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Abstract 
Secure processors have been recently introduced, which 

enable new applications involving software anti-piracy, 
program execution certification, and secure mobile agents. 
Secure processors have built-in hardware support for 
cryptographic mechanisms and can prevent both software 
attacks and physical attacks. Several recent papers have shown 
how to construct a secure processor to protect the 
confidentiality [1][2][3]and integrity[4][3] of a program. The 
proposed designs are immune from spoofing, splicing and 
replay attacks.  However, none of the previous work is able to 
address the attacks due to information leakage on the address 
bus. Dangers due to information leakage on the address bus 
have been acknowledged to be an important as well as a 
difficult problem[1]. In fact, in [4]this problem is actually the 
trigger of the replay attack described.  

In this paper, we show that several attacks are possible by 
monitoring the instruction access sequence on the address bus. 
Such attacks could emanate from identifying the core 
algorithms by pattern matching the control flow graph or from 
finding out or narrowing down critical variables that decide 
outcomes of conditional branches. We analyze the causes 
behind such information leakage and then determine the 
primary requirement that must be met to prevent it. Based on 
this requirement, we propose HIDE, a hardware-based 
approach to hide the instruction access sequence. The main 
goal of HIDE is to construct a fixed instruction access sequence 
issued to the memory to achieve zero leakage of control flow 
information, giving a security guarantee. Our base approach 
involves constructing a fixed instruction access sequence 
covering the whole program (called base access ring) to hide 
the actual instruction fetch. This might however lead to severe 
performance degradation due to tremendous stalls making the 
framework infeasible. Therefore, we propose two approaches to 
overcome this problem. In our scheme, the architecture 
dynamically tracks a hot function set. Based on the hot function 
set, the first approach involves prefetching blocks accordingly 
into an on-chip prefetch buffer. The second approach 
establishes a secondary access ring, which is smaller and faster 

than the base access ring. The instruction blocks are prefetched 
from the base ring into the secondary ring instead.  

We observe considerable elimination of degradation due 
to our architectural improvements. For 512K L2 cache, the 
degradation is reduced from 73% to 38%; for 1M L2, it is cut 
from 65% to 34% with a reasonable amount of hardware 
resource. 

Keywords:  
Leakage Protection, Secure Processor, Instruction Access 

Sequence 
 

1. Introduction 
Software rights protection is a very important issue faced 

in today’s software industry due to billions of dollars invested in 
the intensive software development process. The idea of 
software rights protection is to protect the intellectual property 
(IP) that forms a basis of the software. Use of such underlying 
intellectual property must be paid for in terms of licensing fees 
and its use should only be limited to an environment for which a 
license is granted. Most of the current violations of these rights 
manifest themselves in terms of illegal copies. Commonly, 
software copy protection or software piracy protection, which 
aims to prevent one from making an illegal copy of the software, 
is touted as a solution to solving the bigger problem of software 
rights protection. Piracy itself has been a critical and extremely 
difficult challenge faced by software vendors. According to the 
study done by the Business Software Alliance, global dollar loss 
due to software piracy increased 19% in 2002 to $13.08 billion 
[13], reflecting the severity of the problem. Apart from piracy, 
the bigger problem of rights is even severe. Hackers often get 
illegal insights into the working of software, discover 
vulnerabilities and launch attacks. The damage done by the 
attacks far exceeds the costs of piracy alone. Thus, the problem 
of software rights is becoming more and more important. 

On the other hand, traditional software copy protection 
techniques like serial numbers and software licensing systems 
are becoming weaker and weaker with the presence of powerful 
disassemblers and debuggers. The failure of traditional software 



2/14 
 
 
 
 

copy protection schemes resides in the fact that they try to 
protect software by software. Since any software can be reverse 
engineered, such schemes can only deter the success of an 
attacker.  

Recently, secure processors have been proposed 
[1][2][3][4][5][14] as a hardware solution to software copy 
protection, in which a hardware security boundary is demarcated. 
Anything inside the security boundary is trusted, while the other 
parts of the computer system are not trusted or in other words 
can be fully manipulated by the attacker. Normally, components 
such as processor itself and on-chip caches are inside the 
security boundary. On the other hand, components such as 
external memory or I/O devices are outside the security 
boundary. Both code and data going out of the security 
boundary must be encrypted. Lots of efforts have been put to 
ensure the secure processor sustain from various attacks such as 
spoofing, splicing, replay [1][4] and to reduce the runtime 
performance penalty due to additional cryptographic operations 
[2][3]. 

Encryption is one of the most powerful techniques used to 
prevent making illegal copies directly. However, Goldreich and 
Ostrovsky [8] pointed out that software protection cannot be 
achieved through mere encryption, any information regarding to 
the software must be prevented from being leaked out during 
the execution of the software. As pointed out earlier, such an 
information leakage can lead to intellectual property being 
stolen and the use rights granted being violated. For example, 
side channel information such as timing or power consumption 
of operations can all be utilized to discover the vulnerabilities of 
the software and launch attacks. The dangers are very real and 
many commercial smart cards have been cracked by exploiting 
the information leaked when they are operating [18][19]. 
Similarly many operating systems vulnerabilities have been 
discovered by observing and tampering critical data locations 
(such as return addresses in stack etc.). Thus, leakage protection 
is critical yet definitely more difficult to achieve. Information 
leakage at runtime may reveal dynamic control flows, sensitive 
data values and other valuable information that might be 
exploited by the attacker. In many cases, it easily invalidates 
copy protection through encryption. 

In this paper, our focus is to combat the leakage of 
instruction access sequence on the address bus. Section 2 shows, 
although the attacker has no plaintext of the code after 
encryption, the instruction access sequence can actually help 
him to guess a lot of information about the code indirectly. In 
other words, without such a leakage protection, software copy 
protection through encryption is not sufficient. Moreover, 
sensitive data can be leaked as well. Actually, the problem of 
information leakage via instruction access sequence has been 
acknowledged in both academia and industry. Goldreich [7][8] 
studied the problem of hiding program memory access pattern 
from a theoretical point of view. However, their model is no 
longer proper for modern processors and under their proved 
lower bound, program performance may be degraded tens of 

times, making the scheme unrealistic. XOM based approaches 
encrypt code and data outside the security boundary, making 
direct software piracy almost impossible. However, it fails to 
address the information leakage through instruction access 
sequence. This greatly decreases the strength of copy protection 
as shown in section 2. Although the problem has been noticed 
in [1] and [5], they both leave it open. [1] poses it as an open 
problem, and [5] largely ignores it. In [4], the detection of loops 
through the address bus becomes a starting point for the replay 
attack. DS5002FP microcontroller [9] is a widely used 
commercial bus-encryption processor. In DS5002FP, code 
blocks are stored in new addresses, which are the encrypted 
values of their original addresses. However, this simple bus 
encryption does not stop control flow leakage as well as 
explained in related work section. 

In summary, current architectures do not provide a 
satisfactory solution to the leakage problem we attempt to solve. 

In this paper, our contributions are: 
1. We show practical attack methods that exploit information 

from the unprotected instruction access sequence. Leakage 
from such sequence is so severe that the effects of the code 
and data encryption get nullified to certain extent. 

