
1/16

Global Placement for Quantum-dot Cellular Automata Based Circuits

Jean Nguyen†, Ramprasad Ravichandran‡, Sung Kyu Lim†, and Mike Niemier‡
† School of Electrical and Computer Engineering

‡ College of Computing
Georgia Institute of Technology

{jnguyen@ece, raam@cc, limsk@ece, mniemier@cc}.gatech.edu

Abstract

Quantum Cellular Automata (QCA) has been proposed as an alternative architecture to CMOS and in principle
should permit the implementation of ultra lower-power, nano-scale logic circuitry working at teraflop frequency.
QCA is based on a new paradigm for encoding binary logic into electronic circuitry, where binary 1s and 0s are
mapped to spatial configurations of electrons rather than magnitudes of electronic currents. The layout rules for
QCA based circuits are radically different from those of CMOS based circuits, and design automation tools for QCA
circuit layout are hard to find. This paper discusses the first automatic global placement algorithm for QCA-based
circuits. We divide the QCA global placement process into zone partitioning and zone placement, and identify the
constraints and objectives that are unique to QCA-based circuits as opposed to the conventional CMOS VLSI.

1. Introduction

For almost the past seven decades, the design of digital electronic computers has been dominated by two enduring
(and most successful) ideas - using binary numbers to represent information mathematically, and physically
representing those binary numbers as the “on” and “off” state of a current switch. First proposed by Konrad Zuse,
the current switch has provided virtually every structure and function needed for a modern computer that uses semi-
conductor transistors. Still, despite the technological and commercial success of CMOS, the Semiconductor
Research Association roadmap still predicts that to ensure future generations of chips and fabrication processes,
problems must be overcome for which the roadmap states, “there are no known solutions.” [1] Nevertheless, despite
dire predictions, the potential to technologically solve or alleviate many of the above problems facing CMOS is not
unrealistic. However, while researchers may be successful in besting the laws of nature, the laws of economics may
prove to be insurmountable. With a fabrication plant projected to cost approximately 200 billion dollars in the year
2015 [2], CMOS scaling may just be too expensive to continue. Thus, one need not be committed to a particular
forecast to see the growing importance of developing alternative approaches that would permit the scaling of
computational electronics down to the ultimate limits of molecular dimensions.

One approach to such scaling is the nano-scale quantum-dot cellular automata (QCA) concept that uses only one of
the two ideas that make up Zuse's paradigm – specifically using a binary representation of information, but replacing
the current switch with a cell having a bi-stable charge configuration. A QCA device usually consists of 2 or 4
quantum dots and either 1 or 2 excess electrons respectively. One configuration of charge represents a binary ‘1’, the
other a binary ‘0’, but no current flows into or out of the cell. In the transistor paradigm, the current from one device
charges a gate on the next device, the interconnect between them, and thus turns the device on or off. In the QCA
paradigm, the field from the charge configuration of one device alters the charge configuration of the next device.
Remarkably, this basic device-device interaction is sufficient to allow the computation of any Boolean function, and
also forms the interconnection mechanisms. If a clocking potential is added which modulates the energy barrier
between charge configurations, general purpose computing becomes possible with very low power dissipation.

At present, there is much ongoing research concerning nano-scale devices geared for computation; but most work is
exactly that – device work. By in large, only the simplest circuits and systems comprised of such devices (which are
the desired end result), have been proposed, let alone simulated and built. Furthermore, virtually all existing circuits
and systems for any emergent device have been proposed by the device engineers themselves whose background lies
largely in the physical sciences, not engineering. In order to obtain a more realistic outlook for systems in QCA, for
the past six years QCA has included a systems-level research component. It began when QCA’s device physics was
sufficiently advanced and specifically focused on ideal architectures for the technology, computationally interesting,
yet implementable circuits and systems, and Mead-Conway-esq design rules to help abstract away lower-level
device physics to help system designers become more involved with this work. Overall goals included comparing

2/16

projections for implementable QCA to projections for end of the line CMOS in the context of the same system-level
tasks, providing an infrastructure for more complex designs as technology matures, and using architecture, systems,
and circuits work to help drive device development to get to working nano-systems sooner.

In the context of the above goals, this paper will describe a set of tools that will help to generate computationally
interesting, yet implementable circuits in QCA, and significantly expand QCA’s existing systems-level
infrastructure. Specifically, it will discuss the first physical layout automation algorithm that generates global
placement for QCA-based circuits. Our QCA global placement is divided into zone partitioning and zone placement.
The purpose of zone partitioning is to partition the input circuit so that a single potential modulates the inner-dot
barriers in all of the QCA cells in each zone. The zone placement step takes as input a set of zones with each zone a
clocking label obtained from zone partitioning. The output of zone placement is the best possible layout for
arranging the zones on a 2 dimensional chip area.

The remainder of this paper is organized as follows: Section 2 present background information on QCA. Section 3
presents the problem formulation. Section 4 and 5 respectively presents our zone partitioning and zone placement
algorithms. Section 6 presents our experimental results, and we conclude our paper in Section 7.

2. Preliminaries
2.1. QCA Devices
A high-level diagram of a “candidate” four-dot metal QCA cell appears in Figure 1. It depicts four quantum dots
that are positioned to form a square. Exactly two mobile electrons are loaded into this cell and can move to different
quantum dots by means of electron tunneling. Coulombic repulsion will cause “classical” models of the electrons to
occupy only the corners of the QCA cell, resulting in two specific polarizations. These polarizations are
configurations where electrons are as far apart from one another as possible, in an energetically minimal position,
without escaping the confines of the cell. Here, electron tunneling is assumed to be completely controllable by
potential barriers that can be raised and lowered between adjacent QCA cells by means of capacitive plates parallel
to the plane of the dots [3]. It is also worth noting that in addition to these two “polarized” states, there also exists a
decidedly non-classical unpolarized state. Briefly, in an unpolarized state, inter-dot potential barriers are lowered to
a point that removes the confinement of the electrons on the individual quantum dots, and the cells exhibit little or
no polarization as the wave functions of two electrons smear themselves across the cell [4].

It is also possible to construct QCA cells from individual chemical molecules [5]. In contrast to metal-dot cells, the
small size of molecules (on the order of 1-5 nm) means that Coulomb energies are much larger, so room temperature
operation is possible. At the molecular scale, the coupling and electrostatic interaction between molecular devices is
on the electron Volt scale. The thermal energy present at room temperature is on the order of 0.025 electron Volts,
indicating that errors caused by thermal energies of the environment in which a molecular QCA cell is operating will
not cause the cell to propagate the wrong binary information [6]. In addition, the power requirements and heat
dissipation of QCA are low enough that high-density molecular logic circuits and memory are feasible. In contrast to
lithographic device fabrication techniques, which always introduce variations in device characteristics, each
molecular cell can be made exactly identical using chemical synthesis. Information about specific molecular QCA
implementations is readily available in literature [6,7,8], with 2-“dot”, 3-“dot”, and 4-“dot” implementations all
under investigation. A schematic device is shown in Figure 1. Finally, while molecules are seen as a more natural
implementation for QCA, experiments continue in both veins of research. Metal-dot QCA experiments have been
used to prototype molecular QCA devices, and ideas transfer between implementations. Given this, QCA’s logic
functionality will be explained in terms of “generic” 4-dot cells.

