
1/14

HIDE: Hardware-support for Leakage-Immune Dynamic
Execution

Xiaotong Zhuang Tao Zhang Santosh Pande Hsien Hsin S. Lee*

Georgia Institute of Technology
College of Computing

801 Atlantic Drive
Atlanta, GA, 30332-0280

{xt2000, zhangtao, santosh}@cc.gatech.edu *leehs@ece.gatech.edu

Abstract
Secure processors have been recently introduced, which

enable new applications involving software anti-piracy,
program execution certification, and secure mobile agents.
Secure processors have built-in hardware support for
cryptographic mechanisms and can prevent both software
attacks and physical attacks. Several recent papers have shown
how to construct a secure processor to protect the
confidentiality [1][2][3]and integrity[4][3] of a program. The
proposed designs are immune from spoofing, splicing and
replay attacks. However, none of the previous work is able to
address the attacks due to information leakage on the address
bus. Dangers due to information leakage on the address bus
have been acknowledged to be an important as well as a
difficult problem[1]. In fact, in [4]this problem is actually the
trigger of the replay attack described.

In this paper, we show that several attacks are possible by
monitoring the instruction access sequence on the address bus.
Such attacks could emanate from identifying the core
algorithms by pattern matching the control flow graph or from
finding out or narrowing down critical variables that decide
outcomes of conditional branches. We analyze the causes
behind such information leakage and then determine the
primary requirement that must be met to prevent it. Based on
this requirement, we propose HIDE, a hardware-based
approach to hide the instruction access sequence. The main
goal of HIDE is to construct a fixed instruction access sequence
issued to the memory to achieve zero leakage of control flow
information, giving a security guarantee. Our base approach
involves constructing a fixed instruction access sequence
covering the whole program (called base access ring) to hide
the actual instruction fetch. This might however lead to severe
performance degradation due to tremendous stalls making the
framework infeasible. Therefore, we propose two approaches to
overcome this problem. In our scheme, the architecture
dynamically tracks a hot function set. Based on the hot function
set, the first approach involves prefetching blocks accordingly
into an on-chip prefetch buffer. The second approach
establishes a secondary access ring, which is smaller and faster

than the base access ring. The instruction blocks are prefetched
from the base ring into the secondary ring instead.

We observe considerable elimination of degradation due
to our architectural improvements. For 512K L2 cache, the
degradation is reduced from 73% to 38%; for 1M L2, it is cut
from 65% to 34% with a reasonable amount of hardware
resource.

Keywords:
Leakage Protection, Secure Processor, Instruction Access

Sequence

1. Introduction
Software rights protection is a very important issue faced

in today’s software industry due to billions of dollars invested in
the intensive software development process. The idea of
software rights protection is to protect the intellectual property
(IP) that forms a basis of the software. Use of such underlying
intellectual property must be paid for in terms of licensing fees
and its use should only be limited to an environment for which a
license is granted. Most of the current violations of these rights
manifest themselves in terms of illegal copies. Commonly,
software copy protection or software piracy protection, which
aims to prevent one from making an illegal copy of the software,
is touted as a solution to solving the bigger problem of software
rights protection. Piracy itself has been a critical and extremely
difficult challenge faced by software vendors. According to the
study done by the Business Software Alliance, global dollar loss
due to software piracy increased 19% in 2002 to $13.08 billion
[13], reflecting the severity of the problem. Apart from piracy,
the bigger problem of rights is even severe. Hackers often get
illegal insights into the working of software, discover
vulnerabilities and launch attacks. The damage done by the
attacks far exceeds the costs of piracy alone. Thus, the problem
of software rights is becoming more and more important.

On the other hand, traditional software copy protection
techniques like serial numbers and software licensing systems
are becoming weaker and weaker with the presence of powerful
disassemblers and debuggers. The failure of traditional software

2/14

copy protection schemes resides in the fact that they try to
protect software by software. Since any software can be reverse
engineered, such schemes can only deter the success of an
attacker.

Recently, secure processors have been proposed
[1][2][3][4][5][14] as a hardware solution to software copy
protection, in which a hardware security boundary is demarcated.
Anything inside the security boundary is trusted, while the other
parts of the computer system are not trusted or in other words
can be fully manipulated by the attacker. Normally, components
such as processor itself and on-chip caches are inside the
security boundary. On the other hand, components such as
external memory or I/O devices are outside the security
boundary. Both code and data going out of the security
boundary must be encrypted. Lots of efforts have been put to
ensure the secure processor sustain from various attacks such as
spoofing, splicing, replay [1][4] and to reduce the runtime
performance penalty due to additional cryptographic operations
[2][3].

Encryption is one of the most powerful techniques used to
prevent making illegal copies directly. However, Goldreich and
Ostrovsky [8] pointed out that software protection cannot be
achieved through mere encryption, any information regarding to
the software must be prevented from being leaked out during
the execution of the software. As pointed out earlier, such an
information leakage can lead to intellectual property being
stolen and the use rights granted being violated. For example,
side channel information such as timing or power consumption
of operations can all be utilized to discover the vulnerabilities of
the software and launch attacks. The dangers are very real and
many commercial smart cards have been cracked by exploiting
the information leaked when they are operating [18][19].
Similarly many operating systems vulnerabilities have been
discovered by observing and tampering critical data locations
(such as return addresses in stack etc.). Thus, leakage protection
is critical yet definitely more difficult to achieve. Information
leakage at runtime may reveal dynamic control flows, sensitive
data values and other valuable information that might be
exploited by the attacker. In many cases, it easily invalidates
copy protection through encryption.

In this paper, our focus is to combat the leakage of
instruction access sequence on the address bus. Section 2 shows,
although the attacker has no plaintext of the code after
encryption, the instruction access sequence can actually help
him to guess a lot of information about the code indirectly. In
other words, without such a leakage protection, software copy
protection through encryption is not sufficient. Moreover,
sensitive data can be leaked as well. Actually, the problem of
information leakage via instruction access sequence has been
acknowledged in both academia and industry. Goldreich [7][8]
studied the problem of hiding program memory access pattern
from a theoretical point of view. However, their model is no
longer proper for modern processors and under their proved
lower bound, program performance may be degraded tens of

times, making the scheme unrealistic. XOM based approaches
encrypt code and data outside the security boundary, making
direct software piracy almost impossible. However, it fails to
address the information leakage through instruction access
sequence. This greatly decreases the strength of copy protection
as shown in section 2. Although the problem has been noticed
in [1] and [5], they both leave it open. [1] poses it as an open
problem, and [5] largely ignores it. In [4], the detection of loops
through the address bus becomes a starting point for the replay
attack. DS5002FP microcontroller [9] is a widely used
commercial bus-encryption processor. In DS5002FP, code
blocks are stored in new addresses, which are the encrypted
values of their original addresses. However, this simple bus
encryption does not stop control flow leakage as well as
explained in related work section.

In summary, current architectures do not provide a
satisfactory solution to the leakage problem we attempt to solve.

In this paper, our contributions are:
1. We show practical attack methods that exploit information

from the unprotected instruction access sequence. Leakage
from such sequence is so severe that the effects of the code
and data encryption get nullified to certain extent.

2. We propose HIDE, an architecture approach, which
completely eliminates information leakage due to the
instruction access sequence, while the performance
degradation is still within a tolerable range.

The rest of the paper is organized as follows: Section 2

discusses the motivation; section 3 deals with the preliminaries;
section 4 discusses independent access sequence; section 5
presents HIDE in detail; section 6 shows evaluation results;
section 7 discusses about related work and section 8 concludes
the paper.