2. We propose HIDE, an architecture approach, which 
completely eliminates information leakage due to the 
instruction access sequence, while the performance 
degradation is still within a tolerable range. 
 
The rest of the paper is organized as follows: Section 2 

discusses the motivation; section 3 deals with the preliminaries; 
section 4 discusses independent access sequence; section 5 
presents HIDE in detail; section 6 shows evaluation results; 
section 7 discusses about related work and section 8 concludes 
the paper. 

2. Motivation 
This section elaborates two kinds of attacks through the 

instruction access sequence disclosed on the address bus. We 
assume both code and data are protected by encryption such as 
in XOM[1], DS5002FP[9], and Goldreich’s model[7][8], 
therefore cannot be obtained directly, but the instruction access 
sequence is subject to outside tapping. We will show that reuse 
code, which takes about 39% of all code in the benchmark, can 
be easily identified. Based on that, sensitive data is vulnerable 
due to value-dependent conditional branches, making both code 
and data encryption ineffective. 
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Figure 1. Binary reuse percentage for SPEC2000. 
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For a better understanding, we will first discuss the worst 
case when the cache is not present like in many embedded 
processors e.g. some DSP, smartcard chips. Then we point out 
that even when caches are enabled, they cannot completely 
prevent information leakage on address bus. 

Without caches, one obvious observation is that the 
dynamic control flow of the software is completely exposed to 
the attacker. Although the attacker has no idea about the actual 
instructions being executed (all instructions are encrypted), he 
can still obtain control flow information like branches and loops. 
Control flow contains the most fundamental information of a 
program and it provides sufficient details for the attacker to 
understand the program. The scenarios described in this section 
are only two possibilities. 
2.1 Reuse Code Identification 

It is highly possible that the attacker can eventually capture 
most of the control flow after monitoring the address bus for a 
sufficient amount of time and experimenting the program with 
different inputs, because theoretically, only dead code will not 
be executed. Due to the following two facts, leaking the 
program control flow information can result in the exposure of 
reuse code and severely disrupt code encryption, even threaten 
the program’s intellectual property. 

Software Reuse and Binary-Level Similarity  
With the ever increasing of software complexity and time-

to-market pressure, software development more and more relies 
on reusing existing modules or libraries from other companies 
or oftentimes from the public domain. For example, lots of 
classic algorithms have their standard and/or non-standard 
open-source implementations online. To save time, 
programmers tend to simply reuse the available implementations 
rather than crafting one from scratch. Moreover, most compilers 
and development tool chains are provided by a few 3rd party 
name-brand vendors. As a result, as long as code is reused at 
source level, they are similar at binary-level. In reality, most 
reuses are through standard prebuilt libraries, leading to nearly 
identical code at binary-level. We measured all SPEC 2000 
Alpha binaries to find out the percentage of code that is reused 
from the standard C library on Alpha. As shown in Figure 1, the 
reuse percentage can be very high for some benchmarks like 
mcf (88%) and bzip2 (66%). On average, 39% of the code at 
binary level is from the libraries. Notice that, programs like gcc 
have been developed for over 10 years and very few existing 
modules are incorporated from older versions and thus, it is not 
surprising its reuse percentage is lower. However, with the 
exploding number of legacy code and shortened software 
generation time, the reuse code percentage should be much 
higher for most software on the market nowadays. 

CFG-Fingerprint of Algorithm 
It is widely known that the average length of basic blocks 

is only 5 to 8 instructions and a large number of instructions are 
branches. Conceivably, as long as the algorithms are reasonably 

complex, the chances for different basic blocks to form the 
same CFG are slim. As an experiment, we built the CFGs for 
various block cipher algorithms such as DES, MARS, Rijndael, 
RC6, and found out their CFGs are significantly different. In 
Figure 2, we investigate the similarity of CFGs in the standard C 
library of the Alpha compiler. There are 1334 procedures in the 
library file libc.a, with reasonable size (at least 5 basic blocks). 
We built the CFGs for all these procedures in which each basic 
block is abstracted as a node (which in fact increases chances of 
two CFGs being similar). We run the famous graph 
isomorphism algorithm by Ullman [11] (we reuse the graph 
matching library developed by Univ. of Naples [12]) between 
any two graphs. In Figure 2, the results show that only 5% of the 
comparisons find the two graphs match. If we ignore the CFGs 
with less than 10 basic blocks, only 0.1% match. Finally, if we 
ignore the CFGs with less than 15 basic blocks, only 0.05% 
match. This study shows that each CFG has a distinct 
fingerprint. Therefore, if the programmer reuses a procedure in 
the library with 10 or more basic blocks, the reuse is almost 
doomed to be found out by the attacker due to its distinctive 
fingerprint. Notice that, this estimation is conservative due to 
our abstraction of the CFGs that ignores sizes of individual 
basic blocks; if they are included, the number of matches would 
decrease further. Even if matches occur, the attacker can still 
narrow down to a few possible procedures that might be reused. 

If only partial CFG can be identified, with subgraph 
matching algorithms[11][12], we can still largely detect the 
reuses. It is easy to show that the number of legitimate CFG 
graphs grows exponentially with the number of basic blocks in 
the CFG; therefore to hide big reuse code is almost impossible. 
From the prior discussion, CFG, as a matter of fact, can be 
regarded as the fingerprint of an algorithm. 
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Figure 2. Isomorphic CFG pairs in the standard C library. 

Based on the two facts described above, it is quite possible 
that an attacker can identify the reuse components in a program 
given its CFG. He can collect the CFGs of all procedures in 
standard libraries, or for publicly available source code, compile 
them with a name-brand 3rd party compiler and build the CFGs. 
By graph matching the program’s CFGs with his collection, the 
attacker can nail down the reuse parts. This not only exposes the 
reuse code in its entirety, but also helps the attacker in other 
aspects: 1) A bunch of plaintext/ciphertext pairs for the reuse 
code are identified. If the hardware cannot afford integrity check 
due to its prohibitive performance and memory space overhead 
[4], the attacker might construct a program to read out other 
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code like in [6]. 2) More critically, although the code is reuse 
code, all data involved are private to the program. Next, we will 
show how critical data can be found out in some cases. 3) By 
watching the interaction between reuse code and the 
programmer’s own code like calling sequence, parameters, the 
attacker can learn more about programmer's own code. 

The technique of CFG matching is merely a particular case 
of pattern matching, which has been widely used in security 
applications such as network intrusion detection and computer 
virus detection.  

 
2.2 Critical Data Leakage via Value-dependent 
Conditional Branches 

CFG matching breaks instruction encryption to some 
extent. In this section, we further point out that the exposure of 
instruction access sequence may nullify the data encryption as 
well.  

A typical conditional branch makes a comparison between 
two values then decides which path to take. Therefore the 
control flow information, which is exposed completely in the 
instruction access sequence, can leak important information 
about the values being compared, although data are encrypted 
outside the processor and therefore cannot be obtained from the 
data bus and memory directly. 

The following example assumes the algorithm used is 
known beforehand (most security systems assume the 
cryptographic algorithms used are known to the attacker) or has 
been detected by CFG matching. It demonstrates how the 
critical data (secret key in this case) is revealed. 

