SoftCache: A Techniquefor Power and Area Reduction
in Embedded Systems

Joshua B. Fryman, Hsien-Hsin S. Lee, Chad M. Huneycuitt,
NailaF. Farooqui, Kenneth M. Mackenzie, David E. Schimmel
Center for Experimental Research in Computer Systems (CERCS)
Georgia Institute of Technology
Atlanta, GA 30332-0280

{ fryman, leehs, chadh, naila, kenmac, schimmel }@cercs.gatech.edu

Abstract

Explicitly software managed cache systems are postulated
as a solution for power considerations in computing de-
vices. The savings expected in a SoftCache lies in the
removal of tag storage, associativity logic, comparators,
and other hardware dedicated to memory hierarchies. The
penalty lies in high cache-miss cost and additional instruc-
tions required to effect a cache model. In this paper, we
characterize SoftCaches by placing them in the overall com-
puting landscape, analyzing the energy and space trade-
offs. We present results that indicate a SoftCache saves
power and space over hardware caches. Based on the
TSMC 0.25um process from MOSIS, we use schematic and
layout representations of hardware and SoftCache models
for comparison. Accounting for additional instructions ex-
ecuted and simplification of logic, we examine high Soft-
Cache miss cost in relation to the overall system. For a
256KB ““mode” change every 1.45 hours, the SoftCache ex-
hibits 1% application slowdown for energy savings of 30%
or more in a low-power device such as the SA-110 micro-
processor used in PocketPC platforms.

1 Introduction

Embedded consumer systems continuously add more fea-
tures while shrinking their physical size. Current 3G cell
phones incorporate 144kbps or better network links [10],
offering customers not only phone services but also e-mail,
web surfing, digital camera features, and video on demand.
With feature creep demanding additional storage and mem-
ory in all computing devices — not just cell phones — densi-
ties of DRAM and Flash increase trying to keep pace. Un-
fortunately, energy consumption does not reduce at a similar
rate. The need for larger feature sets and local storage works
counter to longer lifetime in battery powered operations.
While energy usage and battery life are constraining em-

bedded devices, other problems are appearing. Rather than
fixing a feature set into a cell phone, designers and con-
sumers want to change operational behavior dynamically.
Switching active audio or video codecs, upgrading web
browsers, and downloading new or customized applications
are all becoming common needs.

To reduce energy consumption and increase battery life,
designers use the smallest parts and lowest part count pos-
sible. This has the added benefit of keeping manufacturing
cost down. This effort at minimizing available resources
works against feature creep and the need for device flexibil-
ity for dynamic upgrades.

Other examples of ubiquitous computing environmentsin
the wild can be seen in the ZebraNet project [25] and sim-
ilar animal or habitat monitoring systems [28, 17], houses
with computer awareness integrated [33], urban traffic or
location monitoring cameras, or similar widespread devices
[48].

Trying to address some of these problems, companies
like NTT Japan are investing time and research effort in
solutions that allow for Mobile Computing — dynamically
migrating application code between the remote device and
other network connected systems [23]. Research efforts in
academia are investigating alternate designs [55].

In this paper, we use the SoftCache, an explicitly soft-
ware managed cache- like storage, to address these prob-
lems. The SoftCache converts the on-chip cache structures
to generic SRAM, removing the additional transistors used
for MMUs and write buffers. The cache storage area and
tag space is kept as addressable SRAM, and cache behavior
is effected by execution of additional instructions.

The SoftCache provides a model where local non-volatile
(NV) storage is reduced or removed entirely, and pushed
back across the network to remote storage servers. Lo-
cal DRAM s also reduced or eliminated. By using the
already-present network link, it becomes possible to con-
struct a distributed client-server model for computing that

uses stripped down client hardware but provides features to
the user as though no physical reduction had occurred via
the computing capacity of remote servers in the network.

The net result when applied to instruction caching is an
explicitly software managed system. This provides benefits
such as full associativity and flexible resource utilization.
A key argument in the SoftCache model has been that it
also provides for a substantially smaller energy consump-
tion, which is increasingly important.

The most frequent criticism of this technique, however,
has been that the additional cost of utilizing the network
link for moving code and data will far outweigh the bene-
fit of removing or reducing local storage. Other arguments
have been presented that the SoftCache will not result in
significant processor energy consumption savings.

