
Impact of Multi-level Clustering on Performance Driven Global Placement

Karthik Balakrishnan, Vidit Nanda, Mongkol Ekpanyapong, and Sung Kyu Lim

School of Electrical and Computer Engineering,
Georgia Institute of Technology

{gte245v,gte272u,pop,limsk}@ece.gatech.edu

Abstract

Delay and wirelength minimization continue to be
important objectives in the design of high-performance
computing systems. For large-scale circuits, the clustering
process becomes essential for reducing the problem size.
However, to the best of our knowledge, there is no study
about the impact of multi-level clustering on performance-
driven global placement. In this paper, five clustering
algorithms including the quasi-optimal retiming delay
driven PRIME and the cutsize-driven ESC have been
considered for their impact on state-of-the-art mincut
based global placement. Results show that minimizing
cutsize or wirelength during clustering typically results in
significant performance improvements.

1. Introduction

The placement problem for a given sequential netlist

involves global placement and detailed placement. Global
placement identifies the partition block-level location for
cells, whereas detailed placement provides complete
location information for each cell while preserving the
global placement. Recently, global placement has attracted
significant attention due to tighter circuit constraints and
increasing complexities. There are three major approaches
to global placement: min-cut based algorithms
[4,13,27,2,5], analytical approaches [10,15], and simulated
annealing techniques [24,25]. The min-cut based approach
uses top-down methods to recursively partition a circuit
into smaller sub-netlists. Due to the high flexibility and
small runtime of this approach, it has been adopted in
many modern state-of-the-art placement algorithms,
including the timing-driven placement technique [8].

During physical planning, the location of each gate can
be identified and used to accurately calculate wire delay.
Since both gate and wire delays are known, the total delay
for the entire circuit can be calculated. Using this
information, circuit optimization at the physical design
level may be made to provide superior results. This
advantage is particularly useful during retiming [17].

Retiming is a logic optimization technique for
sequential circuits which shifts the position of flip-flops

(FFs) for delay minimization [17]. Recently, retiming has
become more attractive in physical design, where wire
delay minimization is critical in the context of deeper
submicron technologies. Exploiting geometric information
enables further enhancement of retiming techniques with
floorplanning, which results in more accurate wire delay
calculation. There are two approaches to retiming in the
physical design context: the iterative approach and the
simultaneous approach. The iterative approach [18,19]
applies retiming after placement and floorplanning. The
simultaneous approach [8,6,9] incorporates retiming with
placement and floorplanning. In [9], the authors suggest
that the latter approach is better with respect to delay
minimization.

In [8], the authors proposed GEO, the state-of-the-art
approach for mincut-based placement with retiming. This
algorithm utilizes the concept of slack values to identify
the ε-network containing the set of delay-critical cells. An
additional delay weight is assigned to the cells of the ε-
network, and these critical cells are grouped closer
together during circuit partitioning. Cong et al., [9],
extended this work to mPG-rt by generalizing the
clustering model to handle gates/clusters with multiple
outputs.

Traditionally, different clustering techniques have been
used in conjunction with different global placement
algorithms. For example, the ESC clustering algorithm is
used with GEO, whereas mPG-rt utilizes FC clusters. In
this paper, we study the importance of multi-level
clustering on GEO-based high-performance global
placement. The organization of this paper is as follows:
Section 2 describes the problem formulation, Section 3 is
devoted to the clustering algorithms, Section 4 presents
some of our experimental results and the final section
presents our conclusions and suggestions for future work.

2. Problem Formulation

Given a sequential gate-level netlist NL(C, N), where C

is the set of cells representing gates and flip-flops, and N is
the set of nets connecting the cells, the purpose of the
Performance driven Global Placement with Retiming
(PGPR) problem is to assign cells in NL to m×n (= K)

blocks while area constraint for each block is satisfied. In
other words, the placement region is divided into m×n
tiles, and we perform cell placement at the center of these
tiles. Given a PGPR solution B, let ω(B) and φ(B)
respectively denote the wirelength and retiming delay. The
formal definition of PGPR is as follows:

PGPR Problem: the Performance driven Global
Placement with Retiming (PGPR) problem under the given
area constraints A = (Li,Ui) has a solution P: C→B,
wherein each cell in C is assigned to a unique block,
where B = {B1(x1,y1), B2(x2,y2),..., BK(xK,yK)} denotes the
set of blocks and (xi,yi) represents the geometric location
of Bi. B is feasible if it satisfies the following conditions: i)
Bi ⊂ C, 1 ≤ i ≤ K, ii) Li ≤ |Bi| ≤ Ui, 1 ≤ i ≤ K, iii) B1 ∪ B2 ∪
... ∪ BK = C, iv) Bi ∩ Bj = ∅ for all i ≠ j. The objective is
to minimize φ(B) while maintaining an acceptable ω(B).

2.1. Delay Objective

By employing the concept of retiming graph [17], we

model NL using a directed graph R = (V, E). Each vertex v
has delay d(v) and each edge e=(u,v) has delay d(e). We
assume d(e) is proportional to the Manhattan distance
between u and v. The edge weight w(e) of e=(u,v) denotes
the number of flip-flops between gate u and v. The path
weight can be calculated by w(p)=∑e∈p w(e). Let wr(e)
denote edge weight after retiming r, i.e. number of flip-
flops on the edge after retiming. Then, wr(p)=∑e∈p wr(e). A
circuit is retimed to a delay φ by a retiming r if the
following conditions are satisfies; (i) wr(e) ≥ 0 for each e,
(ii) wr(p) ≥ 1 for each path p such that d(p) > φ. We define
the edge length of e=(u,v) as l(e)=−φ·w(e)+d(v)+d(e), and
the path length of p as l(p)= ∑e∈p l(e). The sequential
arrival time of vertex v, denote l(v), is maximum path
length from PIs or FFs to v. If the sequential arrival time
of all POs or FFs are less than or equal to φ, the target
delay φ is called feasible. Let q(e)=φ·w(e)−d(u)−d(e) be
the required edge length of e. The required path length
q(p)= ∑e∈p q(e). The sequential required time of vertex v,
denote q(v) is the minimum required path length from v to
POs or FFs, when q(PO) or q(FF) = φ. Then slack of v is
given by q(v)−l(v). Let Dg be the maximum d(v) among all
v in V. Then, the retiming delay φ(B) of a PGPR solution B
is the minimum feasible φ + Dg.

2.2. Wirelength Objective

We model netlist NL using a hypergraph H=(V, EH),

where the vertex set V represents cells, and the hyperedge
set EH represents nets in NL. Each hyperedge is a non-
empty subset of V. The x-span of hyperedge h, denoted hx,
is defined as hx = maxc∈h{xi|c∈Bi} − minc∈h{xi|c∈Bi}. The
y-span, denoted hy, is calculated using the y-coordinates.

The sum of x-span and y-span of each hyperedge h is the
half-parameter of the bounding block (HPBB) of h and
denoted HPBB(h). The wirelength ω(B) of global
placement solution B is the sum of HPBB of all
hyperedges in H.

3. Methodology

3.1. Overview

In this paper, min-cut based global placement GEO [8]
is used after each clustering algorithm to derive global
placement. The following five clustering algorithms have
been analyzed at both two and multiple levels for their
impact on performance driven mincut-based global
placement.

Random clustering: In random clustering, each cell v in
the graph is visited in random order. One of its unmatched
neighbors, u, is randomly selected for matching with cell
v. Then u is marked as visited and clustered with v. The
algorithm continues until there are no unvisited cells.

First Choice (FC) [31]: Edge Coarsening, proposed by
[30], is somewhat similar to random clustering. EC
clustering visits each cell v randomly. However, while
searching for cells to pair with v, EC selects the
unmatched cell u with the largest weight t, where t is the
sum of the edge-weights w of all the hyperedges
connecting u and v. For each hyperedge e that connects u
and v, w = 1/(|e|-1). Later, Karypis and Kumar [31]
proposed First Choice, a better version of the EC
algorithm in terms of cutsize reduction. FC is based on
EC, but it removes the restriction of searching for u only
among unmatched neighbors of v. Instead, all neighbors of
v are considered. This results in significant cutsize
enhancement.