Example 
Diffie-Hellman and RSA private-key operations consist of 

computing R = yx mod n, where the attacker's goal is to find x, 
the secret key. To show the problem easily, we assume that the 
implementation uses the simple modular exponentiation 
algorithm in Figure 3.a, which computes R = yx mod n, where x 
is w bits long. The algorithm is widely used in software 
implementation, therefore we can reasonably assume the 
attacker has identified it through CFG matching. 

 
 

Let S0 = 1. 
For k = 0 to w-1: 

If (bit k of x) is 1 then 
Let Rk = (Sk*y) 

mod n. 
Else 

Let Rk = Sk 
Let Sk+1 = R2

k mod n. 
EndFor. 
Return (Rw-1). 

Initialize 

Return 

Loop Entry 

Else-branchIF-branch 

Loop End 

B1 

B2 B3

B4 

(a) (b)  
Figure 3. Modular exponentiation algorithm 

The corresponding CFG for this small piece of code is 
shown in Figure 3.b. From Figure 3.a, we can easily find that 
inside the loop body if the current examined bit of x is 1, IF-

branch is executed, otherwise Else-branch is executed. We 
assume IF-branch resides in address B2 and Else-branch resides 
in address B3 (B2 and B3 are different). Since the instructions 
are not cached, the secure processor must behave as follows: if 
the current examined bit of x is 1, then fetch the IF-branch in B2, 
otherwise, fetch the Else-branch in B3. This results in a 
sequence of addresses for B2 or B3 showing up on the address 
bus correspondingly. By monitoring the address bus and 
capturing the addresses transmitted, the attacker can guess 
whether the respective bits of x are 0’s or 1’s and get the secret 
key x.  Even if he cannot distinguish between IF-branch and 
Else-branch, the information on the address bus leaves only two 
possible values of x to guess (the correct key or its complement). 

This example tells us, if the conditional branch is known to 
the attacker, the direction of execution path after the branch can 
expose the outcome of the comparison, which might be helpful 
in determining or narrowing down the values involved. 

Notice that missing several rounds of the for-loop can hide 
part of the secret key, but still help the attacker substantially to 
narrow down his search space. It is well known in the security 
domain, 64-bit encryption has much less strength than 128-bit 
encryption. If the attacker can capture half of the for loop, his 
searching space will be cut from 2|x| to 2|x|/2, which is 2|x|/2 times 
faster. 

This kind of attack is very similar to the timing [15] or 
power differential attack [16], which has been used to 
successfully break many commercial smart cards. However, the 
attack described in our paper is much simpler and more precise 
since monitoring a high-performance bus activities accurately 
can be achieved by a simple customized FPGA design as shown 
in [21].  
2.3 Cache does not Help Much 

Modern processors now typically consist of large on-chip 
caches. People might argue that most control flow information 
is hidden from outside tapping by cache. 

However, since cache is a shared resource among all 
processes running on the processor and as the previous papers, 
we assume the OS is not secure (please refer to the next section 
about assumptions). It is very easy for the attacker to manipulate 
the OS so that the cache gets flushed on a context switch; 
alternatively the attacker can ascertain that his own process fills 
and occupies most cache space before switching to the process 
being attacked. In this way, all memory accesses are exposed 
directly on the address bus due to capacity misses. 

Even if only one process is running, many processors have 
a unified L2 or L3 cache for both code and data. If the 
program’s working set can be affected by inputs, the attacker 
may intentionally increase the working set size, causing more 
instruction misses. 

Generally, cache is not predictable, especially in multi-
process environment. Different parts of the control flow can be 
leaked during different runs. It is possible that the attacker can 
finally get the whole picture. 
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On the other hand, even if the cache can hide some parts of 
the control flow, information still leaks to some extent. As 
mentioned before, subgraph matching can match partial CFG. 
Partial execution path can still be used to prune the searching 
space for critical data. 

Finally, our goal is to completely eliminate the information 
leakage due to exposed instruction access sequence. Although 
on-chip cache (or some other techniques as mentioned in the 
related work section) can somehow confuse the attacker, they do 
not provide security guarantees. 

3. Preliminaries 

The Machine Model 
In our model, the only trusted hardware is the processor 

chip, which includes processor core, L1 and L2 cache. To 
support secure processor requires additional hardware, which 
can be assumed to be on-die as long as its size is reasonably 
small. The attacker has full control of the components outside 
the central chip, which enables him to tap on the bus (even 
directly inject his own data), and modify the memory contents. 
This model has been adopted by earlier work [1][2]. 

Assumptions 
In this work, we build our scheme based on the XOM-type 

architecture[1][2][3][4][5]. In other words, code is encrypted 
when stored outside the security boundary, prohibiting direct 
access to the code. In particular, we implement the stream 
cipher described in [2] as it is very efficient. In addition, we 
incorporate integrity checking into our scheme to guarantee 
code cannot be tampered with in memory even after relocation. 
(5.7) Finally, similar to other prior work, the OS is assumed to 
be insecure.  

Information leaks through data access sequence is possible 
as well, e.g. stack growth indicating the invocation of a 
procedure, due to the scope of this paper, we did not explore the 
opportunities to protect access sequence to the data segments in 
memory.  

System calls can give out control flow information 
somehow, but the interaction between application and operating 
system is unavoidable, for example, the result has to be output 
at last. This problem is actually left to the programmer to not to 
put system calls at sensitive points of the code.   

Execution time cannot be hidden due to its tight 
association with performance. It is normally unreasonable to 
require the program to run for the same amount of time 
regardless of inputs. 

We assume code size is not sensitive information, 
therefore can be exposed to the attacker. 

Finally, we assume code misses and data misses to 
memory are distinguishable. An additional bit can be attached to 
instruction fetch requests. If a request misses in higher level 
caches, this bit is carried to the lower level cache request, until 
the fetch request reaches memory along with this bit. 

Objective 
We put security at the highest priority, and intend to avoid 

any information leakage through the instruction access sequence. 
Although performance degradation is inevitable, it should be 
properly controlled within a tolerable range for common cases. 
For the worst cases, security should still be guaranteed. 

4. Independent Access Sequence 
It is very difficult to quantify how much information is 

leaked through the instruction access sequence. As mentioned 
above, even partial information can be exploited by the attacker 
to ease his hacking. However, the following claim is sufficient 
to guarantee the attacker cannot learn anything by monitoring 
the instruction access sequence. 

 
If the instruction access sequence is always independent of 

program execution, no information will be leaked by monitoring 
the sequence. 

 
To achieve independent or fixed instruction access 

sequence, a naïve way is to read the whole code segment from 
the beginning to the end repeatedly. As shown in Figure 4.a, in 
each round, the whole code segment is read from beginning to 
the end once. No matter what is going on inside the processor, 
the processor always reads code blocks in this fixed sequence. 
Apparently, the only thing exposed is the code size, which has 
been assumed to be insensitive information. However, the naïve 
approach can lead to significant slowdown. When there is a 
miss fetch request from the cache, the request cannot be 
satisfied immediately from the memory, but has to wait till the 
block is read in through the fixed sequence. When the code 
segment is large, the processor may have to stall for a long time. 
For example, in Figure 4.b, if the current reading block is block 
70, and the pending miss fetch requests are block 100, 200 and 
50, the processor has to wait for 30 reads to block 100. Again, it 
has to wait another 100 reads to get block 200. To get block 50, 
it needs to wait till the access sequence reaches the end of the 
code segment (finish this round of reading), and starts from the 
beginning until block 50 is read in. This delay can be enormous 
if the code segment is very big. Conceivably, the naïve approach 
will cause intolerable performance loss. 