This paper addresses these concerns and arguments. Our
results are at times counter intuitive, and the final analysis
surprised even us in the determination of how energy ef-
ficient a SoftCache can be. In this paper, we demonstrate
these main points:

1. Network link energy consumption is much less than

local storage.
2. There is less overhead for a software cache than a hard-

ware cache.

3. Measurable space reduction can be achieved in proces-
sor die.

4. SoftCaches consume at least 10-20% less energy over

traditional designs.

2 The SoftCache
2.1 Operation

The SoftCache system advocates using the existing network
infrastructure to effect a more distributed computing model.
Rather than adding additional hardware to the mobile em-
bedded platform, the SoftCache model removes most if not
all local DRAM and NV storage space. Capitalizing on the
network link, it assumes there is a substantially faster, more
capable, larger storage capacity server or cluster reachable
via the built-in link. To achieve their goals, the remote
server performs dynamic application analysis and optimiza-
tion, sending only the necessary pieces to the embedded
platform to run locally. Given sufficient storage for the
working set of the application, no other storage is necessary
in the embedded device.

To avoid burdening the programmer with the limitations
imposed on the mobile device, the SoftCache uses a dy-
namic binary rewriting system that takes as an input a vir-
tual application that assumes no limits on resources. The
remote server or cluster breaks this application into pieces,
and then sends each piece as required to the mobile plat-
form. By carefully keeping track of what pieces are resident

trap! trap!

(b)

(c)

Figure 1: Propagating new basic blocks. Part (a) represents
the original program. Parts (b) through (d) show the gradual
placement of basic blocks as the execution path is dynamically
determined.

in the mobile device, the server can rewrite the instructions
and addresses of data to match the actual values needed for
the current state in the limited platform. This process of
remote server control, coupled with binary rewriting, can
lead to eviction and placement policies that are much more
sophisticated than traditional hardware models. It also pro-
vides substantial potential by using variable-size blocks to
transfer to the client, as well as full associativity.

Conceptually, this can be envisioned as the client exe-
cuting one basic block of code at a time. At the end of
each basic block are two choices: taken or not-taken. Each
choice leads to an exception event. Once the exception oc-
curs, the client can request from the server the appropriate
target path. As the server builds up a map of what blocks re-
side within the client’s actively changing state, it can rewrite
new blocks being sent. Rather than inserting exceptions for
paths where the target is already resident, a branch is di-
rectly inserted as appropriate. When it becomes necessary
to evict from the client storage, the server can also rewrite
the branches of already resident blocks to either point to
relocated objects, or to become exceptions again as target
objects are removed entirely. The server also pre-emptively
patches away already resident unknown target exceptions to
local branches as new blocks are loaded into the client. This
block-by-block determination is shown in Figure 1.

As can be expected, with this model running over time
with sufficiently large client storage, the working-set of the
application will become all-resident and no exceptions will

MC Model

Virtual App interface
\ CC Model
code seg e SIS
interface
hot state
R virtual memory
data seg
dirty data

Figure 2: Conceptual SoftCache interaction model.

occur. During this time, the application is in steady state, no
network communications are necessary, and a lower energy
consumption can be observed — from simpler processor die
logic due to removal of external parts such as DRAM and
NV storage.

The complete SoftCache model of operation is depicted
graphically in Figure 2. The SoftCache implements a server,
which is dubbed the Memory Controller (MC), and the
client, which is dubbed the Cache Controller (CC). (That
these names parallel the typical hardware implementation
of cache systems is intentional.) It is assumed that appli-
cations for such a system exhibit mode behavior, where a
steady-state is reached in a subset of program code (such
as an image processing core algorithm). Any application
may have multiple steady-state regions within it. Based
on studies characterizing the working set of applications,
when the cache storage is of sufficient size, mode changes
occur infrequently. The sizing of the cache storage is ap-
plication dependent, but has been demonstrated to be on the
order of tens of kilobytes for common embedded algorithms
[1, 6, 19].

Thus SoftCache offers the benefit of hardware cache im-
plementations (programmer perspective, application speed)
without the penalties typical of hardware solutions (power,
space). The drawback of such a cache lies in handling a
miss scenario, where code or data must be fetched to (and
possibly evicted from) the limited local storage. This han-
dling must be done via software, which is considerably
slower than custom hardware controllers. Complete details
and algorithmic models are presented in prior publications
[19, 22].