“1” + “0”

 cation

+
µ cation

radical

 + neutral
radical

neutral µ
(Binary (Binary

Quantum Electron
neutral
radical

radical
neutral

Tunneling

+ a b c.

Figure 1. Schematic representation of metal-dot (a) and molecular (b-c) QCA cells.

3/16

2.2. QCA Logical Elements
Majority gate: The fundamental QCA logical gate is the three-input majority gate. It consists of five cells and
implements the logical equation AB+BC+AC as shown in Figure 2(a). Computation is performed by driving the
device cell to its lowest energy state, which will occur when it assumes the polarization of the majority of the three
input cells. Here, the electrostatic repulsion between the electrons in the three input cells, and the electrons in the
device cell will be at a minimum.

Wires: One way of moving data from point A to point B in a QCA circuit is with a 90-degree wire. (The wire is
called “90-degrees”as the cells from which it is made up are oriented at a right angle). The wire is a horizontal row
of QCA cells and a binary signal propagates from left-to-right because of electrostatic interactions between adjacent
cells. A QCA wire can also be comprised of cells rotated 45-degrees. Here, as a binary signal propagates down the
length of the wire, it alternates between a binary 1 and a binary 0 polarization. By placing a 90-degree cell between
and adjacent to two 45-degree cells, both the original signal value and its complement can be obtained (in the latter
case without the use of an explicit inverter circuit). As the majority voting function can be reduced to an AND or
OR function (by setting an input to a 0 or a 1), QCA’s logic set is functionally complete. Finally, QCA wires possess
the unique property that they are able to cross in the plane without the destruction of the value being transmitted on
either wire as shown in Figure 2(d). This property holds only if the QCA wires are of different orientations (i.e. a
45-degree wire crossing a 90-degree wire). However, it is most important as at present, all layout is assumed to be
two-dimensional.

Error: QCA cells do not have to be perfectly aligned to transmit binary signals correctly. “Wires” have some
tolerance for fabrication errors caused by misalignment, improper cell rotation, improper cell-spacings, etc.
Although imperfect, a wire might still transmit a binary value successfully. External energy (defined as Ekink) can
cause a cell in a wire or a system to switch into a mistake state. More specifically, the kink energy is the amount of
energy that will excite a cell into a mistake state (or create a “kink” in the wire). Referring to Figure 2(e), the kink
energy for off-center cells is proportional to (1/r5)cos(4θ). Thus, as the distance between cells increases, the kink
energy will decrease indicating that a smaller amount of external energy could excite a cell into a mistake state
which is undesirable. If the angle of off-centeredness between cells increases, Ekink will also decrease. Disorder can
also arise because of cells with improper rotation. In this situation, kink energy is proportional to (1/r5)cos(2(θ1+θ2)
where θ1 and θ2 are the angles at which two cells are rotated (see Figure 2(e) for more detail).

2.3. The QCA clock
When compared to CMOS, another striking difference in circuits and systems of QCA cells is the mechanism used
to clock them. In standard CMOS, the clock is generally considered to be a signal that precisely controls the time at
which data bits are transferred to or from memory elements. It typically has two phases: high and low. In QCA, the
clock is not a separate wire or port that would be fed into a circuit like any other signal. Rather, it is typically viewed
to be an electric field that controls barriers within a QCA cell, which in turn controls whether or not excess charge in
a QCA cell can represent a binary 1 or 0.

Signal Propagation
Direction

Coulombic interactions

r θ

Ekink ~ (1/r5)(cos4θ)
inc. in θ = dec. in Ekink

Ekink ~ (1/r5)(cos2(θ1+ θ2))

θ θ2 = 0o

inc. in θ1 or θ2 = dec. in Ekink

wire
90-degree

wire

Cell 3

Cell 2

Cell 1

Cell 5

Cell 4

(input

(output

(device)
Original propagation direction

Complemented
Copy

Un-complemented
Copy a. b. c.

d. e.

Figure 2. A QCA majority gate (a), 90-degree wire (b), 45-degree wire and ripper (c), wire cross (d),
and error relationships (e).

4/16

QCA’s clock was first characterized by Lent, et. al. as having 4 phases (see Figure 3). During the first clock phase
(switch), QCA cells begin un-polarized with inter-dot potential barriers low. During this phase barriers are raised,
and the QCA cells become polarized according to the state of their drivers (i.e. their input cells). It is in this clock
phase, that actual switching (or computation) occurs. By the end of this clock phase, barriers are high enough to
suppress any electron tunneling and cell states are fixed. During the second clock phase (hold), barriers are held high
so the outputs of the subarray that has just switched can be used as inputs to the next stage. In the third clock phase,
(release), barriers are lowered and cells are allowed to relax to an unpolarized state. Finally, during the fourth clock
phase (relax), cell barriers remain lowered and cells remain in an unpolarized state [4].

Individual QCA cells need not be clocked or timed separately. However, a physical array of QCA cells can be
divided into zones that offer the advantage of mutli-phase clocking and group pipelining. For each zone, a single
potential would modulate the inter-dot barriers in all of the cells in a given zone. When a circuit is divided into
different zones, each zone may be clocked differently from others. In particular, this difference is important when
discussing neighboring, or physically adjacent zones. Such a clocking scheme allows one zone of QCA cells to
perform a certain calculation, have its state frozen by the raising of inter-dot barriers, and then have the output of
that zone act as the input to a successor zone. It is this mechanism that provides the inherent self-latching associated
with QCA.

In a molecular implementation of QCA, the four phases of a clock signal would most likely take the form of time-
varying but repetitious voltages applied to silicon wires embedded underneath some substrate to which QCA cells
were attached. Every fourth wire would receive the same voltage at the same time [9]. Neighboring wires see
delayed forms of the same signal. The charge and discharge of the embedded silicon wires will move the area of
activity (i.e. computation or data movement) across the molecular layer of QCA cells with computation occurring at
the “leading edge” of the applied electric field. Computation moves across the circuit in a continuous “wave” [7,9].
Still, it is important to stress that whether or not a four-phase model or a computational wave model of QCA’s clock
is used, the work presented here will be applicable to both. The end goal in either clocking model is to ensure that
QCA data signals arrive at the proper place (i.e. a majority gate) at the proper time. Assuming a four-phase clock,
this is accomplished by balancing clocking zones. Assuming a computational wave, we must balance silicon wires.