 
Code blocks in memory

Access sequence

Miss fetch requests: 100, 200, 50
Current reading block

Read 100

Read 200

Read 50
(a) (b)

Round 1
Round 2

Round 1 
Round 2 

 
Figure 4. Independent instruction access sequence. 
To reduce the stall time, intuitively, we should move code 

blocks that have a high probability to be requested in the near 
future to a place that can be quickly referenced. In next section, 
we will present HIDE, a solution that improves performance 
without losing the security guarantee. 
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5. HIDE 
5.1 Overview 

HIDE: Hardware-support for leakage-Immune Dynamic 
Execution. We use hardware support to prevent information 
leakage through the instruction access sequence. Here, 
“dynamic” means code blocks might be dynamically relocated 
during the execution. 

HIDE dynamically maintains a hot function set, which 
keeps track of the most recently referenced functions at runtime. 
Based on the hot function set, code blocks belonging to hot 
functions are prefetched to an on-chip cache or a secondary, 
fixed, but faster access sequence in memory.  

The idea is quite close to the memory hierarchy. We 
dynamically relocate code blocks that will be most likely used in 
the near future close to the processor. The two approaches give 
us a design tradeoff, i.e. on-chip area vs. memory bandwidth. 
We first define some terms to develop our approach. 
5.2 Some Basic Concepts 

 
Access Ring (AR): Represents an abstract structure in the form 
of a ring which when continually traversed results in a fixed 
access sequence. AR starts at one address called Ring Start 
Address. After accessing sequentially till the Ring End Address, 
it returns to the Ring Start Address and continues with the same 
access pattern. In short, it accesses a contiguous piece of 
memory sequentially and repeatedly. 
Read Access Ring (RAR): A special AR in which each access of 
the AR is a read access. 
Substitution Access: a memory operation, which reads from a 
memory location, then writes back to the same location. The 
write-back data may or may not be the same as the read-in data. 
The attacker cannot tell if the data is the same or not, because it 
is re-encrypted using a different key when written back. 
Substitution Access Ring (SAR): each access of the AR is a 
substitution access.  
Fetch Request Queue: a small queue of unsatisfied cache miss 
fetches is maintained on-chip. Upon read from the ring the 
blocks are de-queued. This queue is normally small, since the 
processor will stall if the requested code block cannot be 
fetched. Only when it speculates on several paths, can the queue 
have multiple active requests. 

 
 
AR can be quantified by the following metrics: Range, 

Round, Speed, Period and Bandwidth. AR Range is the size of 
memory region between ring start address and ring end address. 
Each Round is one iteration of accesses from the start address to 
the end address. (Turnaround) Speed is defined as the number 
of rounds accessed per time unit. AR Period is the time one 

round takes, i.e. the reciprocal of speed. AR Bandwidth is the 
bandwidth the ring takes for memory accesses. Thus, the 
following holds good: RARperiod=RARrange/RARbandwidth and 
RARspeed=RARbandwidth/RARrange. For SAR, it is SARperiod= 
2*SARrange/RARbandwidth and SARspeed= RARbandwidth/(2*SARrange), 
since SAR has both read and write operations to an address. 

We also have the following claim. 
 
If the memory access bandwidth is fixed, then RAR (or 

SAR) with larger range must have slower (turnaround) speed. 
 
The naïve approach mentioned in previous section can be 

regarded as a single monolithic RAR ranging over the entire 
code segment in memory. This RAR is also called Base RAR. 

The speed of base RAR can be extremely slow when code 
size (the range of the RAR) becomes large. Assuming processor 
fetch requests are uniformly distributed over the entire code 
segment, the average stall time is 1/(2*speedbaseRAR), or ½ 
*periodbaseRAR.  

 
5.3 Hot Function Set 

The hot function set is a small on-chip array, which 
dynamically tracks the most recently used functions using LRU 
replacement algorithm. Each entry is a pair of memory 
addresses, i.e. the start and end addresses of the function in 
memory. When a code block is read from the ring, its address is 
compared in parallel against all entries to find out if it belongs 
to one of the hot functions. To build up the hot function set, we 
insert a special instruction at the head of each function. The 
instruction simply specifies the size of the function. When the 
processor reads in such instruction, it first checks if the function 
is already in the set. If so, the function entry is relocated to the 
front of the array. Otherwise, the function is added to the front 
of the array and all the other elements are pushed down by one 
slot. The oldest function is kicked out of the hot function set. 

The motivation behind a function level prefetching is that 
the base RAR is very slow, so prefetching must be done 
aggressively to reduce the stall time of fetch misses. We feel 
function calls form the right coarse granularity boundary for 
such a purpose. 

 
5.4 Prefetch Buffer 

Prefetch buffer is an on-chip cache-style buffer to store the 
prefetched code blocks. Cache misses are first looked up in the 
prefetch buffer before being sent to the fetch request queue. The 
prefetch buffer is normally organized like a set-associative 
cache. Blocks read from the Base RAR are checked with hot 
function set to decide if they should be prefetched into the 
prefetch buffer. Figure 5 shows prefetch buffer operations. 
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Read-in from base RAR 
If there is matching request in fetch request queue then 
    Return the block to cache. 
Else If it belongs to hot fun set then  
            Put to the prefetch buffer. 
        Else 
            Discard it. 

 
Figure 5. Prefetch buffer operations. 

A prefetch buffer takes on-chip space. Inside a processor, 
there may be many processes concurrently running, so a 
dedicated prefetch buffer for each process is not realistic. Under 
our scheme, we assume the prefetch buffer is shared among all 
the processes. During context switch, the prefetch buffer can be 
saved as a part of the process state, or we can simply flush it. 
5.5 Prefetch Ring 

Alternatively, in addition to the base RAR, a secondary 
ring with smaller range and faster speed can be constructed in 
memory. Figure 6 shows the prefetch ring architecture. A 
Prefetch SAR is constructed in memory. Typically, the prefetch 
SAR takes less bandwidth than the base RAR, but its range is 
much smaller, so its speed is much faster than the base RAR. 

On the processor side, the read-in code blocks from both 
rings are sent to the Prefetch Controller. The prefetch controller 
will lookup in the fetch request queue to see if there is a request 
for that block and decide if prefetching should be done from the 
base RAR to the prefetch SAR according to hot function set. 
We will discuss the prefetch controller in detail later. 
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Base RAR 
Prefetch SAR 

Original code segment 

Memory (insecure)Processor (secure) Bus (insecure) 

Protection boundary 

Fetch Req. 
Queue 

Prefetch 
Controller 

Hot Fun Set 

Lookup 

Lookup 

Return 
block 

Read 

Read 

Prefetch 

 
Figure 6. Prefetch Ring. 