2. Motivation
This section elaborates two kinds of attacks through the

instruction access sequence disclosed on the address bus. We
assume both code and data are protected by encryption such as
in XOM[1], DS5002FP[9], and Goldreich’s model[7][8],
therefore cannot be obtained directly, but the instruction access
sequence is subject to outside tapping. We will show that reuse
code, which takes about 39% of all code in the benchmark, can
be easily identified. Based on that, sensitive data is vulnerable
due to value-dependent conditional branches, making both code
and data encryption ineffective.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

av
era

geB
in

ar
y

R
eu

se
 P

er
ce

nt
ag

e Reused non-reused

Figure 1. Binary reuse percentage for SPEC2000.

3/14

For a better understanding, we will first discuss the worst
case when the cache is not present like in many embedded
processors e.g. some DSP, smartcard chips. Then we point out
that even when caches are enabled, they cannot completely
prevent information leakage on address bus.

Without caches, one obvious observation is that the
dynamic control flow of the software is completely exposed to
the attacker. Although the attacker has no idea about the actual
instructions being executed (all instructions are encrypted), he
can still obtain control flow information like branches and loops.
Control flow contains the most fundamental information of a
program and it provides sufficient details for the attacker to
understand the program. The scenarios described in this section
are only two possibilities.
2.1 Reuse Code Identification

It is highly possible that the attacker can eventually capture
most of the control flow after monitoring the address bus for a
sufficient amount of time and experimenting the program with
different inputs, because theoretically, only dead code will not
be executed. Due to the following two facts, leaking the
program control flow information can result in the exposure of
reuse code and severely disrupt code encryption, even threaten
the program’s intellectual property.

Software Reuse and Binary-Level Similarity
With the ever increasing of software complexity and time-

to-market pressure, software development more and more relies
on reusing existing modules or libraries from other companies
or oftentimes from the public domain. For example, lots of
classic algorithms have their standard and/or non-standard
open-source implementations online. To save time,
programmers tend to simply reuse the available implementations
rather than crafting one from scratch. Moreover, most compilers
and development tool chains are provided by a few 3rd party
name-brand vendors. As a result, as long as code is reused at
source level, they are similar at binary-level. In reality, most
reuses are through standard prebuilt libraries, leading to nearly
identical code at binary-level. We measured all SPEC 2000
Alpha binaries to find out the percentage of code that is reused
from the standard C library on Alpha. As shown in Figure 1, the
reuse percentage can be very high for some benchmarks like
mcf (88%) and bzip2 (66%). On average, 39% of the code at
binary level is from the libraries. Notice that, programs like gcc
have been developed for over 10 years and very few existing
modules are incorporated from older versions and thus, it is not
surprising its reuse percentage is lower. However, with the
exploding number of legacy code and shortened software
generation time, the reuse code percentage should be much
higher for most software on the market nowadays.

CFG-Fingerprint of Algorithm
It is widely known that the average length of basic blocks

is only 5 to 8 instructions and a large number of instructions are
branches. Conceivably, as long as the algorithms are reasonably

complex, the chances for different basic blocks to form the
same CFG are slim. As an experiment, we built the CFGs for
various block cipher algorithms such as DES, MARS, Rijndael,
RC6, and found out their CFGs are significantly different. In
Figure 2, we investigate the similarity of CFGs in the standard C
library of the Alpha compiler. There are 1334 procedures in the
library file libc.a, with reasonable size (at least 5 basic blocks).
We built the CFGs for all these procedures in which each basic
block is abstracted as a node (which in fact increases chances of
two CFGs being similar). We run the famous graph
isomorphism algorithm by Ullman [11] (we reuse the graph
matching library developed by Univ. of Naples [12]) between
any two graphs. In Figure 2, the results show that only 5% of the
comparisons find the two graphs match. If we ignore the CFGs
with less than 10 basic blocks, only 0.1% match. Finally, if we
ignore the CFGs with less than 15 basic blocks, only 0.05%
match. This study shows that each CFG has a distinct
fingerprint. Therefore, if the programmer reuses a procedure in
the library with 10 or more basic blocks, the reuse is almost
doomed to be found out by the attacker due to its distinctive
fingerprint. Notice that, this estimation is conservative due to
our abstraction of the CFGs that ignores sizes of individual
basic blocks; if they are included, the number of matches would
decrease further. Even if matches occur, the attacker can still
narrow down to a few possible procedures that might be reused.

If only partial CFG can be identified, with subgraph
matching algorithms[11][12], we can still largely detect the
reuses. It is easy to show that the number of legitimate CFG
graphs grows exponentially with the number of basic blocks in
the CFG; therefore to hide big reuse code is almost impossible.
From the prior discussion, CFG, as a matter of fact, can be
regarded as the fingerprint of an algorithm.

10

100

1000

10000

100000

1000000

>=5 >=10 >=15
of Basic Blocks on CFG

of comparisons # of matches

0.1%

5%

0.05%

Figure 2. Isomorphic CFG pairs in the standard C library.

Based on the two facts described above, it is quite possible
that an attacker can identify the reuse components in a program
given its CFG. He can collect the CFGs of all procedures in
standard libraries, or for publicly available source code, compile
them with a name-brand 3rd party compiler and build the CFGs.
By graph matching the program’s CFGs with his collection, the
attacker can nail down the reuse parts. This not only exposes the
reuse code in its entirety, but also helps the attacker in other
aspects: 1) A bunch of plaintext/ciphertext pairs for the reuse
code are identified. If the hardware cannot afford integrity check
due to its prohibitive performance and memory space overhead
[4], the attacker might construct a program to read out other

4/14

code like in [6]. 2) More critically, although the code is reuse
code, all data involved are private to the program. Next, we will
show how critical data can be found out in some cases. 3) By
watching the interaction between reuse code and the
programmer’s own code like calling sequence, parameters, the
attacker can learn more about programmer's own code.

The technique of CFG matching is merely a particular case
of pattern matching, which has been widely used in security
applications such as network intrusion detection and computer
virus detection.

2.2 Critical Data Leakage via Value-dependent
Conditional Branches

CFG matching breaks instruction encryption to some
extent. In this section, we further point out that the exposure of
instruction access sequence may nullify the data encryption as
well.

A typical conditional branch makes a comparison between
two values then decides which path to take. Therefore the
control flow information, which is exposed completely in the
instruction access sequence, can leak important information
about the values being compared, although data are encrypted
outside the processor and therefore cannot be obtained from the
data bus and memory directly.

The following example assumes the algorithm used is
known beforehand (most security systems assume the
cryptographic algorithms used are known to the attacker) or has
been detected by CFG matching. It demonstrates how the
critical data (secret key in this case) is revealed.

Example
Diffie-Hellman and RSA private-key operations consist of

computing R = yx mod n, where the attacker's goal is to find x,
the secret key. To show the problem easily, we assume that the
implementation uses the simple modular exponentiation
algorithm in Figure 3.a, which computes R = yx mod n, where x
is w bits long. The algorithm is widely used in software
implementation, therefore we can reasonably assume the
attacker has identified it through CFG matching.

Let S0 = 1.
For k = 0 to w-1:

If (bit k of x) is 1 then
Let Rk = (Sk*y)

mod n.
Else

Let Rk = Sk
Let Sk+1 = R2

k mod n.
EndFor.
Return (Rw-1).

Initialize

Return

Loop Entry

Else-branchIF-branch

Loop End

B1

B2 B3

B4

(a) (b)
Figure 3. Modular exponentiation algorithm

The corresponding CFG for this small piece of code is
shown in Figure 3.b. From Figure 3.a, we can easily find that
inside the loop body if the current examined bit of x is 1, IF-

branch is executed, otherwise Else-branch is executed. We
assume IF-branch resides in address B2 and Else-branch resides
in address B3 (B2 and B3 are different). Since the instructions
are not cached, the secure processor must behave as follows: if
the current examined bit of x is 1, then fetch the IF-branch in B2,
otherwise, fetch the Else-branch in B3. This results in a
sequence of addresses for B2 or B3 showing up on the address
bus correspondingly. By monitoring the address bus and
capturing the addresses transmitted, the attacker can guess
whether the respective bits of x are 0’s or 1’s and get the secret
key x. Even if he cannot distinguish between IF-branch and
Else-branch, the information on the address bus leaves only two
possible values of x to guess (the correct key or its complement).

