An interesting observation from the figure is that the
threshold based schemes fail for large values of the thresh-
old. This is because the threshold-based iterative algorithms
were designed with the hope that the query would be satisfied
without searching all the peers in the system. When the entire
scope of the network has to be searched, the redundant por-
tions in their iterations become the main cause for poorer per-
formance. For comparison, the horizontal line in the figures
show the bandwidth consumption of the pure � ��� algorithm.
The vertical line indicates the average number of results re-
turned by ����� .

Figure 13 shows the search latency, namely the amount of
time taken from the time query is issued to the time a cer-

tain ��� �"�"���
);! of results are obtained. Again the vertical line
denotes the average number of results returned by pure � ��� .
The naive flooding based ����� scheme is the fastest as it ex-
ploits the maximum parallelism of all neighbor peers. On the
other hand, the built-in conservative approach in the iterative
algorithms makes them slower than the pure � ��� . Neverthe-
less, the probabilistic broadening based search * � ����� shows
about 13% lower latency when the search threshold equals
the average number of results returned by a pure ����� .
5.4 Evaluating � ����
� with Result Caching

Now we compare the performance of the search techniques
with result caching enabled. A simple LFU based cache of
a fixed size was used to evaluate the search techniques with
respect to their bandwidth consumption. Figure 14 shows the
plot between bandwidth and threshold. The vertical and hori-
zontal lines indicate the results for the pure � ��� scheme. Note
that when the search threshold is set to the average number of
results returned by pure � ��� with caching, * ������� shows about
20% lower bandwidth consumption than �"!���� .

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40

B
an

dw
id

th
 (

P
ac

ke
t H

op
s

x1
03)

Search Threshold

’bfs’
’pbbfs’

’rdfs’
’bfs-numResults’

Figure 14: Search Techniques with
Result Caching

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

N
um

be
r

of
 N

on
-S

ta
le

 R
es

ul
ts

Time: Number of Queries x100

’result-cache’
’pbbfs-result-cache’

’results-state1’
’results-state2’

Figure 15: Result-caching with � � �����

We also performed experiments to show how well * �������
aids result caching in responding to changes in the network
topology in the form of peer joins or departures. We per-
formed experiments where a larger fraction of peers leave or
join the network. We present an anecdotal description of one
such experiment. In Figure 15, we compare the number of
non-stale results obtained using result caching with * ��� ��� to
handle the stale results problem (pbbfs-result-cache) to that
of the naive result caching technique (result-cache) under the
following scenario:

State 1: At time � 4?- , 20% of the peers leave the network.
Within 2000 system wide queries, * ��� ��� adapts itself to the
sudden loss of peers. In the mean while, the naive result-
caching scheme yields on an average 15% smaller number of
non-stale results.
State 2: At time � 4 �A- , 10% of the peers join. In a little
more than 1000 system wide queries, * � ����� adapts itself to
the sudden addition of peers. The naive result caching scheme
requires over 6000 system wide queries before it catches up
with * ������� in terms of the mean number of non-stale results.

For comparison, we have shown number results actually
available in the system in state 1 and 2 in results-state1 and
results-state2 respectively. These results show that result
caching in conjunction with * ������� is not only more bandwidth

9

efficient, but is also capable of handling the stale-results prob-
lem effectively.

6 Related Work
In the past few years research on P2P systems has received a
lot of attention. Several research efforts have been targeted at
improving the performance of P2P search [16, 3, 8]. These
papers suggest enhancements over the naive flooding-based
����� algorithm by fine-tuning their search schemes based on
measurement studies conducted on user characteristics, dis-
tribution of files among peers, etc. For example Routing In-
dices in [3] exploits the locality of the queries and the uneven
distribution of different categories of files among peers. In
addition, several traces and case studies of the Gnutella net-
works have highlighted the importance of result caching for
Gnutella networks [14]. Suggestions have been made to im-
plement caching as a part of Gnutella protocol [7]. But none
to our knowledge has addressed the short-cut effect and ex-
ploited the capability-awareness in P2P topology construction
and P2P search techniques.

Several have pointed out that peer heterogeneity would be
a major stumbling block for Gnutella [10, 12]. Solutions
based on super-peer architectures have been proposed in [5]
to alleviate the problem of peer heterogeneity. The super-peer
architecture can be viewed as a hierarchical topology with
��8 G � (24 � . Our work not only generalizes ��8 G � (to
arbitrary values, promoting multi-tier layered sparse topology
over the hierarchical topology, but also provides an analytical
model that yields the desired degree information to precisely
construct capability-aware overlay topologies.