 
Base RAR:   

start at 0, 10000 blocks, bandwidth 2 unit  
Prefetch SAR:   

start at 10000, 100 blocks, bandwidth 1 unit  
 
Access Sequence: 
RD 0, RD 1, RD 2, RD 3, RD 10000, WR 10000,  
RD 4, RD 5, RD 6, RD 7, RD 10001, WR 10001,  
….. 
….. 
RD 396, RD 397, RD 398, RD 399, RD 10099, WR 10099, 
RD 400, RD 401, RD 402, RD 403, RD 10000, WR 10000,
…..  

Figure 7. Access sequence for the example. 

Access Sequence and Code Block Relocation 
The two rings can be allocated with different amount of 

memory bandwidth. We give an example in Figure 7 to show 
how the access sequence looks like. 

Assuming each block takes one unit in the address space. 
The base RAR starts at 0 and its range is 10000. The prefetch 
SAR starts at 10000, and the range is 100. Note the prefetch 
SAR needs both read and write operations. The bandwidth 
given to Base RAR is twice of that for prefetch SAR. 

The memory activities can be grouped into many steps. In 
each step, it reads four blocks from Base RAR, reads and writes 
one block from prefetch SAR. Accesses to each ring will loop 
back to the ring start address when it reaches the ring end 
address. 

Initially, all code blocks in Base RAR are encrypted. All 
code blocks in SARs are NULL blocks. Notice that NULL 
blocks are not distinguishable from useful code blocks after 
encryption. Also two NULL blocks can be entirely different 
after encryption. We add one additional bit to each block to 
indicate whether this block is a NULL block. If it is, its content 
is random. 

For the prefetch SAR, code blocks (the read-in ones from 
prefetch SAR or the ones prefetched from the base RAR) are re-
encrypted when writing back. Encryption/Decryption can be 
made very efficient as shown in [2][3]. Decryption operation at 
most time costs only one cycle to do XOR under stream cipher. 
On the other hand, encryption latency is largely hidden by the 
write buffer. With re-encryption, the attacker cannot correlate 
any write-out blocks with any read-in blocks, because each 
encryption is using different keys under stream cipher. 
Therefore, the processor can relocate code blocks at will, and 
the attacker has no chance to trace relocated blocks. 

Security Strength 
Compared to the naïve approach, the access sequence with 

prefetch SAR is still independent of the program execution. 
Outside tapping only observes fixed two-ring accesses. Which 
blocks are prefetched could leak information if no counter 
measure is taken. In our scheme, whenever a code block is 
written out, it is encrypted using a different key. So the attacker 
cannot correlate code blocks and find out which blocks are 
actually prefetched.  

Prefetch Controller 
The prefetch controller manages how to prefetch blocks to 

the prefetch SAR. The selection of blocks to be prefetched is 
based on the hot function set. But the decision of which block 
should be kicked out from the prefetch SAR needs explanation. 
We add an age field to each block in the prefetch SAR. The age 
field indicates how many rounds a block has stayed in the SAR. 
Ideally, the oldest block should be kicked out of the ring to 
accommodate the prefetched block. However, the oldest block 
might be far away from the current ring access point. Actually, 
it is not necessary to always pick the “oldest”. Therefore, a 
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Prefetch SAR Monitor is added, which decides if the current 
read-in block from the prefetch SAR can be categorized as 
“relatively old”. In our implementation, the monitor gives a cut-
off age in each round, so that the number of blocks older than 
the cut-off age is roughly ¼ of total blocks in the ring. Those 
blocks are candidates for replacement. 

All operations are listed in Figure 9. Note encryption/ 
decryption operations are performed in parallel with prefetch 
ring operations to improve efficiency. 

Each read-in block from base RAR is checked for 
matching fetch request. If the block is not requested but belongs 
to the hot function set, it is put to the output queue, waiting to 
be prefetched into the prefetch SAR. Read-in blocks from the 
prefetch SAR are checked for request similarly. If the block is 
requested or is NULL, a block from the output queue can be 
written back to the current position of prefetch SAR, otherwise 
the age of the read-in block is checked to see if it is replaceable. 
If the read-in block is older than the cut-off age, it is replaced by 
a block in the output queue, otherwise its age is increased and 
written back to prefetch SAR. All write backs must be re-
encrypted. Finally, Figure 10 shows data structures for the 
prefetch ring, fetch request queue and the output queue. 

 

Read from rings
Base RAR 
Prefetch SAR Prefetch SAR 

Monitor 

D 
D 

E 

D 
E 

: Decryptor 
: Encryptor 

Cache 

Prefetch 
Controller 

Prefetch SAR 

Fetch Request Queue 

Output Queue 

Hot Fun Set 

 
Figure 8. Prefetch controller. 

 
Read-in from base RAR 

IF there is a matching request in fetch request queue THEN 
    Return the block to cache. 
ELSE IF it belongs to hot fun set THEN  
             Put to output queue to prefetch SAR. 
        ELSE 
             Discard it. 

Read-in from prefetch SAR 
IF there is a matching request in fetch request queue OR the block is NULL 
THEN 
    IF the block is not NULL THEN 
        Return the block to cache. 
    IF output queue is not empty THEN 
        Encrypt one block from output queue and write to prefetch SAR 
    ELSE 
        Encrypt and write back a NULL block to prefetch SAR 
ELSE 
    IF block is older than cutoff age AND output queue not empty THEN 

    Encrypt one block from output queue and write to prefetch SAR 
ELSE 

        Increase age, encrypt and write back the read-in block to prefetch SAR 
 

Figure 9. Prefetch ring operations. 

Overhead Analysis 

 
NULL Prefetch SAR:

Fetch Req Queue:

Output Queue:

Addr Age Code block 

Addr 

Addr Code block  
Figure 10. Data structures. 

The space taken by the prefetch SAR is far smaller than 
the original code space, although it needs 3 additional fields. 
The NULL field is only 1 bit and the age field is set to 4 bits 
(age saturates at 15 after more than 15 rounds). We use cache 
block addresses, so the addr field is 32-5=27 bits, assuming 32B 
block size. Thus, the space overhead due to these fields is 
32/256=12.5%. Both prefetch request queue and output queue 
contain no more than 20 entries. 
5.6 Other Approaches 

Our hot function set based prefetching algorithm is 
conservative, since if a function is called first time, there is no 
way for it to prefetch the code blocks of that function. We also 
studied call-graph based prefetching algorithm, in which all the 
possible descendants of hot functions down to a certain level 
will be prefetched. It is more aggressive but we found its 
performance is no better or even worse than simple hot function 
set based prefetching in most cases.  

We spent a lot of efforts to dig out the reason behind this. 
After delving into the code layout generated by GCC, we found 
that in over 70% cases the callee function is stored in a lower 
address close to the caller function. This is simply because that 
C language requires callees defined prior to the caller if no 
prototype is given, while GCC generates code mostly according 
to the order in the source file. This kind of function layout 
generates pathological cases for the call graph based prefetching. 
After reaching the caller function, the prefetching algorithm will 
decide to prefetch the possible callees. However, the ring 
accesses have already gone past callees in the current round of 
ring accesses (since they appeared before callers in the code 
layout). Thus, the processor has to wait for another round to 
prefetch them, which makes prefetching pointless. Currently, we 
are not able to re-layout program at architectural level. Future 
work could involve compiler optimizations to help the call-
graph based prefetching by laying the functions topologically 
according to the call graph. 