This example tells us, if the conditional branch is known to
the attacker, the direction of execution path after the branch can
expose the outcome of the comparison, which might be helpful
in determining or narrowing down the values involved.

Notice that missing several rounds of the for-loop can hide
part of the secret key, but still help the attacker substantially to
narrow down his search space. It is well known in the security
domain, 64-bit encryption has much less strength than 128-bit
encryption. If the attacker can capture half of the for loop, his
searching space will be cut from 2|x| to 2|x|/2, which is 2|x|/2 times
faster.

This kind of attack is very similar to the timing [15] or
power differential attack [16], which has been used to
successfully break many commercial smart cards. However, the
attack described in our paper is much simpler and more precise
since monitoring a high-performance bus activities accurately
can be achieved by a simple customized FPGA design as shown
in [21].
2.3 Cache does not Help Much

Modern processors now typically consist of large on-chip
caches. People might argue that most control flow information
is hidden from outside tapping by cache.

However, since cache is a shared resource among all
processes running on the processor and as the previous papers,
we assume the OS is not secure (please refer to the next section
about assumptions). It is very easy for the attacker to manipulate
the OS so that the cache gets flushed on a context switch;
alternatively the attacker can ascertain that his own process fills
and occupies most cache space before switching to the process
being attacked. In this way, all memory accesses are exposed
directly on the address bus due to capacity misses.

Even if only one process is running, many processors have
a unified L2 or L3 cache for both code and data. If the
program’s working set can be affected by inputs, the attacker
may intentionally increase the working set size, causing more
instruction misses.

Generally, cache is not predictable, especially in multi-
process environment. Different parts of the control flow can be
leaked during different runs. It is possible that the attacker can
finally get the whole picture.

5/14

On the other hand, even if the cache can hide some parts of
the control flow, information still leaks to some extent. As
mentioned before, subgraph matching can match partial CFG.
Partial execution path can still be used to prune the searching
space for critical data.

Finally, our goal is to completely eliminate the information
leakage due to exposed instruction access sequence. Although
on-chip cache (or some other techniques as mentioned in the
related work section) can somehow confuse the attacker, they do
not provide security guarantees.

3. Preliminaries

The Machine Model
In our model, the only trusted hardware is the processor

chip, which includes processor core, L1 and L2 cache. To
support secure processor requires additional hardware, which
can be assumed to be on-die as long as its size is reasonably
small. The attacker has full control of the components outside
the central chip, which enables him to tap on the bus (even
directly inject his own data), and modify the memory contents.
This model has been adopted by earlier work [1][2].

Assumptions
In this work, we build our scheme based on the XOM-type

architecture[1][2][3][4][5]. In other words, code is encrypted
when stored outside the security boundary, prohibiting direct
access to the code. In particular, we implement the stream
cipher described in [2] as it is very efficient. In addition, we
incorporate integrity checking into our scheme to guarantee
code cannot be tampered with in memory even after relocation.
(5.7) Finally, similar to other prior work, the OS is assumed to
be insecure.

Information leaks through data access sequence is possible
as well, e.g. stack growth indicating the invocation of a
procedure, due to the scope of this paper, we did not explore the
opportunities to protect access sequence to the data segments in
memory.

System calls can give out control flow information
somehow, but the interaction between application and operating
system is unavoidable, for example, the result has to be output
at last. This problem is actually left to the programmer to not to
put system calls at sensitive points of the code.

Execution time cannot be hidden due to its tight
association with performance. It is normally unreasonable to
require the program to run for the same amount of time
regardless of inputs.

We assume code size is not sensitive information,
therefore can be exposed to the attacker.

Finally, we assume code misses and data misses to
memory are distinguishable. An additional bit can be attached to
instruction fetch requests. If a request misses in higher level
caches, this bit is carried to the lower level cache request, until
the fetch request reaches memory along with this bit.

Objective
We put security at the highest priority, and intend to avoid

any information leakage through the instruction access sequence.
Although performance degradation is inevitable, it should be
properly controlled within a tolerable range for common cases.
For the worst cases, security should still be guaranteed.

4. Independent Access Sequence
It is very difficult to quantify how much information is

leaked through the instruction access sequence. As mentioned
above, even partial information can be exploited by the attacker
to ease his hacking. However, the following claim is sufficient
to guarantee the attacker cannot learn anything by monitoring
the instruction access sequence.

If the instruction access sequence is always independent of

program execution, no information will be leaked by monitoring
the sequence.

To achieve independent or fixed instruction access

sequence, a naïve way is to read the whole code segment from
the beginning to the end repeatedly. As shown in Figure 4.a, in
each round, the whole code segment is read from beginning to
the end once. No matter what is going on inside the processor,
the processor always reads code blocks in this fixed sequence.
Apparently, the only thing exposed is the code size, which has
been assumed to be insensitive information. However, the naïve
approach can lead to significant slowdown. When there is a
miss fetch request from the cache, the request cannot be
satisfied immediately from the memory, but has to wait till the
block is read in through the fixed sequence. When the code
segment is large, the processor may have to stall for a long time.
For example, in Figure 4.b, if the current reading block is block
70, and the pending miss fetch requests are block 100, 200 and
50, the processor has to wait for 30 reads to block 100. Again, it
has to wait another 100 reads to get block 200. To get block 50,
it needs to wait till the access sequence reaches the end of the
code segment (finish this round of reading), and starts from the
beginning until block 50 is read in. This delay can be enormous
if the code segment is very big. Conceivably, the naïve approach
will cause intolerable performance loss.

Code blocks in memory

Access sequence

Miss fetch requests: 100, 200, 50
Current reading block

Read 100

Read 200

Read 50
(a) (b)

Round 1
Round 2

Round 1
Round 2

Figure 4. Independent instruction access sequence.
To reduce the stall time, intuitively, we should move code

blocks that have a high probability to be requested in the near
future to a place that can be quickly referenced. In next section,
we will present HIDE, a solution that improves performance
without losing the security guarantee.

6/14

5. HIDE
5.1 Overview

HIDE: Hardware-support for leakage-Immune Dynamic
Execution. We use hardware support to prevent information
leakage through the instruction access sequence. Here,
“dynamic” means code blocks might be dynamically relocated
during the execution.

HIDE dynamically maintains a hot function set, which
keeps track of the most recently referenced functions at runtime.
Based on the hot function set, code blocks belonging to hot
functions are prefetched to an on-chip cache or a secondary,
fixed, but faster access sequence in memory.

The idea is quite close to the memory hierarchy. We
dynamically relocate code blocks that will be most likely used in
the near future close to the processor. The two approaches give
us a design tradeoff, i.e. on-chip area vs. memory bandwidth.
We first define some terms to develop our approach.
5.2 Some Basic Concepts

Access Ring (AR): Represents an abstract structure in the form
of a ring which when continually traversed results in a fixed
access sequence. AR starts at one address called Ring Start
Address. After accessing sequentially till the Ring End Address,
it returns to the Ring Start Address and continues with the same
access pattern. In short, it accesses a contiguous piece of
memory sequentially and repeatedly.
Read Access Ring (RAR): A special AR in which each access of
the AR is a read access.
Substitution Access: a memory operation, which reads from a
memory location, then writes back to the same location. The
write-back data may or may not be the same as the read-in data.
The attacker cannot tell if the data is the same or not, because it
is re-encrypted using a different key when written back.
Substitution Access Ring (SAR): each access of the AR is a
substitution access.
Fetch Request Queue: a small queue of unsatisfied cache miss
fetches is maintained on-chip. Upon read from the ring the
blocks are de-queued. This queue is normally small, since the
processor will stall if the requested code block cannot be
fetched. Only when it speculates on several paths, can the queue
have multiple active requests.