Edge Separability based Clustering (ESC) [7]: ESC
exploits global connectivity information (rather than local
connectivity) by computing edge separability. This process
is equivalent to the computationally intensive calculation
of maximum flow between two cells. A fast and simple
approximation called CAPFOREST is used for this
purpose.

Prime [32]: This quasi-optimal delay-driven clustering
approach involves iterative label-computation based on
retimed edge weights for an appropriate target clock
period Φ for a given area constraint. Clusters are then
selected based on the individual gate labels. Our
implementation of this algorithm is a slight variation of the
original work [32] in that it employs sophisticated cluster
merging techniques to eliminate node duplication.

3.2. Multi-level PRIME

 We offer our

multi-level cluste
One obstacle enc
formation of com
clustering. Severa
removal of edges
the addition of a p

An experime
devised for findi
levels based on th
the current sub-ne

MultiPRIME[G(V,E), D]

Input: Edge-weighted directed graph G, Global edge delay D, we use (D=3)
Output: Multi-level clustered netlist C

1. max_lev = lookup (|V|); C1 = G;
2. A1 = skew/100 x |V|/(2max_lev-1);
3. A2

 ← A3 ← ... Amax_lev ← 2;
4. for level i from 1 to max_lev-1:

Ci+1 ← PRIME’ (Ci, Ai, D);
5. return Cmax_lev;

PRIME’ [G(V,E), A, D]
--
Input: Edge-weighted directed graph G, area constraint A, Global edge delay D.
Output: One-level clustered netlist G’.
--

1. Remove all combinational back-edges in E.
2. Call Label (G(V,E), φ, A) from [33] to compute labeling for vertices in v.
3. for every cluster Ci:

Ci.size ← 0;
4. Queue Q ← {v ε V: fanout(v) = NULL};
5. for every cell u ε V:

u.size ← 1; u.clustID ← -1;
6. while Q is non-empty:

a) dequeue cell v;
b) Cv ← cluster rooted at v;
c) if v.clustID ≠ -1, continue;
d) generate new_id;
e) for all cells u ε Cv

if u.clustID ≠ v.clustID
Cv.has_Dup ← true; dup_id ← u.clustID;

f) for all cells u ε Cv
if Cv.has_dup u.clustID ← dup_id;
else u.clustID ← new_id;

g) if not Cv.has_dup
while Cv.size ≤ A

choose cluster J э J ⊂ Cv.fanout
if Cv.size + J.size ≤ A

merge ← true; clustID(u) ← clustID(J), u ε Cv

 update Cv.size and J.size
7. generate clustered netlist G’ using clustIDs
8. return G’

Figure 3.1: Multilevel PRIME

own extension of PRIME [32] using the
ring paradigm as shown in Figure 3.1.
ountered during this process was the
binational cycles after the first level of
l possible solutions were tried, including
 to break the combinational cycles and
seudo flip-flop to every edge.
ntally-derived heuristic technique was
ng the required number of clustering
e original size of the graph, the size of
tlist being clustered, and the area skew.

Flip-flops were excluded from higher-level clusters and
sub-netlists in order to maintain the integrity of PRIME.
Doing this allowed PRIME’ to compute labels more
accurately because more flip-flops remained global.

The cluster merging process, which serves to balance
the sizes of clusters, is divided into two distinct phases.
The first phase eliminates node duplication by trying to
merge clusters with common nodes. If there are size
constraint violations, the common node is simply removed
from all but one of these clusters. The second phase
merges adjacent clusters (based on the fanouts of existing
cluster members) while satisfying the area constraints.

During this process, combinational cycles are created
throughout the netlist.

 Because of the nature of label computation in the
PRIME algorithm, combinational cycles cannot be
handled during the labeling phase and therefore must be
eliminated in order to continue clustering beyond the first
level. We found that the best way to solve this problem
was to eliminate all edges which would result in
combinational cycles before performing the label
computation. These edges are then added back before the
cluster merging phase. Another problem we encountered
was the lack of primary inputs in some higher levels of
clustering. We resolved this issue by beginning the label
computation from an arbitrary non-primary output cell
after assigning it a label of zero.