While the SoftCache addresses the problems briefly
sketched here, it also poses new challenges in the overall
system which are evaluated and addressed in the following
sections.

2.2 Characterization

The SoftCache is offered as a replacement cache mecha-
nism in the general classes of computing devices. Some
effort has been spent to narrow the domain of these devices

uP uP uP uP
hw $ sw $ hw $ sw $
I I
mainM | | main M w W
W W remote remote
node node
external | | external memory | [memory
(A) (B) © (D)

Figure 3: The basic computing device models.

to only embedded networked systems, but a more complete
understanding is attained when portraying it as fitting into
any type of device.

Figure 3 depicts the basic types of computing device con-
figurations. Models (A) and (C) correspond to typical sce-
narios with hardware caches. Models (B) and (D) are the
obvious counterparts for SoftCache systems. When com-
paring the models, we recognize different types of prob-
lems.

Comparing models (A) and (B), consider these as
workstation-class machines. We note that there is no ap-
parent benefit to using the SoftCache method. While Soft-
Cache techniques will reduce main CPU power consump-
tion, the CPU is not the entire power consumption of the
environment. These models represent a full computing sta-
tion, with DRAM main memory, NV storage (disk, flash, or
other), as well as possible 1/O devices. What the SoftCache
does bring is a long penalty to replace cache contents. The
SoftCache is not a viable solution by itself when consider-
ing workstation-class machines.

Comparing models (C) and (D) indicates a possible Soft-
Cache win. These models are envisioned as the mobile em-
bedded computing nodes in an ubiquitous computing envi-
ronment. Here, the entire processing unit can be placed by
itself. So long as some type of interconnection link exists to
other devices, it becomes possible to relocate large backing
store facilities elsewhere. This provides an opportunity for
a small, low-power device to represent the processor core
and associated cache. The primary issues to resolve for this
to be a “win” for SoftCaches focus on the penalties a Soft-
Cache incurs that a traditional cache will not.

Aside from the issue of demonstrating energy reduction
in the processor die, consideration must be given to the ad-
ditional instructions SoftCache systems execute to emulate
caches. These additional instructions require storage within
the SoftCache itself, thereby reducing the space available to
the target application. They also translate to an increase in

energy needed for the SoftCache. Given these constraints,
we demonstrate that the SoftCache can be a substantial en-
ergy reduction when compared to traditional designs.

A more interesting comparison is to reconsider model (A)
as an embedded device (such as a cell phone) and compare
this to model (D) implementing the same functions. This
illuminates a key point of debate about the viability of a
SoftCache — “is the removal of the main memory (and other
storage such as Flash) across a network a power-saving de-
sign?” We demonstrate the answer is yes. This is counter-
intuitive — accessing local memory should be less power
consuming than accessing remote memory over a network.
This implies that SoftCaching can be a win in more complex
domains than simply limited feature embedded devices.

3 Experimental Results

We now systematically address each of the components
in arguments raised against the SoftCache model by us-
ing a variety of techniques. Obtaining and analyzing ex-
isting low-power mobile DRAM data sheets for power con-
sumption and comparing these to existing “link” products
[42, 51] will provide insight into the issue of local v. re-
mote storage. The issue of cache overhead is addressed
by comparing common hardware cache systems to work-
ing implementations of a SoftCache [19, 22]. To address
the issue of energy consumption, we have constructed de-
tailed power simulations of both typical hardware caches
and a reference design for the SoftCache. Using the TSMC
0.25um 5-Metal layer process from MOSIS, coupled with
the NCSU CDK, Cadence schematics and layouts are ana-
lyzed for power consumption information. The net-lists are
fed into a combination of tools to obtain power, including
Synopsys’ HSpice and NanoSim-PowerMill tools.

Using the results from these methods of analysis, we de-
rive key energy delay equations for the embedded system
as a whole. By analysis of these equations, the SoftCache
is more effective than traditional cache designs for power
consumption.