AR can be quantified by the following metrics: Range,

Round, Speed, Period and Bandwidth. AR Range is the size of
memory region between ring start address and ring end address.
Each Round is one iteration of accesses from the start address to
the end address. (Turnaround) Speed is defined as the number
of rounds accessed per time unit. AR Period is the time one

round takes, i.e. the reciprocal of speed. AR Bandwidth is the
bandwidth the ring takes for memory accesses. Thus, the
following holds good: RARperiod=RARrange/RARbandwidth and
RARspeed=RARbandwidth/RARrange. For SAR, it is SARperiod=
2*SARrange/RARbandwidth and SARspeed= RARbandwidth/(2*SARrange),
since SAR has both read and write operations to an address.

We also have the following claim.

If the memory access bandwidth is fixed, then RAR (or

SAR) with larger range must have slower (turnaround) speed.

The naïve approach mentioned in previous section can be

regarded as a single monolithic RAR ranging over the entire
code segment in memory. This RAR is also called Base RAR.

The speed of base RAR can be extremely slow when code
size (the range of the RAR) becomes large. Assuming processor
fetch requests are uniformly distributed over the entire code
segment, the average stall time is 1/(2*speedbaseRAR), or ½
*periodbaseRAR.

5.3 Hot Function Set

The hot function set is a small on-chip array, which
dynamically tracks the most recently used functions using LRU
replacement algorithm. Each entry is a pair of memory
addresses, i.e. the start and end addresses of the function in
memory. When a code block is read from the ring, its address is
compared in parallel against all entries to find out if it belongs
to one of the hot functions. To build up the hot function set, we
insert a special instruction at the head of each function. The
instruction simply specifies the size of the function. When the
processor reads in such instruction, it first checks if the function
is already in the set. If so, the function entry is relocated to the
front of the array. Otherwise, the function is added to the front
of the array and all the other elements are pushed down by one
slot. The oldest function is kicked out of the hot function set.

The motivation behind a function level prefetching is that
the base RAR is very slow, so prefetching must be done
aggressively to reduce the stall time of fetch misses. We feel
function calls form the right coarse granularity boundary for
such a purpose.

5.4 Prefetch Buffer

Prefetch buffer is an on-chip cache-style buffer to store the
prefetched code blocks. Cache misses are first looked up in the
prefetch buffer before being sent to the fetch request queue. The
prefetch buffer is normally organized like a set-associative
cache. Blocks read from the Base RAR are checked with hot
function set to decide if they should be prefetched into the
prefetch buffer. Figure 5 shows prefetch buffer operations.

7/14

Read-in from base RAR
If there is matching request in fetch request queue then
 Return the block to cache.
Else If it belongs to hot fun set then
 Put to the prefetch buffer.
 Else
 Discard it.

Figure 5. Prefetch buffer operations.

A prefetch buffer takes on-chip space. Inside a processor,
there may be many processes concurrently running, so a
dedicated prefetch buffer for each process is not realistic. Under
our scheme, we assume the prefetch buffer is shared among all
the processes. During context switch, the prefetch buffer can be
saved as a part of the process state, or we can simply flush it.
5.5 Prefetch Ring

Alternatively, in addition to the base RAR, a secondary
ring with smaller range and faster speed can be constructed in
memory. Figure 6 shows the prefetch ring architecture. A
Prefetch SAR is constructed in memory. Typically, the prefetch
SAR takes less bandwidth than the base RAR, but its range is
much smaller, so its speed is much faster than the base RAR.

On the processor side, the read-in code blocks from both
rings are sent to the Prefetch Controller. The prefetch controller
will lookup in the fetch request queue to see if there is a request
for that block and decide if prefetching should be done from the
base RAR to the prefetch SAR according to hot function set.
We will discuss the prefetch controller in detail later.

Cache

Base RAR
Prefetch SAR

Original code segment

Memory (insecure)Processor (secure) Bus (insecure)

Protection boundary

Fetch Req.
Queue

Prefetch
Controller

Hot Fun Set

Lookup

Lookup

Return
block

Read

Read

Prefetch

Figure 6. Prefetch Ring.

Base RAR:

start at 0, 10000 blocks, bandwidth 2 unit
Prefetch SAR:

start at 10000, 100 blocks, bandwidth 1 unit

Access Sequence:
RD 0, RD 1, RD 2, RD 3, RD 10000, WR 10000,
RD 4, RD 5, RD 6, RD 7, RD 10001, WR 10001,
…..
…..
RD 396, RD 397, RD 398, RD 399, RD 10099, WR 10099,
RD 400, RD 401, RD 402, RD 403, RD 10000, WR 10000,
…..

Figure 7. Access sequence for the example.

Access Sequence and Code Block Relocation
The two rings can be allocated with different amount of

memory bandwidth. We give an example in Figure 7 to show
how the access sequence looks like.

Assuming each block takes one unit in the address space.
The base RAR starts at 0 and its range is 10000. The prefetch
SAR starts at 10000, and the range is 100. Note the prefetch
SAR needs both read and write operations. The bandwidth
given to Base RAR is twice of that for prefetch SAR.

The memory activities can be grouped into many steps. In
each step, it reads four blocks from Base RAR, reads and writes
one block from prefetch SAR. Accesses to each ring will loop
back to the ring start address when it reaches the ring end
address.

Initially, all code blocks in Base RAR are encrypted. All
code blocks in SARs are NULL blocks. Notice that NULL
blocks are not distinguishable from useful code blocks after
encryption. Also two NULL blocks can be entirely different
after encryption. We add one additional bit to each block to
indicate whether this block is a NULL block. If it is, its content
is random.

For the prefetch SAR, code blocks (the read-in ones from
prefetch SAR or the ones prefetched from the base RAR) are re-
encrypted when writing back. Encryption/Decryption can be
made very efficient as shown in [2][3]. Decryption operation at
most time costs only one cycle to do XOR under stream cipher.
On the other hand, encryption latency is largely hidden by the
write buffer. With re-encryption, the attacker cannot correlate
any write-out blocks with any read-in blocks, because each
encryption is using different keys under stream cipher.
Therefore, the processor can relocate code blocks at will, and
the attacker has no chance to trace relocated blocks.

Security Strength
Compared to the naïve approach, the access sequence with

prefetch SAR is still independent of the program execution.
Outside tapping only observes fixed two-ring accesses. Which
blocks are prefetched could leak information if no counter
measure is taken. In our scheme, whenever a code block is
written out, it is encrypted using a different key. So the attacker
cannot correlate code blocks and find out which blocks are
actually prefetched.

Prefetch Controller
The prefetch controller manages how to prefetch blocks to

the prefetch SAR. The selection of blocks to be prefetched is
based on the hot function set. But the decision of which block
should be kicked out from the prefetch SAR needs explanation.
We add an age field to each block in the prefetch SAR. The age
field indicates how many rounds a block has stayed in the SAR.
Ideally, the oldest block should be kicked out of the ring to
accommodate the prefetched block. However, the oldest block
might be far away from the current ring access point. Actually,
it is not necessary to always pick the “oldest”. Therefore, a

8/14

Prefetch SAR Monitor is added, which decides if the current
read-in block from the prefetch SAR can be categorized as
“relatively old”. In our implementation, the monitor gives a cut-
off age in each round, so that the number of blocks older than
the cut-off age is roughly ¼ of total blocks in the ring. Those
blocks are candidates for replacement.

All operations are listed in Figure 9. Note encryption/
decryption operations are performed in parallel with prefetch
ring operations to improve efficiency.