3. Problem Formulation

Our QCA global placement is divided into zone partitioning and zone placement. The purpose of zone partitioning is
to partition the input circuit so that a single potential modulates the inner-dot barriers in all of the QCA cells in each
zone. Unless we group QCA cells into zones and provide zone-level clock signals, each individual QCA cells needs
to be clocked. In addition, the latency of the pipe-lined QCA system will be unacceptable. Therefore, zone
partitioning simplifies the clock signal distribution dramatically and improves the latency. However, since the delay
of the biggest partition determines the overall clock period, the size of the partition needs to be determined carefully.

Switch Release SwitcHold Relax

Switch Release Hold RelaHold

Switch Release Relax

Switch Relax

Release Hold

Release Hold Relax

Time
Step 1

Time
Step 2

Time
Step 3

Time
Step 4

Schematic

Fixed Driver Wire Position

Figure 3: An example of a pipelined QCA wire. Each cell is clocked individually.

5/16

In addition, the 4-phase clocking imposes a strict constraint on how to perform partitioning. When a clocking zone is
in switch phase, all of its immediate predecessors need to be in hold phase while all of it immediate successors
should be in relax phase. In other words, every directed path in the partitioned network should follow “switch-relax-
release-hold” sequence. The zone placement step takes as input a set of zones with each zone a clocking label
obtained from zone partitioning. The output of zone placement is the best possible layout for arranging the zones on
a 2 dimensional chip area.

3.1. Zone Partitioning
The QCA-based circuit is represented with a directed acyclic graph (DAG) G(V,E). Let P denote the partitioning of
V into K non-overlapping and non-empty blocks. Let G’(V’,E’) be a graph derived from P, where V’ is a set of logic
blocks and E’ is a set of cut edges based on P. A directed edge e(x,y) is called cut if x and y belong to different
blocks in P. Two paths p and q in G’ are reconvergent if they diverge from and reconverge to the same blocks. Let
l(p) denote the length of a reconvergent path p in G’. Then l(p) is defined to be the number of cut edges along p. The
following set of constraints exists in QCA zone partitioning problem:

1. clocking constraint: all reconvergent paths starting at the same block should have the same length.
2. acyclicity constraint: there should be no directed cycle among the blocks in G’.
3. logic capacity constraint: the area of each logic block should be within the user specified range.
4. wire capacity constraint: the area of each wire block should be within the user specified range.

If P violates the clocking constraint, we correct this problem by inserting wire blocks to G’. Each wire block does
not contain any logic QCA cells but wiring QCA cells only (Section 4.1 discusses in more detail how wire block
corrects the clocking problem). The QCA Zone Partitioning Problem seeks a legal partitioning solution that
minimizes the amount of inter-zone wires, wire blocks required, and latency. Latency is measured by the total
number of inter-zone edges along the longest path in G’. Area capacity constraint requires that the number of QCA
cells per clock zone should be kept under a threshold in order to make sure that cells reach the ground state instead
of remaining at the excited state. Wire capacity constraint requires that the amount of wires included in each wire
block should be kept minimal in order to increase the probability of successful QCA switching and minimize the
clock period. Clocking and acyclicity constraints are related to implementing correctly 4-stage pipelined QCA
circuits, where every directed path in the partitioned network follows the “switch-relax-release-hold” sequence.

3.2. Zone Placement
Assume all blocks in P have the same area. In such a case, the placement of P becomes a geometric embedding of
G’ onto m×n grid, where each logic/wire block is assigned to a unique location in the grid. For a given edge e(B1,B2)
in E’, edge distance d(e) denotes the Manhattan distance between B1 and B2. The goal of QCA Zone Placement
Problem is to minimize the total number of wire crossing, sum of all edge distances (= wirelength), and final
placement area.

Even though theoretical physics tells us that QCA wires with different cell orientations can cross in the plane with
no disruption on either value being transmitted on either wire, such a configuration is not seen as realizable in near-
to-midterm QCA experiments. This problem will be explained in the context of molecular QCA cells that are
viewed to be the most natural and promising QCA implementation mechanism. One process envisioned for creating
systems of QCA cells is as follows: first, a molecular QCA cell would be engineered that will pack and assemble
properly on a self-assembled monolayer (SAM) on top of a silicon surface. Second, I/0 structures would be
constructed lithographically. Third, tracks would be etched into the self-assembled monolayer (SAM) on top of a
silicon surface with EBL. Finally, the resulting “chip” would then be dipped into a bath of QCA cells for self-
assembly with devices binding to the etched tracks. Currently, the simple tasks of making QCA cells attach to some
substrate, in some deterministic pattern, with the same cell rotations is non-trivial. Allowing for selective rotation
would only complicate this process even more. Consequently, systems with few (or no) wire crossings are viewed as
ideal.

Considering wirelength in general, while it is to some extent a function of implementation technology, wire length is
also largely a function of kink energy. As an example, consider a linear array of N cells that form a wire that we
want to transmit a logical 1. The ground state for this configuration would be all of the cells switching to the same
polarization as that of the driving cell—namely a line of cells in the logical '1' polarization. The first excited
(mistake) state of this array will consist of the first m cells polarized in a representative binary 1 state and N-m cells

6/16

in the binary 0 state. The excitation energy of this state Ek is the energy required to introduce a “kink” into the
polarization of the wire. This energy is independent of where the kink occurs (i.e. the exact value of m). As the array
N becomes larger, the kink energy Ek remains the same. However, the entropy of this excited state increases as there
are more ways to make a “mistake” in a larger array. When the array size reaches a certain size, the free energy of
the mistake state becomes lower than the free energy of the correct state meaning that a value will not propagate. A
complete analysis reveals that the maximum number of cells in a single array is given by exp(Ek/kBT) [4]. Thus,
given an Ek of 300 meV (reasonable as will be seen the discussion of molecular experiments), kb (1.38 x 10-23 J/K),
close to room temperature operation (300K), and that 1 J = 1.6 x 10-19 eV, arrays of cells on the order of 105 are not
unreasonable.

4. Zone Partitioning

4.1. Overview of the Approach
A significant issue in QCA circuit is the proper synchronization of the asynchronous clocks applied to each partition
to ensure proper signal propagation through the circuit. To guarantee this, the partition level network should be
acyclic and all reconvergent paths should be of equal length. An example of a set of reconvergent paths is shown in
Figure 4(a). In Figure 4(a), the paths S-A-B-T, S-C-T and S-D-E-F-T are three reconvergent paths with unbalanced
lengths. This poses a bigger problem in QCA circuits since all the partitions are asynchronously clocked. Let us
consider the path S-A-B-T at a time instant t. If partition S is in the switch phase of the clock cycle, A will be in the
relax phase of the cycle, while B and T will be in the release and hold stages respectively. Now taking into
consideration the path S-C-T at the same instant t, partitions C and T will have to be in the relax and release stages
respectively. Similarly considering the S-D-E-F-T path, T will be in switch stage if partition A is in switch stage too.
Hence it is impossible for all signals to properly propagate into T given this layout. In order to solve this problem,
wire blocks are inserted in all paths shorter than the longest reconvergent path. Wire blocks are feedthrough
partitions that posses their own clocking phase. Figure 4(b) shows the same circuit as in Figure 4(a) but with the
wire blocks inserted to solve the clocking inconsistency problem in reconvergent paths.