It is also possible to have multiple prefetch SARs in 
memory that have different range and speed thus build a 
prefetch ring hierarchy. We can use conservative prefetching 
algorithm to prefetch blocks into faster and smaller rings, on the 
other hand aggressive prefetching algorithm to prefetch blocks 
into bigger and slower rings, in hope of achieving the similar 
effect of memory hierarchy. However, to make access sequence 
independent, these rings have to be accessed all the time with 
fixed pattern, therefore more bandwidth will be consumed. We 
have experimented with multiple prefetch rings, but 
performance always degrades if bandwidth is taken from the 
base RAR. The reason is aforementioned, aggressive 
prefetching does not help much if the program layout is 
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inherently poor. 
 Moreover, there are many other ways to construct 

independent memory access sequences. For example, we can 
read in and store a bunch of code blocks in a buffer then write 
them back to new locations after some time to confuse the 
attacker (we call this approach as shuffle buffer), or we can 
choose memory access locations according to a random 
distribution [7][8]. However, these approaches either cannot 
guarantee zero information leakage (the former case) or cannot 
work efficiently in real world (the latter case). 
5.7 Other Considerations 

Integrity checking is needed to ensure code is not changed 
in memory. Hash tree [4] can be used for this purpose. 
Alternatively, we can build the hash tree based on the ring 
architecture. Each level of the hash tree nodes are put on a Hash 
Ring, with tree root staying on-chip. The ring being checked (at 
lowest level) and all its hash rings are read in sequentially, so 
each level of ring data can be checked with their hash values in 
the higher level ring. For an m-ary hash tree (i.e. m units of data 
are hash to 1 unit hash value), The range of the k+1 level hash 
ring is 1/m of the k level hash ring. After reading in m units of 
data from level k hash ring, we read 1 unit of k+1 level hash for 
checking. So the bandwidth overhead is 

1

1 1/ 1 1/( 1)k

k
m m

∞

=

+ = + −∑
. 

In a multi-process environment, a large prefetch buffer can 
cause slowdown due to context switches if we choose to store it 
as a part of process state, as mentioned in section 5.4. On the 
other hand, the prefetch ring takes very small on-chip space, 
therefore is more scalable with the number of active programs. 

As mentioned before, the attacker may deprive most cache 
space from the program being attacked. This can lead to 
extremely severe slowdown for the attacked program due to 
long waiting time on the ring. However, our scheme can still 
guarantee no information is leaked under this worst case. 
Moreover, we believe it actually penalizes the attacker in some 
sense; a very slowly running/stalled program is likely to 
frustrate the attacker from trying to snoop to discover 
“interesting” program behavior.  

The benchmarks used in our evaluation are from 
SPEC2000. Their sizes are not very big. For large-scale 
applications, the base RAR can be huge thus very slow. So, 
more bandwidth is required to speedup the access rings. Further, 
real applications might rely on shared libraries that can be much 
bigger than the application itself. Maintaining access rings to 
the shared library will cause bandwidth crisis. It is also not 
efficient to incorporate the shared library to the rings of every 
application that invokes it. A better solution could be like in 
Figure 11. Only the processor chip and the bank controller chips 
are assumed to be secure. All buses and memory banks are not 
secure. Program code is split and stored in separate banks in 
encrypted form. Multiple rings are maintained in separate banks 
with fixed access sequence. The bus bandwidth between each 
bank controller and its memory bank can be very high, so the 

ring speed is high too. The communication channels between 
the processor and the bank controllers are allocated with low 
bandwidth. Fetch requests and return blocks are transmitted 
through these channels in encrypted form (we have to transmit 
some random data to achieve independent access sequences in 
the communication channels). Code in shared libraries is put in 
rings shared by multiple programs. Prefetch buffers can be 
moved to the bank controllers and prefetch rings might be 
constructed in memory banks by the bank controllers as well. 

Processor 

Bank 1 
Controller

 
Mem 

Bank 2 

 
Mem 

Bank n

 
Mem 

Bank 1

Bank 2 
Controller 

Bank n 
Controller

 
Figure 11. Multiple rings with decoupled memory accesses. 

6. Performance Evaluation 
Table 1. Default architectural parameters. 

 
 

 

Clock frequency 1 GHz L1 I/D DM, 8K, 1 cycle 
32B block 

Fetch queue 32 entries Unified L2 4way, 32B block 
512K (8 cycles)  
or 1M (12 cycles) 

Decode width 8 Memory bus 200M, 8 Byte wide 
Issue width 8 Memory latency first chunk: 80 cycles, 

inter chunk: 5 cycles 
Commit width 8 SNC cache 64K, 4way, 32B 
RUU size 128 Encryption/ 

Decryption latency 
50ns 

LSQ size 64 Base RAR 400MB/s bandwidth 
Branch predictor Perfect Prefetch buffer 8K, 4way, 32B 
TLB miss 30 cycles Prefetch SAR range 1/20 of  the code size 
Hash tree 4-ary Prefetch SAR BW 200MB/s 
  Hot function set 20 entries  

We evaluate our schemes on a processor model with 
default parameters in Table 1. All SPEC2000 integer 
benchmarks are used as representative applications. 
Implementation is done with the Simplescalar toolset [17]. We 
perform our experiments based on SimPoint [20] to capture the 
characteristics of benchmarks accurately. Each benchmark is 
fast-forwarded according to SimPoint then simulated by 100M 
instructions. Memory bus is 8 Byte wide and fully pipelined 
running at 200MHz. The base RAR is allocated with 400MB/s 
bandwidth, which is ¼ of the total bandwidth available. Clearly, 
the accesses to ring are all sequential and can be easily pipelined. 
We have two configurations for the unified L2 cache—512K or 
1M. The encryption/decryption mechanism is built upon [2], 
incurring very little performance degradation. The SNC cache 
size and encryption/decryption latency are shown in the table. 
Hash tree is 4-ary (33% bandwidth overhead). Default prefetch 
buffer size is 16K and the prefetch SAR range is 1/20 of the 
total code size, bandwidth is 200MB/s (1/2 of the base RAR). 