3.1 CacheOverhead

Cache overhead is a comparison of the hidden costs in
a hardware cache and the hidden costs of the SoftCache.
Hardware caches must store tags, control bits, and other
state information for each cache line. The SoftCache has
no tags to store, but does carry an overhead for the miss-
handler instructions, communications interface, and extra
program instructions. SoftCache techniques currently run
only on instruction caches, and this analysis considers just
instruction caches.

To understand the overhead for hardware cache memory
management, we examined the cache structures of several

16
softcache —&—
SA-110 X-Scale —a—

14

MIPS R4Kp

Overhead Size (KBytes)

09 I I I)
12 4 8 16 32 64

Cache Size (KBytes)

Figure 4: Overhead storage costs by cache size.

current processors. The overhead calculation is only the
extra bits stored with each cache line, without calculating
impact in other locations such as locking bits in a TLB. We
deliberately excluded parity and ECC bits from our calcula-
tions, for if these are needed in the hardware cache region
they will likely be needed in the generic SRAM replacement
that resides in the same hardware. The processors used for
comparison are contemporary embedded system low-power
devices, including: the Intel XScale which uses the same
cache line structure as the DEC (now Intel) SA-110[16, 43];
the Motorola PowerPC850 [32]; and the MIPS R4Kp [29].

To compute the overhead of the SoftCache, we used de-
tails of the existing implementations [19, 22]. In the non-
optimal ARM version, a best-case miss-handler will execute
54 instructions, and worst-case 73. There is also a small
primitive communications interface written in C. We there-
fore allocate 100 instructions for an optimized miss handler
and network interface, assuming 32-bit instructions. We use
basic blocks as a unit size of instructions in the SoftCache.
This translates to a branch occurring every 5-7 instructions.
We assume the basic block is five working instructions fol-
lowed by one branch. The SoftCache carries an extra stor-
age penalty of one branch, given that there is no guarantee
of contiguous basic block alignments. Both the taken and
not-taken paths must be stored as branch or exception in-
structions, since no fall-through case may be permissible.
This indicates for every six program instructions, one addi-
tional branch instruction must be inserted.

Figure 4 shows the results of this comparison. The Soft-
Cache pays a measurable penalty for its 100-instruction
miss-handlers that make it a losing proposition for caches
below 16KB in size. At the 16KB size, the SoftCache beats
all but the MIPS processor and in this case is worse by a
few bytes. Beyond a 16KB cache, the SoftCache is clearly
a more efficient solution. If the SoftCache were to move
from a basic block unit to a larger hyper-block or super-
block size, it would attain even better competitive perfor-

mance. Also note that the SoftCache penalty is not constant
due to the extra (worst-case) assumption of storing an ad-
ditional branch with every basic block. While storing these
additional branch instructions with every basic block con-
sumes resources, it takes substantially less than the extra
storage used by hardware caches.

To date, existing SoftCache designs have focused on
small embedded processors and have ignored issues that
arise with multiple cache levels. There is potential for treat-
ing both L1 and L2 as SoftCaches, or constructing a Soft-
Cache/hardware hybrid for performance reasons.

3.2 Area

The assumptions of the SoftCache makes the area reduc-
tion argument plausible. Given that the SoftCache exhibits
storage overhead usage that is only slightly better than the
small hardware caches we are comparing it to, as shown
in Section 3.1, we ignore any arguable area savings in the
physical storage within banks. For larger cache sizes (above
32KB), the storage overhead savings can become signifi-
cant. For smaller embedded processors, the obvious bene-
fits of area savings come from removal of other logic, such
as MMU, write buffers, cache control logic, and similar
circuits. Based on the published technical data of the SA-
110 from DEC [30], we measure the overall area reduction.
While these measurements may not be equivalent with re-
spect to other microprocessors, given the complex cache of
the SA-110 it is indicative that a quantifiable area savings
would occur.

Based on the results presented by DEC in their work, it
is estimated that the MMUs and write buffer consume 11%
of the total die area. These units also consume 19% of the
total die power when running a computationally intensive
program such as Dhrystone [30]. Further arguments could
be made that the tag structure in the SA-110 is using fully
associative CAMSs, which contain higher transistor counts
than SRAMs, but without knowing how these are imple-
mented (9T/ 10T/11T, sizing, process parameters) it is not
possible to establish the potential degree of savings.