3.3 Retiming First Choice (RFC)

 Our performance driven clustering algorithm, RFC,

employs the simplicity of the First Choice algorithm and
the knowledge of retiming delay as shown in Figure 3.2.
We first perform retiming-based timing analysis (RTA)
using gate delay information with edge delays of zero
(since there is no edge delay information during the
clustering process). After RTA, we compute slack values
as in [8]. Then we visit each cell v in the circuit. We visit
cells in ascending order of slack values. We also perform
the experiment by visiting cells in random order, however
visiting cells in ascending provide us the better result, as
can be seen in our technical report [33] Then we select all
neighbor cells that have closest weight, given by
(slack(u)/area(u)). Experiments show that allowing
clusters to be balanced by adding area components to the
cell weights provide better results. Then we mark u as
visited. The algorithm stops when all cells are visited.

4. Experimental Results

Our algorithms are implemented in C++/STL,

compiled with gcc v2.96 with –O3, and run on Pentium III
746 MHz machine. The benchmark set consists of seven

circuits from ISCAS89 [29] and five circuits from ITC99
[28] suites. The statistical information of benchmark
circuits is as shown in Table 4.1. We provide the number
of gates, PIs, POs and FFs for each circuit. Dr represents
retiming delay. Here it is the lower bound of retiming
delay, which is calculated by assigning zero delay to all
edges and then performing RTA We assume unit delay for
all gates in the circuits. All experiments are run on 8x8
tiles. All the clustering algorithms stop when the number
of partitioned cells is less than 100. We also report average
improvement ratio and average running time in seconds.

4.1 Two level comparison

 The results of the two-level clustering algorithms are

shown below in table 4.2. The importance of performing
structured clustering becomes obvious: random clustering
has the worst results for both delay and wirelength. ESC
was clearly the best clustering technique in terms of both
wirelength and delay. This indicates that cutsize-
minimizing clustering methods provide better results when
used with mincut-based global placement.

Table 4.1. Benchmark circuit characteristics.

ckt gate PI PO FF Dr
s5378 2828 36 49 163 32
s9234 5597 36 39 211 39

s13207 8027 31 121 669 50
s15850 9786 14 87 597 62
s35932 16353 35 2048 1728 27

22397 28 106 1636 32
s38584 19407 12 278 1452 47
b14o 5401 32 299 245 27
b15o 7092 37 519 449 38
b20o 11979 32 22 490 44
b21o 12156 32 22 490 43
b22o 17351 32 22 703 46

s38417

--
RFC(NL’)
perform RTA(R) (= timing analysis)
compute sequential slack for nodes in R
for each cell v in NL’

close_val = inf.
 select_node = NULL
 for each u=neighbor(v) in ascending order of slack
 weight(u) = slack(u)/area(u)

if (|weight(u)-weight(v)|< close_val)
select_node = u
close_val = |weight(u)-weight(v)|

 cluster(v,select_node)
--

Figure 3.2: RFC algorithm

4.2 Multi-level comparison

 From table 4.3, we see that even clustering

techniques which use retiming information extensively
(such as RFC and PRIME) impact retiming delay
minimally. Wirelength plays a very significant role in
delay computations made under the geometric delay
model. PRIME clustering essentially ignores wirelength,
and this impacts its performance adversely. Results from
ESC confirm the importance of wirelenghth optimization:
ESC enhances wire-length by 45% and consequently has
the best retiming delay. There are no significant
differences in runtime for different clustering algorithms
except ESC, which takes slightly longer since it involves
several maximum flow computations. Based on this study,
mincut-based performance driven global placement should

employ clustering algorithms targeting cutsize in order to
enhance their performance.

4.3 Observations

 There is drastic and definite improvement for all

clustering algorithms as we move from two-level
clustering to multi-level clustering for both wirelength and
retiming delay. Herein lies the power of the multi-level
clustering paradigm. Overall, ESC has the best results for
both retiming delay and wirelength. This can be attributed
to the good balance among ESC clusters as compared to
that of other methods. Better balance allows for more
levels of clustering, which improves wirelength results.
Furthermore, ESC targets cutsize minimization, which
reduces the wirelength and therefore slightly improves the
geometric delay. The delay measurements for various
multi-level clustering techniques are more or less uniform.