7 Conclusion
The key problems that have plagued a Gnutella like P2P sys-
tems are Peer Heterogeneity and its bandwidth consumption.
Most of the P2P developments today treat all peers as equal,
and thus ignore variations in their capabilities. Utilizing such
inherent differences among peers can significantly improve
the performance of the P2P system.

We have proposed simple yet effective multi-tier
capability-aware topologies for improving the P2P search
performance. Such topologies can be realized using sim-
ple bootstrapping and do not impose high construction or
maintenance costs. The main contributions of this paper
are two folds. First, we propose techniques to structure
overlay topologies taking peer heterogeneity into account so
as to ensure that the performance of the overlay network is
not hindered by less powerful peers. Second, we develop
a capability-aware search technique that further enhances
the search performance. We also demonstrate the combined
benefit of integrating the probabilistic broadening search
technique with result caching. Finally, our design and tech-
niques being simple and pragmatic can be easily incorporated
into existing systems like Gnutella.

References
[1] E. Adar and B. A. Huberman. Free riding on gnutella.

http://www.firstmonday.dk/issues/issue5 10/adar, 2003.
[2] F. S. Annexstein, K. A. Berman, and M. Jovanovic. La-

tency effects on reachability in large-scale p2p networks.
In ACM Symposium on Parallel Algorithms and Archi-
tectures, Crete Island, Greece, 2001.

[3] A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In Proceedings of International
Conference on Distributed Computing Systems, July
2002.

[4] Gtk-Gnutella. The graphical unix gnutella client.
http://gtk-gnutella.sourceforge.net/, 2003.

[5] F. S. Inc. Super-peer architectures for distributed
computing. http://www.fiorano.com/whitepapers/ super-
peer.pdf, 2002.

[6] S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi. Optimiza-
tion by simualated annealing. Science, Number 4598, 13
May 1983, 1983.

[7] LimeWire. Improving gnutella protocol: Protocol anal-
ysis and research proposals. http://www9.limewire.com/
download/ivkovic paper.pdf, 2002.

[8] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and replication in unstructured peer-to-peer networks. In
16th annual ACM International Conference on super-
computing, 2002.

[9] E. P. Markatos. Tracing a large-scale peer to peer sys-
tem: an hour in the life of gnutella. In 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, 2002.

[10] S. R. Qin Lv and S. Shenker. Can heterogeneity make
gnutella scalable? In Proceedings of the first Interna-
tional Workshop on Peer-to-Peer Systems, 2002.

[11] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale p2p systems
and implications for system design. In IEEE Internet
Computing Journal, vol. 6, no. 1, 2002.

[12] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing sys-
tems. Technical Report UW-CSE-01-06-02, University
of Washington, 2001.

[13] A. Singh. Mini Project I.
http://www.cc.gatech.edu/ aameek/projects/mps/mp1.html,
2002.

[14] K. Sripanidkulchai. The popularity of gnutella queries
and its implications on scalability. http://www-
2.cs.cmu.edu/k̃unwadee/research/p2p/paper.html, 2001.

[15] M. Srivatsa, B. Gedik, and L. Liu. Improving peer
to peer search with multi-tier capability-aware overlay
topologies. Technical report, Georgia Institute of Tech-
nology, 2003.

[16] B. Yang and H. Garcia-Molina. Improving search in
peer-to-peer networks. In 22nd International Confer-
ence on Distributed Computing Systems (ICDCS’03),
July 2002.

10

Appendix A
Let 	 denote the total number of nodes in the system,
��8 G � (denote the number of heterogeneity levels, G ��I � (
denote the highest (most powerful) heterogeneity level,G �� � (denote the lowest (weakest) heterogeneity level and

 � denote the capability of a node at level (- � �
��8 G � (�D6). Let � � denote the fraction of nodes at level
 , ! � denote the degree of any node at level . ! � consists
of three components, namely, !����� , !��������� and ! � �� such that
!2���� � ! �������� � ! � �� 42! � ; !����� denotes the number of edges
from a node at level to nodes at level � 6 , ! �������� denotes the
number of edges from a node at level to nodes at level � 6
and ! � �� denotes the number of edges from a node at level to
other nodes at the same HL level . Note that !����� � � - .�� � 4 -and !��������� 4 - . Also, !����� and !��������� � are not independent
since the total number of edges from nodes at level to level
 � 6 should equal the total number of edges from nodes at
level � 6 to level . Hence,

� # - � � ��8 G � (� � , the
following equation holds:

� � � !2���� 45� � � � ! �������� � (1)

We first discuss the relationship between the load on a node
and its coverage. We then show that the coverage of any given
node can analytically be modeled as a function of its hetero-
geneity level and �����)&'& (, the initial value of Time-to-Live
of the query.