Saving 19% of the total die power by removing 11% of
the used area is a significant reduction by itself. The Soft-
Cache argument for area reduction is valid.

3.3 Local v. Remote Store

The SoftCache model is frequently brought under suspicion
for recommending the reduction or removal of local stor-
age (DRAM, NV space) and utilization of the network link
for remote storage. The underlying issue is how the energy
consumption of local storage compares to that of using a
network. Intuitively we expect local DRAM to be much
more energy efficient than any network. According to our

analysis described as follows, we find that to be true only in
a limited way.

Using data sheets available from vendors including Elp-
ida, Fujitsu, Micron, and Samsung, we selected low-power
or mobile DRAM parts representing typical market product
performance. We calculate the energy consumption in terms
of pJ per bit by computing the best-case power consumption
listed in the electrical characteristics of each product. This
gives us a relative measure of how much energy is used in a
best- case situation to read or write to the memory. During
sleep mode, these devices consume very low current but still
require some power for refresh functions. For analysis argu-
ments, we use the Fujitsu FCRAM model MB82D01171A,
a 2MB part with the lowest power consumption of all de-
vices measured.

Similarly, we obtained energy information from the data
sheets published by several network links vendors. In a
similar manner as for the DRAM, we calculate the worst-
case power per bit consumed, and the standby or sleep-
mode power. In this situation, the transmit (TX) and receive
(RX) currents are considered separately, as some links dis-
play different needs by operating state. For our analysis,
we chose the AMI Semiconductor ASTRX1 as a model net-
work link with average characteristics. Details of the analy-
sis of DRAM and network links are available in [18].

As expected, using a network link is 10,000+ times more
expensive in power than DRAM - in an extreme-case sce-
nario! (We are comparing the best-case DRAM perfor-
mance to the worst-case link performance.) But this does
not tell the entire story. One of the key arguments behind the
SoftCache design is that there are several modes of opera-
tion, and changing modes is an infrequent event. It can also
be seen that the sleep-mode energy consumption for Mobile
DRAMs designed for low power is 1,000 times more expen-
sive than for a network link. This indicates that if the time
between mode switching is sufficiently long, the aggregate
consumption of active- and sleep-mode energy by DRAM
will exceed the active- and sleep-mode energy consumption
of the network link. Finding the amount of time that must be
spent in computation (hence leaving the DRAM or network
link in sleep mode) before switching modes is an exercise in
the energy-delay benefit, with the answer in given after anal-
ysis in section 3.6. Before this answer can be determined,
we explore additional aspects of the problem.

3.4 Bank Power

To understand how the SoftCache model alters the energy
used within the cache, we modeled the individual cache
banks used in both traditional processors and a SoftCache
equivalent. By removing the MMU and write buffers, the
only “extraneous” logic left lies in the CAM tag structures
used by hardware caches. We constructed a simulation to

400
Cache —a—
SRAM —a—

350 -

300 -

s0F 00000, 0

200 -

Power (mW)

150 -

100 -

50 -

0 I I I)
1 2 4 8 16

Number of 1KB Banks

Figure 5: Hardware cache line compared to SRAM line power.

analyze how the tag energy would be reduced by a simpler
SoftCache design.

To compare power models between the hardware cache
banks and SRAM memory banks as proposed for the Soft-
Cache, it is necessary to do transistor level simulations. Us-
ing the technical documentation available for the SA-110
[30, 43], we designed a 1KB hardware cache bank with a
line size of 32 bytes. This design uses the same 32-way as-
sociative CAM structure as the SA-110 and XScale proces-
sors. Using the same 32-byte data line size, we also imple-
mented an SRAM bank. Each bank (cache or SRAM) stored
1KB of data. After moderate effort in sizing and verifica-
tion of the circuit designs, Synopsys PowerMill generated
an approximate power measure for designs where the num-
ber of banks was varied. The stimulus to the PowerMill sim-
ulation was a modified trace gathered from SimpleScalar-
ARM. To reduce complexity, we fixed the trace such that
all references were hits in either the cache or SRAM (with
the cache and SRAM being pre-populated to the same ini-
tial data contents). The SRAM core cell for the CAM as
well as data storage used minimum sized FETSs in the in-
verters with the g-ratio of 2.0. Additionally, the CAM cell
is a 9T implementation with a shared match-line across all
23 bits. Circuits not modeled are control logic for cache in-
validates, cache-miss handling, and so forth. This presents
the hardware cache in a more energy efficient model than
would actually exist.