5. Conclusion and Future Work

 From two-level clustering to multilevel clustering,

there is clear improvement in terms of both wire length
and performance. For performance driven mincut-based
placement, the properties of good clustering that result in
better retiming delay and lower wirelength are as follows:

• Can archive multi-level clustering. This comes from
the fact that the partitioning algorithm is based on LR-FM
which can easily handle graphs with a small number of
gates. The application of multi-level clustering reduces the
problem space to a level where LR-FM can perform
efficiently.

• Incorporates wirelength considerations. Our results
indicate the existence of some correlation between good
wirelength and low retiming delay. Therefore, wirelength
reduction heuristics cannot be completely ignored.

References

[1] C. Ababei, N. Selvakkumaran, K. Bazargan, and G.
Karypis, “Multi-objective Circuit Partitioning for Cut size
and Path-Based Delay Minimization,” IEEE International
Conference in Computer Aided Design, page 181-185,
2002.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

fc2 esc2 prime2 rfc2 rand fc esc prime rfc

[2] C. J. Alpert and T. F. Chan and A. B. Kahng and I. L.
Markov and P. Mulet. Faster Minimization of Linear Wire
length for Global Placement. IEEE Trans on Computer-
Aided Design, 1998.
[3] G. Beraudo and J. Lillis. Timing Optimization of
FPGA Placements by Logic Replication. ACM Design
Automation Conf. page 196-201, 2003.
[4] M. A. Breuer. Class of Min-cut Placement Algorithms.
ACM Design Automation Conf., page 284-290, 1997.
[5] A. E. Caldwell and A. B. Kahng and I. L. Markov. Can
recursive bisection alone produce routable placements?.
ACM Design Automation Conf., page 477-482, 2000.
[6] P. Chong and R. K. Brayton. Characterization of
feasibility retimiings. In Proc. Int. Workshop on Logic and
Synthesis, pages 1-6, 2001.
[7] J. Cong and S. K. Lim, “Edge separability based circuit
clustering with application to circuit partitioning,” to
appear in IEEE Trans on Computer-Aided Design, 2003.
[8] J. Cong and S. K. Lim, “Physical Planning with
Retiming,” IEEE International Conference in Computer
Aided Design, page 2-7, 2000.
[9] J. Cong and X. Yuan. Multilevel Global Placement
with Retiming. ACM Design Automation Conf. page 208-
213, 2003.
[10] H. Eisenmann and F. M. Johannes. Generic Global
Placement and Floorplanning. ACM Design Automation
Conf., page 269-274, 1998.
[11] C. Fiduccia and R. Mattheyses, “A Linear Time
Heuristic for Improving Network Partitions,” ACM Design
Automation Conf., page 175-181, 1982.

Figure 4.1: The wire length comparison

0.70

0.75

0.80

0.85

0.90

0.95

1.00

fc2 esc2 prime2 rfc2 rand fc esc prime rfc

Figure 4.2: The retiming delay comparison

[13] D. Huang and A. B. Kahng. Partitioning-based
Standard-cell Global Placement with an Exact Objective.
Int. Symp. on Physical Design, pages 18-25, 1997.
[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: Application in VLSI
domain,” ACM Design Automation Conf., page 526-529,
1997.
[15] J. M. Kleinhans and G. Sigl and F. M. Johannes and
K. J. Antreich. GORDIAN: VLSI placement by quadratic
programming and slicing optimization. IEEE Trans on
Computer-Aided Design, 1998.
[16] T. Kong. A novel net weighting algorithm for timing-
driven placement. In Proc. Int. Conf. on Computer Aided
Design, pages 172-176, 2002.
[17] C. E. Leiserson and J. B. Saxe, Retiming synchronous
circuitry. Algorithmica, page 5-35, 1991.
[18] I. Neumann and W. Kunz. Placement driven retiming
with a coupled edge timing model. In Proc. Int. Conf. On
Computer Aided Design, pages 95-102, 2001
[19] I. Neumann and W. Kunz. Tight coupling of timing-
driven placement and retiming. In Proc. IEEE Int. Symp.
On Circuits and Systems, pages 351-354, 2001.
[21] P. Pan, A. K. Karandikar, and C. L. Liu, “Optimal
clock period clustering for sequential circuits with