Let * be any node in the system. Assume that queries are
issued with &'& (4 �����)&'& (. Let @ 9 * < denote the set of
nodes that would be visited by a query � from node * with
scope �����)& & (. By definition, the coverage of node * (de-
noted as ��
��������%����9 * <) equals

� @ 9 * < � . Symmetrically, when
any node + ! @ 9 * < issues a query, the query would reach
node * . However, the presence of short-cuts in the topology
destroys this kind of symmetry. For instance, referring Figure
1, we find that node 4 may not be reachable from node 1 in
two hops while node 1 is reachable from node 4 in two hops.

From the above discussion, we observe two facts. First, the
coverage of a node * gives a good estimate of the number of
nodes whose queries need to be processed by node * . Assum-
ing that each node issues requests to the system that follows a
Poisson Process with mean � requests per second, the load on
node * can be estimated by:

);
"��!J9 * < 4�� � ��
���� �"�%����9 * < (2)

Second, uniformly ignoring the short-cut effect in measuring
the load on every node ensures that we indeed get a good es-
timate for the variance of load distribution.

We compute the coverage of a node at a given HL in
rounds, where each round corresponds to a particular value
of the query’s TTL. In each round, we compute the number of
nodes at each HL that would receive the query. We then elim-
inate those nodes that would have received the query in earlier
rounds. Finally, only those nodes that received the query for
the first time in the current round contribute to the number of

nodes that would receive the query in the next round. This
process is repeated until all rounds are exhausted (until TTL
expires).

Let
�� (9 �) # �)�);< denote the number of new nodes at level
�) that would be reached by a query � with ��� & & (4 �)�) . A
node + is a new node if it has not received any duplicate of the
query � with TTL �.�)�) . We define
�� (recursively with
the following base case: If node * issues a query � , then node
* is the only new node that received the query with &'&3(54
�����)& & (. Therefore,

�� (9 �) # �����)&'&3(< 4
	
6)� �)�4 � (9 * <
-3
���� �����'���� (3)

Let
��
 � 9 �) #0�)�)�< denote the total number of queries with

&'& (4 �)�) that would hit a given heterogeneity level �) (- �
�) � ��8 G � (). We can compute

��
 �	9 �)�#0�)�);< using
�� (
as follows:

��
 �	9 �)�#0�)�)�< 4
�� (9 �) � 6,# �)�) � 6�< � ! ��������� � (4)

�
�� (9 �)�#0�)�) � 6�< � ! � ���
�
�� (9 �) � 6,# �)�) � 6�< � !2����� � �

where !��������� � � -/. 4 - and !����� � 4 - . Note that in the formula
to compute

��
 �	9 �) # �)�);< we have not accounted for the fact
that a node * would not forward the query to the node from
whom it actually received the query. This is because the fol-
lowing portion of the analysis eliminates those nodes that have
already received a query.

Among
��
 � 9 �) #0�)�)�< queries, some of them reach nodes

that have already received the query; while the rest reaches
new nodes. The number of nodes that have 	�� & re-
ceived the query prior to ��� & & (4 �)�) , denoted by
	�� & �
 (1$ 9 �)�#0�)�)�< , can be computed as follows:

	�� & �
 (1$ 9 �)�#0�)�);< 4 	 � � �� �
� � � � ��� .�
� � � �� �

�� (9 �) #0�< (5)

Hence, the probability that a query � with ��� &'& (4 �)�)
reaches a new node at level �) is:

� � 	
�� 9 �)�#0�)�)�< 4 	�� & �
 (1$ 9 �)�#0�)�)�<	 � � �� (6)

Hence, the number of queries � that are forwarded to new
nodes at level �) when ��� & & (4 �)�) can be computed by:

��
 � 	
�� 9 �) # �)�);< 4 � � 	
�� 9 �) #0�)�)�< � ��
 �	9 �)�#0�)�)�<
(7)

Now,
��
 � 	
�� 9 �) # �)�);< queries are directed towards

	�� & �
 (1$ 9 �)�#0�)�)�< nodes at level �) when ��� &'& (4 �)�) .
We have to estimate the number of distinct nodes (among
	�� & �
 (1$ 9 �)�#0�)�)�< nodes) that indeed receive the query re-
quest. For given �) and �)�) , define a binary random variable