In Figure 4(b), nodes W1, W2 and W3 are the wire blocks. Now if S is in switch stage, partitions A,W2 and D are in the
relax stage, while nodes W1,C and E are in release stage and nodes B, W3 and F are in the hold stage. Hence, T can
remain in the switch stage and now all signals from A are propagated into T correctly. Figure 4(c) shows the same
reconvergent path problem solved with fewer wire blocks, where wiring blocks share the resources together.

The purpose of zone partitioning is to partition the input circuit so that a single potential modulates the inner-dot
barriers in all of the QCA cells in each zone. The goal is to minimize the amount of inter-zone wires, wire blocks
required, and latency while satisfying the clocking, acyclicity, and logic/wire capacity constraints as mentioned in
Section 3.1. The two-way partitioning problem with cutsize minimization is NP-hard already, and adding the
minimization of wire blocks required and latency under the clocking, acyclicity, and wire capacity constraints
increases the complexity of the problem even higher. Thus, our iterative improvement based approach is to start
from a legal solution that satisfies the acyclicity and logic capacity constraint and attempts to minimize the wire
blocks required.

Let lev(p) denote the longest path length from the input partitions (= partitions with no incoming edges) to partition
p, where the path length is the number of partitions along the path. Then wire(e) denotes the total number of wire
blocks to be inserted on an inter-partition edge e to resolve the unbalanced reconvergent path problem (= clocking
constraint of the QCA zone partitioning problem). Simply wire(e) = lev(y)−lev(x)−1 for e=(x,y), and the total
number of wiring blocks required without resource sharing is ∑ wire(e). It is important to note that the direct

S

D E F

A B

C T S

D E F

TC

A W1 B

W2 W3 S

D E F

T C

A B

W2 W3

(a) (b) (c)

Figure 4. Illustration of unbalanced reconvergent path problem and wire block insertion

7/16

minimization of ∑ wire(e) is time-consuming since the computation and update of lev(p) requires O(n) path analysis
(Section 4.3 discusses this analysis in more detail). In addition, it is also difficult to predict the number of wire
blocks required when resource sharing is allowed. We note that balancing the reconvergent path lengths has positive
impact on minimizing the number of wire blocks required to fix any clocking violation. Thus, our heuristic approach
is to minimize the variance of wire(e) among all inter-zone edges so that the reconvergent path lengths are balanced.
Then during our post-process, we fix any remaining clocking problem by inserting and sharing wire blocks while
satisfying the wire capacity constraints.1

4.2. Cell Gain Computation
First, the cells are topologically sorted and evenly divided into a number of partitions (p1, p2, … pk). The partitions
are then level numbered using a breadth-first search. Then the acyclic FM partitioning algorithm [12] is performed
on adjacent partitions pi and pi+1. Following the acyclic FM algorithm, cells are sorted into bucket based on their
gain. A maximum pointer maxptr is maintained for each bucket which points to the cell with the highest gain. One at
a time, a cell from the bucket with the highest maxptr is removed from the bucket and moved to the other partition
provided all constraints are met. Constraints that must be met include logic capacity and acyclicity. The logic
capacity criterion is that each partition must have an area A such that (1−ε)r ≤ A ≤ (1+ε)r, where ε represent the area
skew. The acyclicity criterion does not allow edges to be directed from partition pi+1 to pi. To enforce this criterion,
the type of move is first checked. If the cell is moving to a partition with a higher level number pi+1 and all of the
cell’s fanout is located in a partition pr, where r > i+1, then the move is allowed. Also, if the cell is moving to a
partition with lower level number pi−1 and all of the cell’s fanin is located in pr where r < i−1, then the move is
allowed. If the cell is found to violate the acyclicity constraint, the cell remains in its original partition and a move is
not allowed. After a cell has been moved or forced to remain in its original partition, the cell is locked and removed
from the bucket. Moves are made until there remain more cells that are unlocked. After all moves have been made,
the best partition from that pass is taken as the output of the pass. The best partition is the one who has the lowest
cost α×cutsize+β×variance. Multiple passes are performed on two partitions pi and pi+1 until there is no more
improvement on the cost. Then, this acyclic bipartitioning is performed on partitions pi+1 and pi+2, then pi+2 and pi+3,
and so on.

Each cell gain is given by α×gc+β×gv where α and β are user specified integers that will bias the different gains. For
α>0 and β=0, zone partitioning algorithm is performing acyclic FM algorithm with moves based solely on reducing
cutsize. A net is cut if it spans more than one partition, and cutsize counts the total number of cut nets. Cutsize gain
gc is the amount by which the cell changes the current cutsize if the cell were to be moved to the other partition. The
O(n) algorithm for initializing and updating cutsize gain is followed from the acyclic FM algorithm. The zone
partitioning algorithm begins with an initial partitioning solution of k partitions such that terminal propagation is
considered. In case we partition pi and pi+1, a net is external if it contains cells that are not in pi nor pi+1. If we
perform partitioning between F and T as in Figure 5, net a-c is external and a-b is not. To account for terminal
propagation, only the initialization part of the cutsize gains from acyclic FM algorithm needs to be modified, and the
updating of cutsize gains remains the same. Figure 5 shows an example where FM algorithm would compute the
gain of cell a to be gc = +1, but our initialization algorithm computes the cell gain to be gc = +2. Figure 6 shows the
pseudo-code for computing the initial cutsize gain under terminal propagation.

1 The latency minimization resembles the performance-driven partitioning problem where the delay along the longest path is
minimized. In addition, cyclic dependency among QCA zones is hard to handle. Our ongoing works try to address these problems.

a

b

c

F T

Figure 5. Illustration of cutsize gain under terminal propagation.

8/16

Variance gain gv is related to the amount by which the cell changes the variance among wire(e) for all inter-zone
edges. As discussed earlier, wire(e) denotes the total number of wire blocks to be inserted on an inter-partition edge
e to resolve the unbalanced reconvergent path problem. After the partitions are level-numbered, anchor cells for
each net is identified. A cell is defined to be an anchoring cell if it is located in the partition with the smallest or
largest level number for an external net and it is the only cell located in that partition. Only moves of anchoring cells
will cause a change in the length of that external net. The change in variance depends on whether a cell move will be
increase or decrease the length of the external net. For a cell move that will be increasing the length, change in
variance is ∆σi = –(2d×ln+d2)/j + (2d×∑ln+d2)/j2, where d represents the absolute value of the change in length and j
accounts for the number of external nets in the circuit. For a cell move that will be decreasing the length, change in
variance is ∆σd = (2d×ln–d2)/j – (2d×∑ln–d2)/j2. Due to the use of buckets for cell gain, we represent the gain by the
number of nets a cell acts as an anchoring point for. Cells that are not anchoring points for any nets have gv = 0.
Initialization algorithm for gv is shown in Figure 6.