IPC Comparison with Default Model 
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Next, we compare the IPC for the two approaches 
(prefetch buffer and prefetch SAR) with the original IPC and 
the IPC with only the base RAR in Figure 12 and Figure 13. For 
clarity, we normalized the IPC numbers to the one with only one 
base RAR. Absolute IPC values are also shown in the figure. 
The long horizontal line marks where normalized IPC=1. Small 
horizontal lines above the bars are the original IPC after 
normalization. For each benchmark, the left bar is for the 
prefetch buffer, while the right bar is for the prefetch ring. 
Figure 12 evaluates the performance under 512K L2 model. We 
observe both approaches achieve big improvements over the 
base ring only case. The performance of the two approaches is 
very close. In half of the benchmarks, prefetch buffer is better, 
while in the other half, prefetch ring is better. For benchmarks 
with small degradation like bzip2 and mcf, the improvements of 
both prefetch schemes are also limited due to reduced 
optimization space. With only the base ring, the degradation 
from the original IPC is huge for some benchmarks like gcc 
(99.7%), vpr (93%), etc. 5 of the benchmarks have their 
normalized original IPC number out of the range of the figure. 
On average, base ring only approach degrades the performance 
by 73%. With prefetch buffer the degradation is reduced to 53%. 
With prefetch ring, the degradation is 52%. In the meantime, the 
prefetch buffer gets 71% speedup and the prefetch ring gets 
74% speedup over the base ring only case. This is the cost for 
guaranteed security under our scheme, which is our objective in 
this work. As we will see later, allocating more prefetch buffer 
space and more bandwidth can give even bigger improvements. 
Notice that, the default model chosen by us is not the one with 
best performance, but the one with relatively small cost in term 
of chip area or memory bandwidth. With larger prefetch buffer 
or more bandwidth, we can further reduce the degradation—e.g. 
as shown later, 64K prefetch buffer can have 23% speedup over 
the 8K prefetch buffer, which reduce the degradation to about 
42%. Perceivably, more costly prefetch buffer or ring can 
further cut down the degradation. 

Figure 13 evaluates the 1M L2 model. The degradation is 
less than the 512K cache, and not surprisingly, the approaches 
get less improvement too. The prefetch buffer still performs 
closely with the prefetch ring. On average, the performance 
degradation for base ring only, prefetch buffer and prefetch ring 
are 65%, 45% and 44% respectively. The prefetch buffer 
improves 57% over the base ring only case, and the prefetch 
ring improves by 60%. 

bzip
2 

crafty eon 
gap 

gcc gzip
 

mcf 
parse

r 

perlbmk 
twolf 

vortex vpr 

N
or

m
al

iz
ed

 IP
C

0

1

2

3

4

5

6

0

1

2

3

4

5

6pref. buf
pref. ring

2.
66 2.

49
0.

67
0.

80
0.

63
0.

62
0.

51 0.
55

.0
13

.0
15

2.
73 2.

98
1.

68
1.

67
0.

90
0.

88
0.

67 0.
70

0.
29

0.
27 0.
27 0.

29
0.

26 0.
26

Only base RAR

3.
09

1.
37

1.
73

1.
36

1.
19

1.
07

1.
58

4.
25

1.
36

1.
85

1.
75

2.
73

 
Figure 12. IPC comparison with default model (512K L2). 
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Figure 13. IPC comparison with default model (1M L2). 
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Figure 14. IPC comparison for prefetch buffer sizes. 
 

Prefetch Buffer Size Sensitivity Study 
Figure 14 shows how prefetch buffer size affects the 

performance. We vary the prefetch buffer size based on the 
default model. For comparison, all IPCs are normalized to the 
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one with 16K prefetch buffer. For each benchmark, we have one 
bar for 512K L2 cache and the other bar for 1M L2 cache. From 
the figure, we observe the IPC number grows monotonously 
with the prefetch buffer size. For some benchmarks like crafty, 
gap, gcc, vortex, larger prefetch buffer can clearly increase the 
IPC, while the others either have little improvement or saturate 
after either 16K or 32K size buffer. Another observation is the 
ones with 512K cache benefit more from large prefetch buffer. 
It is probably because more miss fetches are generated (except 
for gcc, its IPC is already very low for both cache sizes). On 
average, for 512K L2, IPC improvements against the default 
model are –15%(4K), 7%(16K), 13%(32K), 23%(64K). For 1M 
L2, the improvements are –4% (4K), 5%(16K), 9%(32K), 
13%(64K). With a 64K prefetch buffer, the performance 
degradation is 42% for 512K cache and 38% for 1M L2 cache. 

Prefetch Ring Sensitivity Study 
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Figure 15. Ring range size tests. 
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Figure 16. Ring bandwidth study. 

Next, we look into parameters of the prefetch ring. In 
Figure 15, we evaluate how the ring range affects performance. 
Four specific cases are studied. The prefetch ring range is set to 

1/5, 1/10, 1/20 and 1/40 of the original code space respectively. 
For both cache sizes, most benchmarks can gain a little speedup 
when ring range becomes smaller, then slightly decrease or 
saturate when ring is too small. As shown in section 5.2, with 
fixed ring bandwidth, small range ring has faster speed. 
However, the number of code blocks that can be prefetched and 
stored on small range ring is also much fewer than the big range 
ring. When the prefetch ring becomes too small, some 
prefetched blocks cannot stay till they are referenced, which 
could lead to performance loss. Especially for gzip, bzip2 and 
mcf, whose original code sizes are already very small, the IPC 
decreases more when the prefetch ring is squeezed. 

On average, for 512K cache, the IPC improvements over 
the 1/5 ring are 3.2%(1/10), 5.0%(1/20), 2.8%(1/40), and for 
1M L2, the improvements are 3.1%(1/10), 4.9%(1/20), 
2.8%(1/40). Thus, the ring range affects the performance less 
than the prefetch buffer size, and it is also very insensitive to the 
cache size. This is probably because prefetch ring can contain 
much more code blocks than the small prefetch buffer in most 
cases. 

In Figure 16, another parameter--the ring bandwidth is 
varied, while keeping all other default configurations. The base 
RAR is running at the same speed as in the default model. We 
allocate 4 different bandwidth to the prefetch ring, i.e. ¼ of the 
base RAR, 1/3 of the base RAR, ½ of the base RAR and the 
same as the base RAR. At the bottom of Figure 16, we show the 
memory traffic accordingly. In most cases, more bandwidth 
leads to higher IPC. The reason is that most misses can be 
resolved earlier with a faster ring (as shown in section 5.2, for 
fixed ring range, more bandwidth leads to a faster ring). This is 
more significant when cache is 512K and IPC is lower.  

In our experiments, we also attempted to lower the 
bandwidth of the base RAR and give the prefetch SAR more 
bandwidth. However, the performance actually suffers. The 
reason is that due to the poor code layout, the performance of 
prefetching algorithm is limited. There will be a considerable 
amount of cache misses that miss in prefetch ring again and turn 
to the base ring. Reducing the bandwidth of the base ring can 
result in performance loss due to those prefetch ring misses.  

Hot Function Set Size Sensitivity Study 
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Figure 17. IPC comparison with different sizes of the hot 

function set. 
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Next, we evaluate how the hot function set size influences 
the IPC. In Figure 17, we first normalize the IPCs to the IPC 
under 10 entry hot function set. After normalization, big IPC 
benchmarks get the same representational weight as small IPC 
benchmarks. Then we take the average of all normalized IPCs. 
The average number is presented as the Y-axis value in the 
figure. Figure 17 shows the trend how IPC grows with bigger 
hot function set. It is worth noticing that for 1M L2, the increase 
is much less than the 512K L2. Also, prefetch ring benefits 
more from a big hot function set than the prefetch buffer. The 
first phenomenon can be explained as follows: with a small 
cache, more functions cannot be entirely hidden inside the cache, 
thus, a big function set is more desirable to trace those functions. 
The second phenomenon can be explained as: the prefetch ring 
is much bigger than the prefetch buffer. For the prefetch buffer, 
even if more hot functions are traced, it probably cannot hold 
them. 