The results of this comparison can be seen in Figure 5.
While the power savings of the SRAM may not be exactly
the same as would this design implemented in an SA-110
base, it is indicative of the power reduction that can be ex-
pected. The bulk of the difference in power between the
cache model and the SRAM model is attributed to the ex-
tra power consumed by the tag arrays implemented with
CAMs.

3.5 SoftCache Penalties

This section continues the comparison of a best-case
DRAM solution against a worst-case network link solution.
Consideration of the hidden overhead involved in SoftCache
is ignored, as is the hidden overhead of a hardware cache.
The two models being compared are (a) pP with hardware
cache and local DRAM storage, and (b) uP with SoftCache
and a network link.

It is clear that additional instructions must be executed in
the SoftCache to effect a hardware cache equivalent. These
instructions come in two flavors: miss handlers, and penalty
branches. We can compare these penalties to the actual
work being done during any given mode of computation to
understand the penalty that each model incurs.

The total amount of time spent in a given computational
mode is the arbitrary amount of time doing actual work, as
opposed to moving data around in order to perform work.
This time for the computation itself is denoted T¢. As-
suming our worst-case expectation of executing some 100
instructions in a miss handler every time we need to fetch
another basic block, the SoftCache performance and power
penalty could be substantial.

Hardware caches use integrated controllers that fetch
cache lines from memory at high speed. Since the Soft-
Cache uses the basic block size for transfer, it transfers in-
structions in 6-instruction blocks on average. This requires
accessing the network to send a request to the server, wait-
ing for the server to process the request, and then the time
and network required to receive the correct response. How-
ever, the transfer rate for the network is substantially slower
than for DRAM. The additional time the CPU is “idle” and
waiting for the network activity to change must be factored
in a well.

Using the SA-110 as the hardware baseline model, we
can assume a reduction to idle-mode during these times at
20mW for idle power [30]. The time spent in different states
of transfer can be represented as a function of the network
link rate. The SA-110 core consumes 0.5W during CPU
intensive programs that run primarily from on-chip cache,
such as Dhrystone. The same core in a SoftCache model —
where MMU and write buffers have been discarded — would
consume 0.4W. After factoring in the energy consumption
in the cache banks, this number could be as low as 0.25W.
For our analysis we have used the reduced value of 0.4W.

The “penalty” branch instructions occur when a basic
block is brought into the client, and one branch path is re-
solved. At a later point, the alternate branch path may be
resolved as well, but the target address for the hot path may
not be the sequentially next instruction as it was in the orig-
inal program. Therefore, some form of extra branch is re-
quired to move to the correct location. In an extreme case,
we would have to execute every penalty branch instruction,
which would cause the CPU to consume extra energy.

16384
8192
4096
2048
1024

512
256
128

Tc time (s)
w
N

I I I I I I)
1 2 4 8 16 32 64 128 256 512
Data Transferred (KBytes)

Figure 6: Duration of computation T that must pass for the
network link to be more energy efficient, where Ts and By
vary.

3.6 Energy and Delay

While the prior discussion explains penalty instructions and
network link usage, they don’t portray the energy trade-offs
with respect to overall performance. Instead we introduce a
set of equations to show how energy is impacted by the pri-
mary variables network link speed, Ry, time for the server
to process a request (not counting TX/RX times), T's, and
total bits transferred for a mode change, By. (A complete
derivation and analysis is presented in [18].)

With respect to the network link and the power savings
in the SoftCache model shown in section 3.2, we can derive
equations to represent the total energy spent as well as the
total time for a typical mode. These are dependent on which
model is being used — DRAM or link. The total energy for
DRAM, Ep, and total time for DRAM, T'p, corresponds to
the total energy and time for the link version, E, and T7..
Note that prefetching, mispredictions, and other pressures
that increase memory traffic are not considered — that is,
we consider a perfect access model to memory for best-case
performance of memory, with perfect CPU utilization.