Figure 7 shows cell c, b, e to be anchoring cells, while cell a and d are not. Furthermore, when partitioning between
partition p1 and partition p2, gv(e) = +1 and gv(b) = +1. When partitioning between partition p2 and partition p3, gv(b)
= –1 and gv(c) = +2. Similar to updating cutsize gain, the variance gain of only neighbor cells needs to be updated.
The updating is done only when the moved cell was an anchor point and only to neighboring anchor cells connected
by the net which this moved cell served as anchor point. For cell moves which were not anchoring points, the
updating of anchor for nets may need to be performed. Furthermore, gain is updated if the base cell is an anchor and
it makes a move which makes the length of the external net zero. The algorithm for updating gv(i) is shown in Figure
6.

--
Algorithm INITIALIZE_Gc
FOR each free cell i DO
 FOR each net n on cell i DO
 IF F(n) = 1 AND T(n) = 0
 IF (i is in lowest partition n spans & T<F) THEN gc(i)++
 IF (i is in lowest partition n spans & T>F) THEN gc(i)--
 IF (i is in highest partition n spans & T>F) THEN gc(i)--
 IF (i is in highest partition n spans & T<F) THEN gc(i)++
 ELSE
 IF F(n) = 1 THEN gc(i)++
 IF T(n) = 0 THEN gc(i)--

Algorithm INITIALIZE_Gv
FOR each free cell i DO
 FOR each net n on cell i DO(i)
 IF (i is a minimum anchor & T>F) THEN gv(i)++
 IF (i is a minimum anchor & T<F) THEN gv(i)--
 IF (i is a maximum anchor & T>F) THEN gv(i)--
 IF (i is a maximum anchor & T<F) THEN gv(i)++

Algorithm UPDATE_Gv
FOR each net n on the base cell which was an anchor point DO
 IF (base cell is a maximum anchor & F>T)
 THEN gv(i)-- for the minimum anchor cell of net n
 IF (base cell is a minimum anchor & F>T)
 THEN gv(i)-- for the maximum anchor cell of net n
 IF (base cell is minimum anchor & the new external net length = 0)
 THEN gv(i)-- for maximum anchor cell of net n
 IF (base cell is maximum anchor & the new external net length = 0)
 THEN gv(i)-- for minimum anchor cell of net n
--

Figure 6. Zone partitioning algorithm.

9/16

4.3. Updating Level Numbers and Anchors
Movement of a single cell can possibly change lev(p), the level number of a partition p. Therefore every time a cell
move is made, we check to see if this cell move affects the level number. There are two ways levels can change: an
inter-zone edge is newly introduced or completely removed. In Figure 8(b), cell a in Figure 8(a) is moved from
partition A to B, thereby creating a new inter-partition edge. This in turn changes the level of all downstream
partitions. In Figure 8(c), cell a in Figure 8(a) is moved from partition A to C, thereby removing the inter-partition
edge between A and C. This again changes the level of all downstream partitions. For updating the level, we
maintain a maxparent for each p so that the level number of p’s parent is lev(p)–1. lev(F) is defined as the level
number of the “from block” of a cell c and lev(T) is defined as the level number of the “to block” of c. In the first
case where a new inter-partition edge is created, lev(T) is updated if lev(F) ≥ lev(T) after the cell move. In this case,
the new lev(T)=lev(F)+1. Then, we recursively update the maxparent and levels of all downstream partitions. The
maxparent for partition C was changed from A to B in Figure 8(b), and lev(C) now becomes lev(B)+1 = 2. This in
turn requires the level number of all downstream nodes to change. In the second case where an existing inter-
partition edge is removed, the maxparent again needs to be update. The maxparent for partition C was changed from
A to none in Figure 8(c), and lev(C) now becomes lev(C)=0.

In addition to a cell move affecting the level number, the cell move can also affect the anchor for the net(s) to which
it is attached. With a move for an anchoring cell for net n, if the cell moves to a partition whose neighboring cell
from net n is located in, then the anchoring cell no longer becomes an anchor for that corresponding net. If a non-
anchoring cell a moves to a partition with level number greater than or less than the level number of the anchoring
cell b, then a becomes the new anchor and b is no longer the anchor. If a moves to a partition with level number
equal to b, then neither a nor b acts as an anchor for n.

4.4. Wire Block Insertion
Our zone partitioning heuristic minimizes the variance of wire(e) among all inter-zone edges so that the
reconvergent path lengths are balanced. Then during our post-process, we fix any remaining clocking problem by
inserting and sharing wire blocks while satisfying the wire capacity constraints. The pseudo-code of the algorithm is
shown in Figure 9.

0

1 1

2 2

3

0

1 2

2 3

4

(a)

A

B

A

B

0

1 0

2 1

3

(b)

A

C

cell a

(c)

C

Figure 8. Illustration of partition level update.

a

b

c

d

e

p1 p2 p3

Figure 7. Illustration of anchor cells and variance gain computation

10/16

The input to this algorithm is the set of partitions and inter-partition edges. First, a super-source node is inserted in
the graph whose fan-out neighbors are the original sources in the graph. This is done to ensure that all sources are in
the same clocking zone. Then the single–source longest path is computed for the graph with the super-source node
as the source, and every partition is assigned a clocking level based on its position in the longest path from the
source. For a graph with E inter-partition edges, this algorithm runs in exactly E iterations. In the next stage of the
algorithm, any edge connecting partitions separated by more than one clock phase is marked and the edge is added
to an array of bins at every index where a clocking level is missing in the edge. For instance, if an edge is found
between two partitions say A and B, where A having clocking level 3 and B with clocking level 7, the edge {A,B} is
added to bin numbers 4,5 and 6. The pseudocode of this phase is given in algorithm POPULATE-BIN. This is done
so that wire block at same clocking levels can be merged to give a solution similar to the solution in Figure 4(c).

Next, the number of wire block in each bin is calculated based on a predetermined capacity for the wire blocks. This
capacity is calculated based on the width of each cell in the grid. Then the inter-partition edges are distributed
amongst the wire block filling one wire block to full capacity before filling the next. Though, it might seem that a
better solution would be to evenly distribute the edges to all the wire blocks in the current level (to minimize power),
this is not so. This is because the wire blocks with the most number of feedthroughs are placed closer to the logical
blocks in the next stage. This minimizes wirelength, and hence the number of wire crossings. It could also
potentially reduce the critical delay in the circuit. A pictorial representation of the clocking and layout of the circuit
is given in Figure 10. All blocks, wire and logical, at the same height are in a single clocking zone.