Each read-in block from base RAR is checked for
matching fetch request. If the block is not requested but belongs
to the hot function set, it is put to the output queue, waiting to
be prefetched into the prefetch SAR. Read-in blocks from the
prefetch SAR are checked for request similarly. If the block is
requested or is NULL, a block from the output queue can be
written back to the current position of prefetch SAR, otherwise
the age of the read-in block is checked to see if it is replaceable.
If the read-in block is older than the cut-off age, it is replaced by
a block in the output queue, otherwise its age is increased and
written back to prefetch SAR. All write backs must be re-
encrypted. Finally, Figure 10 shows data structures for the
prefetch ring, fetch request queue and the output queue.

Read from rings
Base RAR
Prefetch SAR Prefetch SAR

Monitor

D
D

E

D
E

: Decryptor
: Encryptor

Cache

Prefetch
Controller

Prefetch SAR

Fetch Request Queue

Output Queue

Hot Fun Set

Figure 8. Prefetch controller.

Read-in from base RAR

IF there is a matching request in fetch request queue THEN
 Return the block to cache.
ELSE IF it belongs to hot fun set THEN
 Put to output queue to prefetch SAR.
 ELSE
 Discard it.

Read-in from prefetch SAR
IF there is a matching request in fetch request queue OR the block is NULL
THEN
 IF the block is not NULL THEN
 Return the block to cache.
 IF output queue is not empty THEN
 Encrypt one block from output queue and write to prefetch SAR
 ELSE
 Encrypt and write back a NULL block to prefetch SAR
ELSE
 IF block is older than cutoff age AND output queue not empty THEN

 Encrypt one block from output queue and write to prefetch SAR
ELSE

 Increase age, encrypt and write back the read-in block to prefetch SAR

Figure 9. Prefetch ring operations.

Overhead Analysis

NULL Prefetch SAR:

Fetch Req Queue:

Output Queue:

Addr Age Code block

Addr

Addr Code block
Figure 10. Data structures.

The space taken by the prefetch SAR is far smaller than
the original code space, although it needs 3 additional fields.
The NULL field is only 1 bit and the age field is set to 4 bits
(age saturates at 15 after more than 15 rounds). We use cache
block addresses, so the addr field is 32-5=27 bits, assuming 32B
block size. Thus, the space overhead due to these fields is
32/256=12.5%. Both prefetch request queue and output queue
contain no more than 20 entries.
5.6 Other Approaches

Our hot function set based prefetching algorithm is
conservative, since if a function is called first time, there is no
way for it to prefetch the code blocks of that function. We also
studied call-graph based prefetching algorithm, in which all the
possible descendants of hot functions down to a certain level
will be prefetched. It is more aggressive but we found its
performance is no better or even worse than simple hot function
set based prefetching in most cases.

We spent a lot of efforts to dig out the reason behind this.
After delving into the code layout generated by GCC, we found
that in over 70% cases the callee function is stored in a lower
address close to the caller function. This is simply because that
C language requires callees defined prior to the caller if no
prototype is given, while GCC generates code mostly according
to the order in the source file. This kind of function layout
generates pathological cases for the call graph based prefetching.
After reaching the caller function, the prefetching algorithm will
decide to prefetch the possible callees. However, the ring
accesses have already gone past callees in the current round of
ring accesses (since they appeared before callers in the code
layout). Thus, the processor has to wait for another round to
prefetch them, which makes prefetching pointless. Currently, we
are not able to re-layout program at architectural level. Future
work could involve compiler optimizations to help the call-
graph based prefetching by laying the functions topologically
according to the call graph.

It is also possible to have multiple prefetch SARs in
memory that have different range and speed thus build a
prefetch ring hierarchy. We can use conservative prefetching
algorithm to prefetch blocks into faster and smaller rings, on the
other hand aggressive prefetching algorithm to prefetch blocks
into bigger and slower rings, in hope of achieving the similar
effect of memory hierarchy. However, to make access sequence
independent, these rings have to be accessed all the time with
fixed pattern, therefore more bandwidth will be consumed. We
have experimented with multiple prefetch rings, but
performance always degrades if bandwidth is taken from the
base RAR. The reason is aforementioned, aggressive
prefetching does not help much if the program layout is

9/14

inherently poor.
 Moreover, there are many other ways to construct

independent memory access sequences. For example, we can
read in and store a bunch of code blocks in a buffer then write
them back to new locations after some time to confuse the
attacker (we call this approach as shuffle buffer), or we can
choose memory access locations according to a random
distribution [7][8]. However, these approaches either cannot
guarantee zero information leakage (the former case) or cannot
work efficiently in real world (the latter case).
5.7 Other Considerations

Integrity checking is needed to ensure code is not changed
in memory. Hash tree [4] can be used for this purpose.
Alternatively, we can build the hash tree based on the ring
architecture. Each level of the hash tree nodes are put on a Hash
Ring, with tree root staying on-chip. The ring being checked (at
lowest level) and all its hash rings are read in sequentially, so
each level of ring data can be checked with their hash values in
the higher level ring. For an m-ary hash tree (i.e. m units of data
are hash to 1 unit hash value), The range of the k+1 level hash
ring is 1/m of the k level hash ring. After reading in m units of
data from level k hash ring, we read 1 unit of k+1 level hash for
checking. So the bandwidth overhead is

1

1 1/ 1 1/(1)k

k
m m

∞

=

+ = + −∑
.

In a multi-process environment, a large prefetch buffer can
cause slowdown due to context switches if we choose to store it
as a part of process state, as mentioned in section 5.4. On the
other hand, the prefetch ring takes very small on-chip space,
therefore is more scalable with the number of active programs.

As mentioned before, the attacker may deprive most cache
space from the program being attacked. This can lead to
extremely severe slowdown for the attacked program due to
long waiting time on the ring. However, our scheme can still
guarantee no information is leaked under this worst case.
Moreover, we believe it actually penalizes the attacker in some
sense; a very slowly running/stalled program is likely to
frustrate the attacker from trying to snoop to discover
“interesting” program behavior.

The benchmarks used in our evaluation are from
SPEC2000. Their sizes are not very big. For large-scale
applications, the base RAR can be huge thus very slow. So,
more bandwidth is required to speedup the access rings. Further,
real applications might rely on shared libraries that can be much
bigger than the application itself. Maintaining access rings to
the shared library will cause bandwidth crisis. It is also not
efficient to incorporate the shared library to the rings of every
application that invokes it. A better solution could be like in
Figure 11. Only the processor chip and the bank controller chips
are assumed to be secure. All buses and memory banks are not
secure. Program code is split and stored in separate banks in
encrypted form. Multiple rings are maintained in separate banks
with fixed access sequence. The bus bandwidth between each
bank controller and its memory bank can be very high, so the

ring speed is high too. The communication channels between
the processor and the bank controllers are allocated with low
bandwidth. Fetch requests and return blocks are transmitted
through these channels in encrypted form (we have to transmit
some random data to achieve independent access sequences in
the communication channels). Code in shared libraries is put in
rings shared by multiple programs. Prefetch buffers can be
moved to the bank controllers and prefetch rings might be
constructed in memory banks by the bank controllers as well.

Processor

Bank 1
Controller

Mem

Bank 2

Mem

Bank n

Mem

Bank 1

Bank 2
Controller

Bank n
Controller

Figure 11. Multiple rings with decoupled memory accesses.