We find the equilibrium point for the total computation
time, T¢, by equating the energy of DRAM and network
link. This equilibrium point is the minimum time span that
T must encompass for the two models (local DRAM and
hardware cache v. SoftCache and network link) to be equiv-
alent. Beyond this equilibrium point, the SoftCache is more
energy efficient due to the differences in sleep energy. That
is, solving

Ep=FEr (1)

gives the average amount of time that must be spent in
any given mode before changing. (Each term of equation 1
uses T¢ to compute the total energy consumed during the
mode.)

16384
8192
4096
2048
1024

512
256
128

Tc time (s)
w
N

Ts=1ms —8—
Ts =10ms —a—

L L L L \Ts;ls\ J

1 2 4 8 16 32 64 128 256 512
Data Transferred (KBytes)

Figure 7: Duration of computation T¢ that must pass for the
network link to be more energy efficient, where T's and By
vary and branch penalty is removed.

Evaluating this result for various values of bits required
for the mode change, By, we obtain a plot of By vs. T¢ as
shown in Figure 6. The result is sensitive to variances of T's,
the server processing time. While the server can be made
powerful enough to keep the T's response time low, it will
be non-zero. With one server controlling multiple clients,
it can also be expected that some contention may exist for
the server attention. This figure indicates how the penalty
changes with increasing contention. Moreover, this equi-
librium equation includes the worst-case branch penalty be-
havior (every penalty instruction executed). The same graph
with the branch penalty removed can be seen in Figure 7.

The surprising result is not that the SoftCache does be-
come an energy win given sufficient time, but that it can do
so in seconds! In reality, the Vpp supply for the network
link could be passed through a cutoff-transistor to com-
pletely disconnect the link devices, thereby reducing their
sleep current to OA [40]. This is possible since only the
client ever initiates a connection to the server — the server
cannot spuriously send commands to the client. This would
make the link power model more quickly a win in net en-
ergy.

Given that the network link can be more energy effec-
tive in seconds, the rationale for mode changes being in-
frequent (on the order of tens of minutes) does not initially
seem correct. Closer examination reveals why finding the
equilibrium point is not sufficient to understand the prob-
lem. Ideally, the additional time spent in the slow network
link (40kbps for the ASTRX1) to switch modes should not
adversely affect application performance. The goal is to fix
the application slowdown due to network traffic to a maxi-
mum of 1% penalty. At this point, we exclude the branch
penalty worst case from the evaluation.

Factoring in the rate of the network link, Ry, to the create
an energy-delay equation, we realize that the relatively slow

524288 - 76.5 hrs

262144 | 64 hrs

131072 | 32 hrs
65536 |- 16 hrs
32768 8 hrs

16384 -
8192 -
4096
2048 -
1024 -
512
256 -
128 -
64 -
32
16 L

Tc time (s)

EQ: Ts=10ms —&—
)))) APP‘ Ts= lqms —-h-—‘

1 2 4 8 16 32 64 128 256 512
Data Transferred (KBytes)

Figure 8: Amount of time to elapse for network transfer delays
to have a 1% impact on application performance. Ts = 10ms.

speed of the network can force a tremendous impact on ap-
plication performance. Figure 8 shows the effect of these
additional considerations. This figure includes the original
equilibrium values, marked as "EQ”, and the consideration
for slowdown in the network affecting application run-time
versus the original equilibrium point, marked "APP”.

This application impact ignores the consideration of the
branch penalty overhead. To include the branch penalty in
our equation, where the penalty is the worst-case, gives an
equation with no solutions. This is a logical result since we
desire an application impact of less than 1%, but we spec-
ify the worst-case case of branch impact of 16.7% penalty
on the application. Even the reduced energy consumption
in the SoftCache processor die can not compensate for this
behavior. In a real situation, the true slowdown will cor-
respond directly to the overall branch penalty. Some effort
can be spent on the server-side to rewrite branches to be
penalty-free, but some branches will not be susceptible to
corrections. These additional branches will be the primary
slowdown of the application, with a lesser slowdown due to
network traffic.

In the best-case scenario, the SoftCache is clearly an
energy-delay benefit given sufficient time. For the worst-
case, however, no positive solution can exist. This follows
the logical expectation that given a sufficient performance
penalty from branches, the extended run-time of the mode
iterations costs more than the power saved by using the Soft-
Cache model. From our analysis, a tolerance of approx-
imately 25% of the worst-case behavior can be supported
and the SoftCache remains an energy-delay win scenario.