 Algorithm CLOCK-PARTITIONS(G,V,E)
 CLOCK(SUPERNODE) = -1
 Q.ENQUE(SUPERNODE)
 BFS-MARK(G,SUPERNODE)
 BIN = POPULATE-BIN(G,E)

 Algorithm BFS-MARK(G,Q)
 N = Q.DEQUE()
 S = Set of fanout neighbors of N
 While (S not empty)
 A = S.POP()
 If (LAST-PARENT(A) == N)
 CLOCK(A) = CLOCK(N)+1
 Q.ENQUE(A)
 BFS-MARK(G,Q)

 Algorithm POPULATE-BIN(G,E)
 While (E not empty)
 N = E.pop()
 S = CLOCK(N.SRCNODE)
 T = CLOCK(N.SNKNODE)
 While (S + 1 < T)
 S = S+1
 BIN[S] = {BIN[S],E}
 Return BIN

Figure 9. Pseudo-code for wire block insertion.

11/16

5. Zone Placement

Similar to CMOS circuits, a good placement is a key step in solving the automated layout problem in QCA circuits.
In this phase, the zone partitioning result obtained from the previous stage is placed in a grid based layout, each grid
cell occupied by either a logic or wire block. The global placement phase has to minimize wire length and wire
crossing under clocking constraints. First, we assign blocks in the partitioned network onto grid cells while
considering the given aspect ratio constraint. Then the partitions are rearranged within their clocking zones to
optimize on the various objectives listed above. An analytical solution and a simulated annealing based solution for
this stage are implemented and compared.

5.1. Grid Placement
As evident from Figure 10(d), the resulting partitioned network after the wire block insertion satisfies
lev(x)=lev(y)+1 for each inter-partition edge e=(x,y). In this case, a bipartite graph exists for every pair of
neighboring clocking levels. Therefore, our grid placement problem is to embed this graph onto an m×n grid with a
given aspect ratio. The logical blocks (obtained from the partitioning stage) and the wire blocks (obtained from our
post-process) are placed on an m×n grid with a given aspect ratio α and skew δ. The individual cell dimensions and
the column widths are kept constant to ensure scalability and manufacturability of this design since clocking lines
have to be laid beneath the QCA circuit with great precision and proper timing. The partitions are laid out on the
grid, with the cells belonging to the first clocking zone occupying the leftmost cells of the first row of the grid, and
the next level occupying the leftmost cell of the next row and so on till the mth row. The next level of cells is placed
again on the mth row just right to the rightmost cell amongst the m placed rows. The next level of cells are placed in
the m−1th row and rest of the cells are placed in a similar fashion till the first row. This process is repeated until all
the cells are placed. Figure 11 demonstrates an example. The dummy nodes are white space that is introduced
because of variations in the number of wire and logic blocks among the various clocking levels.

1

3

2

4

5

6

7

8

9

1

3

2

4

5

6

7

8

9

1

3

2

4

5

6

7

8

9

1

3

2

4

5

6

7

8

9

(b) (c) (d) (a)

Figure 10. Pictorial overview of the first two stages. The square blocks denote logical partitions, and the
circles are wire blocks. All blocks, wire and logical, at the same height are in a single clocking zone.

12/16

5.2. Wire Crossing and Length Minimization
At the end of grid placement, we have a 2D array of cells arranged by clocking level. During our next phase, the
blocks are reordered within each clocking level to minimize the inter-partition wire lengths and wire crossings. Two
classes of solutions were applied to minimize the above objectives, (i) an analytical solution that uses a weighted
barycenter method, and (ii) Simulated Annealing. Additionally, simulated annealing was applied with the analytical
solution as the initial solution.

The maximum wire length between any two partitions in the grid determines the clock frequency for the entire grid
since all partitions are clocked separately. For example, if the wire length between all nodes has a maximum of 30
nm, but for one particular inter-partition edge where the wire length is 60 nm, that could reduce the clock speed for
the entire circuit by a factor of 2, since the clock period must be doubled so that this 60 nm wire can be clocked
properly. For the first and last rows (where the inter-partition edges are between partitions in two different columns),
maximum wirelength was given more priority since maximum wirelength at these end zones can be twice as bad as
the maximum wirelength between partitions on the same column. This is illustrated in Figure 12. The edge {A,4} in
Figure 12 (a) has a Manhattan distance of 4 while the same edge in Figure 12 (b) has a Manhattan distance of 8.

5.2.1. Analytical Solution
A widely used method for minimizing wire crossing (introduced by Sugiyama et al. [12] and Carpano [13]) is to
break the graph into k layers and then the vertices within a layer are permuted to minimize wire crossings. This
method perfectly renders itself in this problem since we need to only consider the latter part of the problem (since
the clocking constraint yields us the k layers). But, even in a 2-layer graph, minimizing wire-crossings is NP-hard

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5 1 1 1 1 24 24 24 24 25 25 25 25
6 6 6 6 2 2 2 2 23 23 23 23 26 26 26 26
7 7 7 7 3 3 3 3 22 22 22 22 27 27 27 27
8 8 8 8 4 4 4 4 21 21 21 21 28 28 28 28
 5 5 5 5 20 20 20 20 29 29 29 29

… … … … ► 6 6 6 6 19 19 19 19 30 30 30 30
 7 7 7 7 18 18 18 18 31 31 31 31

28 28 28 28 8 8 8 8 17 17 17 17 32 32 32 32
29 29 29 29 9 9 9 9 16 16 16 16 33 33 33 33
30 30 30 30 10 10 10 10 15 15 15 15 34 34 34 34
31 31 31 31 11 11 11 11 14 14 14 14 35 35 35 35
32 32 32 32 12 12 12 12 13 13 13 13 36 36 36 36
33 33 33 33
34 34 34 34
35 35 35 35
36 36 36 36

Figure 11. Grid layout of the zone partitions. Light gray, dark gray, and white grid cell respectively denotes
the logic, wire, and dummy blocks. Numbers in the cells denote the clocking level the cell belongs to.

A B C D

1 2 3 4

A B C D 1 2 3 4

(a) (b)

Figure 12. Illustration of the end zone effects of placing two
clocking zones on the same row but subsequent columns

13/16

[14]. Some of the common heuristics used to solve the one-sided crossing minimization are the barycenter heuristic
[12], the split heuristic [15], the greedy-switch heuristic [17], median heuristic [16], stochastic heuristic [17], and the
assign heuristic [18]. Amongst these heuristics, the barycenter heuristic has been found to be the best heuristic in the
general case for this class of problems [19].

The barycenter method proposed by Sugiyama et al. [12] involves sorting the nodes in each level of a bipartite graph
based on a number called the barycenter which is a measure of where the connections to the next level of the graph
are most concentrated. Every node in the variable layer gets a relative position based on its barycenter number. The
modified version of the heuristic was used to accommodate for edge weights. The edge weights represent the
number of multiple inter-partition edges connecting the same pair of partitions. The heuristic can be summarized as
below.