retiming,” IEEE Trans on Computer-Aided Design, pages
489-498,1998.
[24] W. J. Sun and C. Sechen. Efficient and effective
placement for very large circuits. IEEE Trans on
Computer-Aided Design, pages 349-359, 1995.
[25] W. Swartz and C. Sechen. Timing Driven Placement
for Large Standard Cell Circuits. ACM Design Automation
Conf., page 211-215, 1995.
[27] J. Vygen. Algorithms for Large Scale Flat Placement.
ACM Design Automation Conf., page 746-751, 1997.
[28] http://www.cad.polito.it/tools/itc99.html
[29] http://www.cbl.ncsu.edu
[30] G. Karypis, R Aggarwal, V. Kumar, and S. Shekhar.
A coarse-grain parallel multilevel k-way partitioning
algorithm. In proceedings of the eighth SIAM conference
on Parallel Processing for Scientific Computing, 1997.
[31] G. Karypis and V. Kumar. Multilevel k way
Hypergraph Paritioning. ACM Design Automation Conf.,
1999.
[32] J. Cong, H. Li, and C. Wu. Simultaneous Circuit
Partitioning/Clustering with Retiming for Performance
Optimization.. ACM Design Automation Conf., 1999.
[33] Technical Report: XXXXXXX

Bench.
s5378
s9234
s13207
s15850
s35932
s38417
s38584
b14_op
b15_op
b20_op
b21_op
b22_op

Avg.
Time
Table 4.2 Comparison of different two-level clustering algorithms

Rand FC ESC PRIME RFC
 wl dr wl dr wl Dr wl dr wl dr

2290 63 2143 59 1587 56 2007 54 2238 57
3302 72 2621 61 1765 48 2791 58 2852 74

 3758 94 3341 102 1789 86 2978 108 3341 102
 4683 128 3633 96 2158 103 3663 114 3640 107
 14364 79 10321 57 2349 45 6203 61 10867 55
 13380 87 7586 63 2724 39 8253 65 8281 65
 13015 88 9633 98 3206 64 9138 118 9351 72
t 5297 70 5220 64 4094 65 4725 76 4870 70
t 9366 106 8240 91 5902 82 6313 72 7258 79
t 10448 81 9089 78 6839 76 10655 100 9386 78
t 11188 75 9107 73 6722 78 9778 84 10433 89
t 14837 82 12731 74 9122 87 11490 77 11283 67

1 1 0.82 0.90 0.50 0.81 0.77 0.97 0.82 0.90
795 709 695 562 1029

Bench
s5378
s9234
s1320
s1585
s3593
s3841
s3858
b14_o
b15_o
b20_o
b21_o
b22_o

Avg
Time
Table 4.3 Comparison on different multi-level clustering algorithms

Rand FC ESC PRIME RFC
. wl dr wl dr wl Dr wl dr wl dr
 2,126 70 2,151 52 1,453 57 1,821 60 2,084 49
 2,303 56 2,325 55 1,459 50 2,228 58 2,484 50
7 2,671 87 2,536 79 1,689 86 2,526 84 2,745 82
0 2,526 99 2,784 102 1,824 90 3,206 92 2,955 105
2 5,368 49 5,535 45 2,113 45 6,086 55 4,847 49
7 3,734 55 4,377 51 2,394 37 4,478 45 4,269 45
4 4,831 86 5,440 84 3,184 81 5,786 68 5,404 65
pt 4,323 66 4,156 68 3,658 67 4,132 70 4,796 81
pt 7,488 75 6,761 85 5,786 79 6,459 97 7,558 89
pt 8,022 68 7,600 67 6,087 67 7,717 67 7,712 75
pt 7,894 70 8,085 70 6,149 79 9,556 67 7,719 75
pt 10,097 65 10,557 74 7,620 80 11,897 72 9,024 62
. 1 1 1.02 0.98 0.69 0.96 1.06 0.99 1.03 0.98
 1128 777 2253 1720 1109