6. Performance Evaluation
Table 1. Default architectural parameters.

Clock frequency 1 GHz L1 I/D DM, 8K, 1 cycle
32B block

Fetch queue 32 entries Unified L2 4way, 32B block
512K (8 cycles)
or 1M (12 cycles)

Decode width 8 Memory bus 200M, 8 Byte wide
Issue width 8 Memory latency first chunk: 80 cycles,

inter chunk: 5 cycles
Commit width 8 SNC cache 64K, 4way, 32B
RUU size 128 Encryption/

Decryption latency
50ns

LSQ size 64 Base RAR 400MB/s bandwidth
Branch predictor Perfect Prefetch buffer 8K, 4way, 32B
TLB miss 30 cycles Prefetch SAR range 1/20 of the code size
Hash tree 4-ary Prefetch SAR BW 200MB/s
 Hot function set 20 entries

We evaluate our schemes on a processor model with
default parameters in Table 1. All SPEC2000 integer
benchmarks are used as representative applications.
Implementation is done with the Simplescalar toolset [17]. We
perform our experiments based on SimPoint [20] to capture the
characteristics of benchmarks accurately. Each benchmark is
fast-forwarded according to SimPoint then simulated by 100M
instructions. Memory bus is 8 Byte wide and fully pipelined
running at 200MHz. The base RAR is allocated with 400MB/s
bandwidth, which is ¼ of the total bandwidth available. Clearly,
the accesses to ring are all sequential and can be easily pipelined.
We have two configurations for the unified L2 cache—512K or
1M. The encryption/decryption mechanism is built upon [2],
incurring very little performance degradation. The SNC cache
size and encryption/decryption latency are shown in the table.
Hash tree is 4-ary (33% bandwidth overhead). Default prefetch
buffer size is 16K and the prefetch SAR range is 1/20 of the
total code size, bandwidth is 200MB/s (1/2 of the base RAR).

IPC Comparison with Default Model

10/14

Next, we compare the IPC for the two approaches
(prefetch buffer and prefetch SAR) with the original IPC and
the IPC with only the base RAR in Figure 12 and Figure 13. For
clarity, we normalized the IPC numbers to the one with only one
base RAR. Absolute IPC values are also shown in the figure.
The long horizontal line marks where normalized IPC=1. Small
horizontal lines above the bars are the original IPC after
normalization. For each benchmark, the left bar is for the
prefetch buffer, while the right bar is for the prefetch ring.
Figure 12 evaluates the performance under 512K L2 model. We
observe both approaches achieve big improvements over the
base ring only case. The performance of the two approaches is
very close. In half of the benchmarks, prefetch buffer is better,
while in the other half, prefetch ring is better. For benchmarks
with small degradation like bzip2 and mcf, the improvements of
both prefetch schemes are also limited due to reduced
optimization space. With only the base ring, the degradation
from the original IPC is huge for some benchmarks like gcc
(99.7%), vpr (93%), etc. 5 of the benchmarks have their
normalized original IPC number out of the range of the figure.
On average, base ring only approach degrades the performance
by 73%. With prefetch buffer the degradation is reduced to 53%.
With prefetch ring, the degradation is 52%. In the meantime, the
prefetch buffer gets 71% speedup and the prefetch ring gets
74% speedup over the base ring only case. This is the cost for
guaranteed security under our scheme, which is our objective in
this work. As we will see later, allocating more prefetch buffer
space and more bandwidth can give even bigger improvements.
Notice that, the default model chosen by us is not the one with
best performance, but the one with relatively small cost in term
of chip area or memory bandwidth. With larger prefetch buffer
or more bandwidth, we can further reduce the degradation—e.g.
as shown later, 64K prefetch buffer can have 23% speedup over
the 8K prefetch buffer, which reduce the degradation to about
42%. Perceivably, more costly prefetch buffer or ring can
further cut down the degradation.

Figure 13 evaluates the 1M L2 model. The degradation is
less than the 512K cache, and not surprisingly, the approaches
get less improvement too. The prefetch buffer still performs
closely with the prefetch ring. On average, the performance
degradation for base ring only, prefetch buffer and prefetch ring
are 65%, 45% and 44% respectively. The prefetch buffer
improves 57% over the base ring only case, and the prefetch
ring improves by 60%.

bzip
2

crafty eon
gap

gcc gzip

mcf
parse

r

perlbmk
twolf

vortex vpr

N
or

m
al

iz
ed

 IP
C

0

1

2

3

4

5

6

0

1

2

3

4

5

6pref. buf
pref. ring

2.
66 2.

49
0.

67
0.

80
0.

63
0.

62
0.

51 0.
55

.0
13

.0
15

2.
73 2.

98
1.

68
1.

67
0.

90
0.

88
0.

67 0.
70

0.
29

0.
27 0.
27 0.

29
0.

26 0.
26

Only base RAR

3.
09

1.
37

1.
73

1.
36

1.
19

1.
07

1.
58

4.
25

1.
36

1.
85

1.
75

2.
73

Figure 12. IPC comparison with default model (512K L2).

bzip
2

cra
fty eon

gap
gcc

gzip

mcf
parse

r

perlbmk
twolf

vortex vpr

N
or

m
al

iz
ed

 IP
C

0

1

2

3

4

5

6

0

1

2

3

4

5

6pref. buf
pref. ring

Only base RAR

3.
07

2.
84

3.
16 0.
64 0.

73

0.
90

1.
33

1.
72

1.
72

1.
44

1.
79

1.
001.
18

2.
81

3.
44

0.
69 0.
69

0.
49

0.
43

0.
610.
610.
64

0.
620.
900.
93

1.
42

1.
47

1.
43

3.
57

4.
07

0.
02

6

0.
02

1

0.
69

0.
67

0.
58

0.
58

Figure 13. IPC comparison with default model (1M L2).

bzip
2

cra
fty eon

gap
gcc gzip

mcf

parse
r

perlbmk
twolf

vortex vpr

N
or

m
al

iz
ed

 IP
C

1.0

1.2

1.4

1.6

1.8

4K
8K
16K
32K

64K

512K L2

1M L2

4K
8K
16K
32K
64K

Figure 14. IPC comparison for prefetch buffer sizes.

Prefetch Buffer Size Sensitivity Study
Figure 14 shows how prefetch buffer size affects the

performance. We vary the prefetch buffer size based on the
default model. For comparison, all IPCs are normalized to the

11/14

one with 16K prefetch buffer. For each benchmark, we have one
bar for 512K L2 cache and the other bar for 1M L2 cache. From
the figure, we observe the IPC number grows monotonously
with the prefetch buffer size. For some benchmarks like crafty,
gap, gcc, vortex, larger prefetch buffer can clearly increase the
IPC, while the others either have little improvement or saturate
after either 16K or 32K size buffer. Another observation is the
ones with 512K cache benefit more from large prefetch buffer.
It is probably because more miss fetches are generated (except
for gcc, its IPC is already very low for both cache sizes). On
average, for 512K L2, IPC improvements against the default
model are –15%(4K), 7%(16K), 13%(32K), 23%(64K). For 1M
L2, the improvements are –4% (4K), 5%(16K), 9%(32K),
13%(64K). With a 64K prefetch buffer, the performance
degradation is 42% for 512K cache and 38% for 1M L2 cache.

Prefetch Ring Sensitivity Study

bzip
2

crafty eon
gap

gcc
gzip

mcf

parser

perlbmk
twolf

vortex vpr

IP
C

0

1

2

3
1M L2

IP
C

0.0
.5

1.0
1.5
2.0
2.5
3.0
3.5

1/5
1/10
1/20
1/40

512K L2

Figure 15. Ring range size tests.

IP
C

0.0
.5

1.0
1.5
2.0
2.5
3.0
3.5

1 base RAR
1/2 base RAR
1/3 base RAR
1/4 base RAR

IP
C

0

1

2

3

bzip
2

cra
fty eon

gap
gcc gzip

mcf

parse
r

perlbmk
twolf

vortex vpr

10
0M

B/
s

0
2
4
6
8

10

512K L2

1M L2

Memory Traffic for Inst. Fetch

Figure 16. Ring bandwidth study.