11

� 	 for every node + ! 	�� & �
 (1$ 9 �)�#0�)�)�< , as follows:

� 	 4 	
6 ���+ !
�� (9 �) # �)�);<
-
����J�����)��� (8)

Note that for the simplicity of notation, we have over-
loaded NOTRCVD and COV as a set as well as the num-
ber of nodes. Define a random variable

�
as,

� 4� 	 � ��� � ����� � 0 �� � � �� 1 � 	 . Now, the expected value of
�

,
namely

	� ��

, is the number of distinct new nodes that receive

the query at level �) and at ��� &'& (4 �)�) . Hence,

�� (9 �) # �)�);< 4
	� ��
 4 �
	 � ��� � ���� � 0 �� � � �� 1

	� � 	
 (9)

For any node + ! 	 � & �
 (=$ 9 �) # �)�);< ,
	� � 	
 4 6��� ��9 � 	 4 6�< � -�� � ��9 � 	 4 -%< 4 � ��9 � 	 4 6�< .
Now,

� ��9 � 	 4 -�< is the probability that none of the��
 � 	
�� 9 �)�#0�)�)�< queries reach node + . Also, the proba-
bility that any request in

��
 � 	
�� 9 �) #0�)�)�< reaches node
+ is ���� � ����� � 0 �� � � �� 1 (a request is equally likely to hit any
of the nodes in the set 	�� & �
 ($ 9 �) # �)�);<). Hence for any
+ ! 	�� & �
 (=$ 9 �) # �)�);< ,� ��9 � 	 4>6�< 4 6 � � ��9 � 	 4 -%<
4 6 �

�
6 � 6
	 � & �
 (1$ 9 �) # �)�);<�� ����� � �� 0 �� � � �� 1

(10)

Therefore, we can compute the expected number of new nodes
that receive the query at level �) and �	� &'&3(4 �)�) from equa-
tion 9:

�� (9 �) # �)�);< 4 	 � & �
 (1$ 9 �) # �)�);< � � ��9 � 	 4>6�< (11)

This completes the recursive definition of the
�� (func-
tion. The Equations 4 to 11 recursively define the
�� (func-
tion with the base case in Equation 3. Finally, the coverage of
a query from node * is computed as,

�
������"�%����9 * < 4 � �
� - .�� ��
�� � �

� � � � ��� .�
� �� � �

�� (9 �)�#0�)�);< (12)

Observe that in our analytical model, the coverage of a
node * depends only on the heterogeneity level of the node
* and the initial value of TTL. Therefore, by computing
the coverage of one node at each heterogeneity level from
- # 6,#��� #0��8 G � (� 6 , we can get a good estimate of the load
on any node in the system. Finally, given the load on every
node * in the system and the capability of the node, which
is captured by the capacity of the heterogeneity level of the
node, denoted by
�- . 0 ��1 , one can compute the variance of

load distribution, namely, (=����� � � � 0 ��1������� "!$# over all nodes * .

Note that the set of recursive equations listed above, can
be easily converted into an iterative algorithm of complexity
O(��8 G � (%� �����)&'& () that accepts !����� and ! � �� for all - �

 � ��8 G � (� 6 (recall that Equation 1 constraints !���������) as
inputs and outputs the variance of load distribution. One can
resort to optimization techniques like simulated annealing [6]
to obtain near optimal solutions that minimize the variance of
load distribution.

Observe that one could extend this model to accommodate
the short-cut effect by defining a round as the shortest pos-
sible time required for a hop, ��� 4
 (39 G ��I � (# G �%I � (< ,
and approximating any
 (39 I #0� < (- � I$# � � ��8 G � () as
an integral multiple of round time ��� . Now, using a similar
technique as described above, we could write recursive equa-
tions for
�� (9 �) # ���%# �)�);< , where
�� (9 �) # ���%# �)�);< denotes
the number of new nodes at heterogeneity level �) that re-
ceive the query in round number ��� with the query’s TTL be-
ing �)�) . Note that the maximum number of rounds required is
��8 G � 4
 (9 G ��I � (# G ��I � (<�+�
 (39 G �� � (# G �� � (< �
�����)& & (. However, we chose not to do so since, this compu-
tation being O(��8 G � (� ��8 G � � �����)&'& () is prohibitively
expensive especially since ��8 G � could be very large. An
interesting alternative would be to decrease the granularity
of the round time at the cost of increasing inaccuracy of the
model.

12