The overall improvements due to a larger hot function set 
are limited. From the figure, the maximal speed up is 6%. 

Combined Prefetch Buffer and Ring 
Prefetch buffer and ring can be combined to further 

improve the performance. However, a combined approach has 
many design parameters, like prefetch buffer size, ring speed, 
ring bandwidth, etc. To better explore the design space, we use 
a 3D figure in Figure 18. The vertical axis is the average 
normalized IPC number, we first normalize all IPCs to the IPC 
with default configuration. Then all normalized IPCs are 
averaged to become one point in the figure. The other two 
dimensions are for prefetch buffer (X axis) and prefetch ring (Y 
axis) respectively. On the Y axis, 4 types of ring ranges and 4 
types of ring bandwidth form 16 combinations, e.g. 1/40R-1/2B 
means that ring range is 1/40 of the original code and ring 
bandwidth is ½ of the base RAR. 
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Figure 18. Design space for combined buffer & ring(512K L2) 
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Figure 19. Design space for combined buffer & ring(1M L2) 
From Figure 18, it is not surprising that the combined 

approach can achieve better performance. The best case can 
reduce performance degradation to 38%. However, the 
incremental improvements are marginal considering the 
hardware costs for both ring and buffer. Conceivably, prefetch 
buffer and ring may have many duplicated code blocks, wasting 
bandwidth and area. Clearly, the IPC can be improved most 
significantly with larger prefetch buffer. Given a fixed prefetch 
buffer size, we see waves along the Y-axis. Each wave has the 
same ring bandwidth. With more bandwidth the waves go 
higher. Inside each wave, as ring range decreases, the IPC first 
increases then decreases as explained earlier. 

The figure gives architects many choices to implement the 
combined scheme. If the on-chip area is not a concern, large 
prefetch buffer is a good choice. With big prefetch buffer, 
waves become flat, because the program working set can be 
mostly fit in the buffer. The architect can pick a relatively small 
and low bandwidth ring. If on-chip space is limited, but memory 
bandwidth is relatively cheap, giving the prefetch ring more 
bandwidth is quite effective. Finally, if both prefetch buffer size 
and ring bandwidth are set, choosing a proper ring range is 
important, esp. when prefetch buffer is small. 

Figure 19 shows the design space for 1M L2. We notice 
the whole surface is more flat, indicating less improvements due 
to reduced cache misses. Other properties are very close to the 
one with 512K cache. The best case can reduce performance 
degradation to 34%. 

7. Related Work 

XOM Architecture 
The eXecute Only Memory (XOM) Architecture [1] was 

proposed to support copy and tamper resistant software. Both 
code and data are encrypted outside the security boundary.  
Recent advances can preserve privacy and integrity for off-chip 
data and code with reasonable slowdown [references]. However, 
XOM like architecture fails to address the information leakage 
through instruction access sequence, which is the main focus of 
our work. XOM like architecture forms a part of the 
infrastructure of our security system. 
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Oblivious RAM 
Goldreich [7][8] realized that software protection should 

prevent the attacker from “learning the program” by 
experimenting with it, e.g. feeding it with different inputs and 
monitoring the different behavior of the secure processor. In this 
work, they studied a specific problem of hiding program 
memory access pattern, which is a major step towards a leakage-
protection processor and is also the problem we try to solve in 
this paper. Their work studied the problem in a theoretical view 
and proved that the lower bound of running a program without 
leaking memory access pattern is 2logt m , in which t is the 
original running time of the program, m is the number of 
locations in the external memory. This model is no longer valid 
in modern processors. One obvious problem is that there is no 
cache or memory hierarchy in this model, thus every instruction 
fetch has to go to external memory. Also, architectural issues 
regarding building a real processor remained unaddressed in 
their work that we have addressed here investigating different 
tradeoffs involved in the solution space.  

DS5002FP 
DS5002FP microcontroller [9] is a widely used 

commercial bus-encryption processor. This chip not only 
encrypts data in the memory, but also addresses. Instructions 
and data are not stored in their original order, but rather in 
seemingly random locations in memory. To access a code block, 
the original address must be encoded and the address after 
encoding is used to access the memory. They claim that due to 
the bus encryption, it is virtually impossible to determine the 
original control flow of the program. However, the code 
locations are never changed in memory during program 
execution. In other words, an original address is always 
translated to the same address that is sent to the memory.  For 
example, if a loop contains blocks: 100,101,102, and block 100 
is actually at address 231 (so 100 will be encoded as 231), block 
101 is at 371, block 102 is at 483. Although after encoding, the 
loop is not stored in contiguous memory locations, the attacker 
can still detect the sequence 231-371-483 to appear repeatedly 
as the loop executes. Branches cannot be hidden either. If 102 
(483) has two successors: 103 (876) and 104 (751), then by 
observing two access sequences 483-876 and 483-751, the 
attacker can conclude there is a branch after block 483. The 
sequences before and after encryption have exactly the same 
nature. Therefore, simply permutating code blocks in memory 
through static encryption does not help at all. On the other hand, 
it is impossible to encode the same address differently each time, 
since the code block is at fixed location in memory. 

DS5002FP also tries to confuse the attacker by issuing 
random read accesses between actual read accesses generated by 
the program. However, this does not work either. Assuming the 
program enters a loop that runs for a large number of iterations. 
It quickly turns out, among the access addresses on the 
instruction address bus, a number of addresses (those actually in 
the loop) always repeat, while others (randomly generated ones) 

only appear occasionally. After the actual access addresses are 
identified, the attacker can simply ignore other random reads. 

DS5002FP has been actually completely cracked by Kuhn 
[6]. The paper describes how the author found out the 
correspondence between instructions and their ciphertext. Using 
this, he could construct a program to read out the secret key. 

Code Obfuscation 
Code obfuscation has been proposed to change the code 

structures at compilation time to make it very different from the 
original code. The main goal of code obfuscation is to stop 
reverse engineering a program using dis-assemblers, debuggers 
etc. While static control is made difficult to crack, dynamic 
control flow if monitored could still reveal critical program 
information. Thus, code obfuscation cannot provide security 
guarantee [10] but only makes it relatively hard to crack the 
code. In our work we are providing security guarantees although 
the performance is somewhat degraded. We also propose 
mechanisms to reduce the overheads arising out of these 
guarantees.  

8. Conclusion 
Providing security guarantees to the problem of software 

rights protection imply not leaking any control flow information 
which could generate a unique fingerprint that could be matched 
compromising intellectual property of the software. In this work, 
we devise processor mechanisms that establish such guarantees. 
However, establishing such guarantees entails performance loss. 
We propose different mechanisms involving prefetch ring, 
prefetch buffer to alleviate such a loss. We then provide a 
design space exploration that measures the impact of different 
parameters and proposes solutions under different constraints 
(such as the on-chip area etc.). The final recommendations are: 
with enough on-chip space, prefetch buffer provides better 
performance in general, otherwise if bandwidth is cheap, 
prefetch ring is more suitable. When both of them are cheap, we 
can use a combined approach to further improve performance. 
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