Next, we look into parameters of the prefetch ring. In
Figure 15, we evaluate how the ring range affects performance.
Four specific cases are studied. The prefetch ring range is set to

1/5, 1/10, 1/20 and 1/40 of the original code space respectively.
For both cache sizes, most benchmarks can gain a little speedup
when ring range becomes smaller, then slightly decrease or
saturate when ring is too small. As shown in section 5.2, with
fixed ring bandwidth, small range ring has faster speed.
However, the number of code blocks that can be prefetched and
stored on small range ring is also much fewer than the big range
ring. When the prefetch ring becomes too small, some
prefetched blocks cannot stay till they are referenced, which
could lead to performance loss. Especially for gzip, bzip2 and
mcf, whose original code sizes are already very small, the IPC
decreases more when the prefetch ring is squeezed.

On average, for 512K cache, the IPC improvements over
the 1/5 ring are 3.2%(1/10), 5.0%(1/20), 2.8%(1/40), and for
1M L2, the improvements are 3.1%(1/10), 4.9%(1/20),
2.8%(1/40). Thus, the ring range affects the performance less
than the prefetch buffer size, and it is also very insensitive to the
cache size. This is probably because prefetch ring can contain
much more code blocks than the small prefetch buffer in most
cases.

In Figure 16, another parameter--the ring bandwidth is
varied, while keeping all other default configurations. The base
RAR is running at the same speed as in the default model. We
allocate 4 different bandwidth to the prefetch ring, i.e. ¼ of the
base RAR, 1/3 of the base RAR, ½ of the base RAR and the
same as the base RAR. At the bottom of Figure 16, we show the
memory traffic accordingly. In most cases, more bandwidth
leads to higher IPC. The reason is that most misses can be
resolved earlier with a faster ring (as shown in section 5.2, for
fixed ring range, more bandwidth leads to a faster ring). This is
more significant when cache is 512K and IPC is lower.

In our experiments, we also attempted to lower the
bandwidth of the base RAR and give the prefetch SAR more
bandwidth. However, the performance actually suffers. The
reason is that due to the poor code layout, the performance of
prefetching algorithm is limited. There will be a considerable
amount of cache misses that miss in prefetch ring again and turn
to the base ring. Reducing the bandwidth of the base ring can
result in performance loss due to those prefetch ring misses.

Hot Function Set Size Sensitivity Study

10-entry 20-entry 30-entry

Av
er

ag
e

N
or

m
al

iz
ed

 IP
C

.99

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07
Pref. buf 512K L2
Pref. buf 1 M L2
Pref. ring 512 K L2
Pref. ring 1 M L2

Figure 17. IPC comparison with different sizes of the hot

function set.

12/14

Next, we evaluate how the hot function set size influences
the IPC. In Figure 17, we first normalize the IPCs to the IPC
under 10 entry hot function set. After normalization, big IPC
benchmarks get the same representational weight as small IPC
benchmarks. Then we take the average of all normalized IPCs.
The average number is presented as the Y-axis value in the
figure. Figure 17 shows the trend how IPC grows with bigger
hot function set. It is worth noticing that for 1M L2, the increase
is much less than the 512K L2. Also, prefetch ring benefits
more from a big hot function set than the prefetch buffer. The
first phenomenon can be explained as follows: with a small
cache, more functions cannot be entirely hidden inside the cache,
thus, a big function set is more desirable to trace those functions.
The second phenomenon can be explained as: the prefetch ring
is much bigger than the prefetch buffer. For the prefetch buffer,
even if more hot functions are traced, it probably cannot hold
them.

The overall improvements due to a larger hot function set
are limited. From the figure, the maximal speed up is 6%.

Combined Prefetch Buffer and Ring
Prefetch buffer and ring can be combined to further

improve the performance. However, a combined approach has
many design parameters, like prefetch buffer size, ring speed,
ring bandwidth, etc. To better explore the design space, we use
a 3D figure in Figure 18. The vertical axis is the average
normalized IPC number, we first normalize all IPCs to the IPC
with default configuration. Then all normalized IPCs are
averaged to become one point in the figure. The other two
dimensions are for prefetch buffer (X axis) and prefetch ring (Y
axis) respectively. On the Y axis, 4 types of ring ranges and 4
types of ring bandwidth form 16 combinations, e.g. 1/40R-1/2B
means that ring range is 1/40 of the original code and ring
bandwidth is ½ of the base RAR.

.90

.95

1.00

1.05

1.10

1.15

4k
8k

16k
32k

64k

1/5
R-1

/4B

1/1
0R

-1/
4B

1/2
0R

-1/
4B

1/4
0R

-1
/4B

1/5
R-1/

3B

1/1
0R

-1
/3B

1/2
0R

-1/
3B

1/4
0R

-1
/3B

1/5
R-1/

2B

1/1
0R

-1/
2B

1/2
0R

-1/
2B

1/4
0R

-1/
2B

1/5
R-1

B

1/1
0R

-1
B

1/2
0R

-1
B

1/4
0R

-1B

Av
er

ag
e

N
or

m
al

iz
ed

 IP
C

X ax
is

Y axis

.90

.95
1.00
1.05
1.10
1.15

Figure 18. Design space for combined buffer & ring(512K L2)

.90

.92

.94

.96

.98

1.00

1.02

1.04

1.06

4k
8k

16k
32k

64k

1/5
R-1

/4B

1/1
0R

-1
/4B

1/2
0R

-1
/4B

1/4
0R

-1/
4B

1/5
R-1/

3B

1/1
0R

-1
/3B

1/2
0R

-1
/3B

1/4
0R

-1
/3B

1/5
R-1

/2B

1/1
0R

-1
/2B

1/2
0R

-1/
2B

1/4
0R

-1/
2B

1/5
R-1B

1/1
0R

-1
B

1/2
0R

-1
B

1/4
0R

-1
B

Av
er

ag
e

N
or

m
al

iz
ed

 IP
C

X ax
is

Y axis .90
.92
.94
.96
.98
1.00
1.02
1.04
1.06

Figure 19. Design space for combined buffer & ring(1M L2)
From Figure 18, it is not surprising that the combined

approach can achieve better performance. The best case can
reduce performance degradation to 38%. However, the
incremental improvements are marginal considering the
hardware costs for both ring and buffer. Conceivably, prefetch
buffer and ring may have many duplicated code blocks, wasting
bandwidth and area. Clearly, the IPC can be improved most
significantly with larger prefetch buffer. Given a fixed prefetch
buffer size, we see waves along the Y-axis. Each wave has the
same ring bandwidth. With more bandwidth the waves go
higher. Inside each wave, as ring range decreases, the IPC first
increases then decreases as explained earlier.

The figure gives architects many choices to implement the
combined scheme. If the on-chip area is not a concern, large
prefetch buffer is a good choice. With big prefetch buffer,
waves become flat, because the program working set can be
mostly fit in the buffer. The architect can pick a relatively small
and low bandwidth ring. If on-chip space is limited, but memory
bandwidth is relatively cheap, giving the prefetch ring more
bandwidth is quite effective. Finally, if both prefetch buffer size
and ring bandwidth are set, choosing a proper ring range is
important, esp. when prefetch buffer is small.

Figure 19 shows the design space for 1M L2. We notice
the whole surface is more flat, indicating less improvements due
to reduced cache misses. Other properties are very close to the
one with 512K cache. The best case can reduce performance
degradation to 34%.

7. Related Work

XOM Architecture
The eXecute Only Memory (XOM) Architecture [1] was

proposed to support copy and tamper resistant software. Both
code and data are encrypted outside the security boundary.
Recent advances can preserve privacy and integrity for off-chip
data and code with reasonable slowdown [references]. However,
XOM like architecture fails to address the information leakage
through instruction access sequence, which is the main focus of
our work. XOM like architecture forms a part of the
infrastructure of our security system.