∑
∑

∈

∈=

Nn

Nn

nedgeweight

npositionnedgeweight
vbarycenter

)(

)(*)(
)(

where v is the vertex in the variable layer, n is the neighbor in the fixed layer, N is the set of all neighbors in the
fixed layer.

5.2.2. Simulated Annealing
Simulated Annealing is a generalization of a Monte Carlo method which was originally introduced by Metropolis et
al. [20]. This concept is based on the way metals when melted and slowly cooled, recrystalize to reach a lowest
energy state. Applying Simulated Annealing to solve combinatorial problems was introduced by Kirkpatrick et al.
[21]. Simulated annealing has been used earlier in solving automated placement for CMOS circuits [23,14,15,16]. A
move or perturbation in our algorithm is constituted by randomly choosing a level in the graph, and then swapping
two randomly chosen partitions in that level in order to minimize the total wirelength and wire crossing. If the new
cost function is better than the old, then the move is conditionally accepted. However, if the new move is worse,
then the solution is accepted with a probability based on the Boltzmann distribution [22]. Updating the wirelength
and wire crossing takes O(n) if not done carefully. IN our approach, we initially compute the wirelength and wire
crossing and incrementally update these values after each move so that the update can be done in O(1) time. This
speedup allows us to explore more number of candidate solutions and obtain better quality solutions.

The initial temperature was set so that half of the moves were accepted. This was done by making 1000 random
swaps in the initial solution, and storing the change (∆i) in the cost function in every successive swap. The swaps
that lead to a positive change in the cost function were averaged (δ) and the initial temperature, Ti was set according
to the following equations: C = γ×tot_crossing + δ×tot_wirelength, ∆i = Ci − Ci−1, where γ & δ are empirically
chosen parameters such that the magnitude of tot_crossing is similar to that of tot_wirelength. Then, ε = (∑∆i)/N,
and Ti = ε/ln(2). At every temperature, a fixed number of moves was performed and the temperature was reduced by
a factor r=0.87. This number was empirically chosen as well. The final temperature was set to Ti×r200.

6. Experimental Results

Our algorithms are implemented in C++/STL, compiled with gcc v2.96 with –O3, and run on Pentium III 746 MHz
machine. The benchmark set consists of seven circuits from ISCAS89 [28] and five circuits from ITC99 [27] suites.
Our goal is to use perform global placement for these circuits based on QCA structure. The statistical information of
benchmark circuits is shown in Table 1. We provide the number of gates, PIs, POs, FFs, nets, and partitions for each
circuit. The number of partitions is determined in such a way that each partition contains 100±10 cells (=logic
capacity). Wire blocks are allowed to contain 200 incoming inter-zone connection (= wire capacity).

14/16

6.1. Zone Partitioning Results
Table 2 shows our zone partitioning results, where we report the cutsize, variance, number of dummy nodes, and
wire blocks for each circuit. We compare the result of acyclic FM and QCA zone partitioning. QCA partitioning
differs in acyclic FM partitioning in that cell moves are based on variance gains (α=0 and β=1), whereas acyclic FM
partitioning makes cell moves based solely on cutsize gains (α=1 and β=0). With QCA zone partitioning algorithm,
there is a 20% improvement in cutsize at the cost of 6% increase in runtime. We compared our cutsize results to
state-of-the-art CMOS VLSI multiway partitioning algorithm [12] and verified that our results are comparable.
Furthermore, a slight but consistent improvement in variance translates to again slight but consistent improvement in
number of dummy nodes wire blocks. Our main objective in minimizing the variance was to reduce the number of
wiring nodes. But, we observe that there is no guarantee that reduction in variance will always decrease the number
of wire blocks as evident from s5378 result.

Our goal during zone partitioning was to balance the reconvergent path lengths through variance minimization
among wire(e) so that the number of wire blocks required to fix any clocking violation is minimized. As discussed
earlier in Section 4.3, however, direct minimization of wire blocks is time-consuming since the computation and
update of partitioning level requires O(n) path analysis upon each move. During our post-process (= wire block
insertion), we fix any remaining reconvergent path problem by inserting and sharing wire blocks while satisfying the
wire capacity constraints. Again, it is hard to predict and optimize the number of wire blocks added during this step.

The number of dummy nodes—the white spaces resulting from grid placement—can be reduced by taking into
account the balance between the number of blocks per clock level during partitioning. Similar to the minimization of
the number of wire blocks, the balance can be improved by performing a post processing phase, where cell moves
are made from a block in a congested clock level to its neighboring block in a less congested clock level.
Furthermore, the balance can also be improved by creating more partitions in a congested but narrow clock level.

6.2. Zone Placement Results
Table 3 shows our zone placement results, where we report the placement area, wirelength, and wire crossing for
each circuit. We compare the analytical solution to simulated annealing with random start and analytical start.
Looking at total wirelength, we see a slight decrease in simulated annealing with analytical start as compared to the
analytical solution by itself, and an 87 % decrease in simulated annealing with random start as compared to the
analytical solution. Considering the total number of wire crossings, we see a slight increase in simulated annealing
with analytical start as compared to the analytical solution by itself, and slight increase in simulated annealing with
random start as compared to the analytical solution. We observe a positive correlation between total wire length and
number of inter partition wire crossings. Also, simulated annealing with an analytical start does not seem to be able
to jump out of the neighborhood whose valley is given by the analytical solution.

Name # Gates # PI # PO # FF # Nets # Part
b14_opt 5401 32 299 245 5678 59
b15_opt 7092 37 519 449 7577 80
b17_opt 22854 37 1511 1414 24305 258
b20_opt 11979 32 512 490 12501 130
b21_opt 12156 32 512 490 12678 131
b22_opt 17351 32 725 703 18086 188
s13207 8027 31 790 669 8727 95
s15850 9786 14 684 597 10397 110
s35932 16353 35 2048 1728 18116 201
s38417 22397 28 1742 1636 24061 258
S38584 19407 12 1730 1452 20871 226
S5378 2828 36 212 163 3026 32
S9234 5597 36 250 211 5844 60

Table 1. Benchmark circuit characteristics.

15/16

7. Conclusions and Ongoing Works

In this paper we formulated the QCA global placement problem and presented the first algorithm. We are currently
working on cell placement stage, where each individual QCA cell is placed while honoring our global placement
results. Our ongoing work for partitioning includes further reducing the number of wiring nodes and number of
dummy nodes inserted. We are also trying to construct zone partitioning solution in such a way that a separate post-
process to insert wiring block is not necessary. We are working on an improved version of the analytical solution for
global placement, which takes into account wire lengths when assigning edges to wire blocks. The motivation is that
longer wires should use the wire blocks further away from the logical blocks to minimize crossing. In the simulated
annealing solution we are looking at swapping edges between wiring blocks as a legal move instead of swapping
blocks alone. Further, while placing blocks onto rows in the grid, we are investigating a better way of compacting
the logical and wire blocks to minimize white space (= dummy nodes).

Reference
[1] Semiconductor Industry Association, "The National Technology Roadmap for Semiconductors", 2000.

 Acyclic FM Partitioning QCA Zone Partitioning

Circuits Cut Var Dummy
nodes

Wire
blocks Cut Var Dummy

nodes
Wire

blocks
b14_opt 2948 177 151 138 2566 175 168 127
b15_opt 4839 462 220 260 4119 468 144 256
b17_opt 16092 2603 1565 1789 13869 2669 1616 1710
b20_opt 6590 796 641 519 6033 819 642 518
b21_opt 6672 877 599 560 6141 869 622 557
b22_opt 9473 1952 1146 1097 8518 1949 1158 1098
s13207 2708 445 143 138 1541 442 144 137
s15850 3023 523 257 183 2029 522 254 181
S35932 7371 1919 875 1014 5361 1734 734 1035
S38417 9375 3275 757 784 5868 3285 775 773
S38584 9940 4109 1319 1155 7139 3881 1307 1095
s5378 1206 55 34 30 866 52 34 30
s9234 1903 165 99 81 1419 154 104 76
Ave 6318 1335 600 596 5036 1309 592 584

Ratio 1.00 1.00 1.00 1.00 0.80 0.98 0.99 0.98
Time 14646 14509

Table 2. Zone partitioning results.

 Analytical Simulated Annealing

Random start
Simulated Annealing
Analytical start

ckts area wire
length

wire
xing

wire
length

wire
xing

wire
length

wire
xing

b14_opt 20x17 81395 67378 23055 67378 81395 67378
b15_opt 20x24 59283 90125 34190 90125 59283 90125
b17_opt 69x52 3014967 346894 305843 345267 3014967 346894
b20_opt 36x36 414367 165218 99221 166324 414367 165218
b21_opt 36x37 140282 172197 100359 172197 140282 172197
b22_opt 48x50 1091091 230812 188256 230812 1091091 230812
s13207 18x21 28381 9413 28381 9413 5682 8274
s15850 24x23 81678 16925 11543 14088 82586 15183
S35932 45x44 1313068 64933 78434 68603 1313068 64933
S38417 42x43 493973 54864 48372 54864 493973 54864
S38584 55x48 1500043 102297 110211 80326 1500043 102297
s5378 10x10 3746 10098 2590 9688 3746 10098
s9234 15x16 15212 11462 5661 11462 15212 11462
Ave 633653 103278 79701 101581 631977 103057

Ratio 1.00 1.00 0.13 0.98 1.00 1.00
Time 23 661 609

Table 3. Zone placement results.

16/16

[2] P. Rutten and M. Tauman and H. Bar-Lev and A. Sonnino, "Is Moore's Law Infinite? The Economics of Moore's
Law", Kellogg TechVenture Anthology, pp 1-28, 2001.
[3] P.D. Tougaw and C.S. Lent, "Logical Devices Implemented Using Quantum Cellular Automata", Journal of
Applied Physics, Vol 75, pp 1818, 1994.
[4] Craig S. Lent and P. Douglas Tougaw, "A Device Architecture for Computing with Quantum Dots",
Proceedings of the IEEE, vol 85, pp541, 1997.
[5] C.S. Lent, "Molecular Electronics: Bypassing the Transistor Paradigm", Science, Vol 288, pp 1597-1599, 2000.
[6] Marya Lieberman, Sudha Chellamma, Bindhu Varughese, Yuliang Wang, Craig Lent, Gary H. Bernstein,
Gregory Snider and Frank C. Peiris, “Quantum-dot Cellular Automata at a Molecular Scale", Annals of the New
York Academy of Science, vol 960, pp 225-239, 2002.
[7] Craig S. Lent, Gregory L. Snider, Gary Bernstein, Wolfgang Porod, Alexei Orlov, Marya Lieberman, Thomas
Fehlner, Michael Niemier and Peter Kogge, Quantum-Dot Cellular Automata, 2003.
[8] A. Aviram, "Molecules for Memory, Logic, and Amplification", Journal of the American Chemical Society, vol
110, pp 5687-5692, 1988.
[9] K. Hennessy and C.S. Lent, "Clocking of molecular quantum-dot cellular automata", Journal of Vacuum Science
and Technology, vol 19, pp 1752-1755, 2001.
[10] C. M. Fiduccia and R. M. Mattheyses. "A Linear-Time Heuristic for Improving Network Partitions".
Proceedings of the Design Automation Conference, pp 174-181, 1982.
[11] removed for blind review
[12] K. Sugiyama, S. Tagawa and M. Toda, “Methods for Visual Undestanding of Hierarchical System Structures”,
IEEE Trans. Syst. Man, Cybern., SMC-11 (1981) 109 – 125
[13] M. J. Carpano. Automatic display of hierarchized graphs for computer aided decision analysis. IEEE
Transactions on Systems, Man, and Cybernetics, 10(11):705-715, 1980.
[14] P. Eades and N. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 10:379--403, 1994.
[15] P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks. Ars Combinatoria, 21-A:89--98,
1986.
[16] P. Eades and N. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 10:379--403, 1994.
[17] S. Dresbach. A new heuristic layout algorithm for DAGs. In U. Derigs and A. B. . A. Drexl, editors, Operations
Research Proceedings 1994.
[18] C. Catarci. The assignment heuristic for crossing reduction. IEEE Transactions on Systems, Man, and
Cybernetics, 25(3), 1995
[19] M. Jünger and P. Mutzel. 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic
Algorithms, 1997
[20] Metropolis,N., A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, "Equation of State Calculations by Fast
Computing Machines", J. Chem. Phys.,21, 6, 1087-1092, 1953..
[21] Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi, "Optimization by Simulated Annealing", Science, 220, 4598,
671-680, 1983
[22] P.J.M. van Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and Applications, Kluwer Publ., Dordrecht,
1987
[23] C. Sechen., VLSI placement and global routing using simulated annealing. Boston: Kluwer Academic, 1988.
[24] C. Sechen and K. Lee. An Improved Simulated Annealing Algorithm for Row-Based Placement. IEEE Intl.
Conf. on CAD (ICCAD), pages 478-481, November 1987.
[25] W. Swartz and C. Sechen. New algorithms for the placement and routing of macro cells. In Proc. 27th Design
Automation Conference, pages 336-339, 1988.
[26] W. Sun and C. Sechen. Efficient and Effective Placement for Very Large Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 14(3):349-359, March 1995.
[27] http://www.cad.polito.it/tools/itc99.html
[28] http://www.cbl.ncsu.edu