13/14

Oblivious RAM
Goldreich [7][8] realized that software protection should

prevent the attacker from “learning the program” by
experimenting with it, e.g. feeding it with different inputs and
monitoring the different behavior of the secure processor. In this
work, they studied a specific problem of hiding program
memory access pattern, which is a major step towards a leakage-
protection processor and is also the problem we try to solve in
this paper. Their work studied the problem in a theoretical view
and proved that the lower bound of running a program without
leaking memory access pattern is 2logt m , in which t is the
original running time of the program, m is the number of
locations in the external memory. This model is no longer valid
in modern processors. One obvious problem is that there is no
cache or memory hierarchy in this model, thus every instruction
fetch has to go to external memory. Also, architectural issues
regarding building a real processor remained unaddressed in
their work that we have addressed here investigating different
tradeoffs involved in the solution space.

DS5002FP
DS5002FP microcontroller [9] is a widely used

commercial bus-encryption processor. This chip not only
encrypts data in the memory, but also addresses. Instructions
and data are not stored in their original order, but rather in
seemingly random locations in memory. To access a code block,
the original address must be encoded and the address after
encoding is used to access the memory. They claim that due to
the bus encryption, it is virtually impossible to determine the
original control flow of the program. However, the code
locations are never changed in memory during program
execution. In other words, an original address is always
translated to the same address that is sent to the memory. For
example, if a loop contains blocks: 100,101,102, and block 100
is actually at address 231 (so 100 will be encoded as 231), block
101 is at 371, block 102 is at 483. Although after encoding, the
loop is not stored in contiguous memory locations, the attacker
can still detect the sequence 231-371-483 to appear repeatedly
as the loop executes. Branches cannot be hidden either. If 102
(483) has two successors: 103 (876) and 104 (751), then by
observing two access sequences 483-876 and 483-751, the
attacker can conclude there is a branch after block 483. The
sequences before and after encryption have exactly the same
nature. Therefore, simply permutating code blocks in memory
through static encryption does not help at all. On the other hand,
it is impossible to encode the same address differently each time,
since the code block is at fixed location in memory.

DS5002FP also tries to confuse the attacker by issuing
random read accesses between actual read accesses generated by
the program. However, this does not work either. Assuming the
program enters a loop that runs for a large number of iterations.
It quickly turns out, among the access addresses on the
instruction address bus, a number of addresses (those actually in
the loop) always repeat, while others (randomly generated ones)

only appear occasionally. After the actual access addresses are
identified, the attacker can simply ignore other random reads.

DS5002FP has been actually completely cracked by Kuhn
[6]. The paper describes how the author found out the
correspondence between instructions and their ciphertext. Using
this, he could construct a program to read out the secret key.

Code Obfuscation
Code obfuscation has been proposed to change the code

structures at compilation time to make it very different from the
original code. The main goal of code obfuscation is to stop
reverse engineering a program using dis-assemblers, debuggers
etc. While static control is made difficult to crack, dynamic
control flow if monitored could still reveal critical program
information. Thus, code obfuscation cannot provide security
guarantee [10] but only makes it relatively hard to crack the
code. In our work we are providing security guarantees although
the performance is somewhat degraded. We also propose
mechanisms to reduce the overheads arising out of these
guarantees.

8. Conclusion
Providing security guarantees to the problem of software

rights protection imply not leaking any control flow information
which could generate a unique fingerprint that could be matched
compromising intellectual property of the software. In this work,
we devise processor mechanisms that establish such guarantees.
However, establishing such guarantees entails performance loss.
We propose different mechanisms involving prefetch ring,
prefetch buffer to alleviate such a loss. We then provide a
design space exploration that measures the impact of different
parameters and proposes solutions under different constraints
(such as the on-chip area etc.). The final recommendations are:
with enough on-chip space, prefetch buffer provides better
performance in general, otherwise if bandwidth is cheap,
prefetch ring is more suitable. When both of them are cheap, we
can use a combined approach to further improve performance.

REFERENCES
[1] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.

Mitchell, M. Horowitz, “Architectural Support for Copy and
Tamper Resistant Software,” ASPLOSIX, Nov. 2000.

[2] J.Yang, Y.Zhang, L.Gao, “Fast Secure Processor for Inhibiting
Software Piracy and Tampering,” In Proc. 36th International
Symposium on Microarchitecture, to appear, Dec. 2003.

[3] E.Suh, D.Clarke, B.Gassend, M.v.Dijk, S.Devadas, "Efficient
Memory Integrity Verification and Encryption for Secure
Processors", Proceedings of the 36th International Symposium on
Microarchitecture (MICRO), December 2003.

[4] B.Gassend, G.E.Suh, D.Clarke, M.v.Dijk, S.Devadas, “Caches
and Hash Trees for Efficient Memory Integrity Verification”, The
9th International Symposium on High Performance Computer
Architecture (HPCA9),Feb. 2003.

[5] G. E.Suh, D.Clarke, B.Gassend, M.v.Dijk, S.Devadas, “AEGIS:
Architecture for Tamper-Evident and Tamper-Resistant
Processing,” Proceedings of the 17th International Conference on

14/14

Supercomputing, Jun. 2003.
[6] M.G.Kuhn, “Cipher Instruction Search Attack on the Bus-

Encryption Security Microcontroller DS5002FP,” IEEE
Transactions on Computers, Vol.47,No.10, pp.1153-1157, 1998.

[7] O.Goldreich, “Towards a Theory of Software Protection and
Simulation by Oblivious RAMs,” Proceeding of the 19th Annual
ACM Symposium on Theory of Computing (STOC), 1987.

[8] O.Goldreich, R. Ostrovsky, “Software Protection and Simulation
on Oblivious RAMs,” J. of the ACM, Vol.43,No.3, 1996.

[9] “DS5002FP secure microprocessor chip data sheet,” Dallas
Semiconductor.

[10] B.Barak, O.Goldreich, R.Impagliazzo, S.Rudich, A.Sahai,
S.Vadhan, K.Yang, “On the (Im) possibility of Obfuscating
Program,” CRYPTO 2001.

[11] J.R.Ullman, “An Algorithm for subgraph Isomorphism,” Journal
of ACM, Vol.23, pp.31-42, 1976.

[12] VFLib Graph Matching Library, http://amalfi.dis.unina.it/
graph/db/vflib-2.0/doc/vflib-1.html

[13] International Planning and Research Corporation, “Eighth
Annual BSA Global Software Piracy Study,”
http://global.bsa.org/globalstudy/2003_GSPS.pdf

[14] D. Lie, J. Mitchell, C. A. Thekkath, and M. Horwitz, “Speci-fying
and Verifying Hardware for Tamper-Resistant Software,” IEEE
Symposium on Security and Privacy, 2003.

[15] P.C. Kocher, “Timing attacks on implementations of Die-
Hellman, RSA, DSS, and other systems,” Proceedings Crypto'96,
LNCS 1109, Springer-Verlag 1996, 104-113.

[16] P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis”,
Proceedings of CRYPTO '99.

[17] Doug Burger and Todd M. Austin. “The SimpleScalar Tool Set
Version 2.0,” Technical Report 1342,
University of Wisconsin--Madison, May 1997.

[18] Ross Anderson, Markus Kuhn, “Low Cost Attacks on Tamper
Resistant Devices,” Proceedings of the 1997 Security Protocols
Workshop, Paris, April 7--9, 1997.

[19] J. Kelsey, B. Schneier, D.Wagner, and C. Hall, “Side channel
cryptanalysis of product ciphers,” ESORICS '98.

[20] Timothy Sherwood, Erez Perelman, Greg Hamerly and Brad
Calder, “Automatically Characterizing Large Scale Program
Behavior,” ASPLOS 2002, October 2002.

[21] Andrew Huang, “Keeping Secrets in Hardware: the Microsoft
Xbox(TM) Case Study,” MIT Artificial Intelligence Laboratory
Technical Report AIM-2002-008, May 26, 2002.