4 FutureDirections

The SoftCache concept is still in prototyping stage, with
many issues in need of a solution. While working on the

Stack.Refs
Global.Refs
Heap.Refs

120

100 —

60

Percent

40

20

bzip2
gce
mcf
parser

s g o> o 9«
@ 5 @ 9 =
€ 3 &2 £ &2
: § © T Z
s 3 s

rijndael
patricia
AVERAGE

Benchmarks

Figure 9: Results of a modified SimpleScalar 4 (ARM) analysis
on benchmarks to classify memory access patterns.

infrastructure for our system, however, we obtained insight
into other dimensions of the problem that are on the near
horizon. Another line of research is starting now in opti-
mization of the SoftCache to prevent excessive fault han-
dling when changing working sets.

4.1 Data Caching

To fully support data caching in the SoftCache framework
requires a complete control-flow and data-flow analysis of
random binary images with no source code information.
This is a known hard problem. To gain some insight into
how data caching might perform, however, characterization
of memory access patterns are useful.

Across the MediaBench and SPEC2000 benchmarks, we
find that the typical program contains 40% memory refer-
ences. Of these references, we can break them down into
various categories: 44% are stack, 32% are heap, and the
remaining 24% are global-static or embedded text constants
[4]. The stack pointer is updated approximately 0.7% for
the total memory references. These numbers come from a
modified SimpleScalar-4/ARM analysis the benchmarks, as
shown in Figure 9.

The implications from this suggest that the primary mem-
ory reference consumer, the stack, is prone to SoftCache
methods. Stack accesses are generally unaliased, and tend
to be short-lived parameter passing values and local vari-
ables. The heap accesses are most likely to be aliased, and
will represent a pointer interpretation problem due to the
constant SoftCache address rewriting mechanism. This has
the potential to have a substantial negative impact on ap-
plication performance unless dataflow analysis reveals that
aliasing is a rare occurrance. Only those accesses which
can be aliased will need special protection against invalid
pointer values. The global static data and embedded text
stream constants can be broken up and moved on an as-

Cache Miss Distribution for an INF Cache
2 T

Miss

samplell
diffcodegncode
colorpisto
yuv422p,0,gb24

15

VoW

Miss Indication
[

0.5

0 I
100000
Time (milliseconds)

Figure 10: The cache miss and invalidate patterns for an infi-
nite SoftCache on-die storage.

needed basis for the basic blocks of a program. This can
also remove the unwanted trampoline policy of compiler
generated code, such as gcc output, when accessing a da-
tum beyond the limited load/store offset defined in the ISA.
Until our data caching work is complete, exact performance
characteristics and usage patterns are unknown.

4.2 Mode Switching

The SoftCache incurs a large penalty on the repeated faults
when switching from one mode to another. This naturally
leads to the question of whether modes can be predicted
and thus preloaded, thereby avoiding the repeated miss sce-
nario. While this may seem a minor optimization at first
glance, the reduction in network traffic will reduce colli-
sions, protocol overheads, and related aspects that can lead
to saturation of the infrastructure.

We explore the problem using a custom application
which runs multiple image processing algorithms (process-
ing camera feeds with different convolutions, for example).
To establish a base-line, we run the application under a Soft-
Cache model that simulates infinite on-die SRAM for the
application. The resulting “cache misses” occur only when
loading application code for the first time, as shown in Fig-
ure 10. There are four different p-kernels within the pro-
cessing application: sampling, encoding, color histogram,
and color downsampling. The starting point for each kernel
is shown in the figure.

To observe the SoftCache interactions for misses and in-
validates, we reduce the cache space from infinite to 16KB.
The visual display of the access pattern is quite apparent for
the mode-switching during the lifetime of the program, as
shown in Figure 11. This strongly implies that by careful
analysis of the original program to the translated program,
the entire working-set can be captured and buffered on the
remote server. When a mode change is detected, the server

Cache Miss Distribution for a 16 KB Cache
2 T T

T
Miss

samplell
diffcodegncode
color,isto
yuv422p,0,gb24

| | |
0 I I I

100000 200000 300000
Time (milliseconds)

15 H

Miss Indication
[

3

Figure 11: The cache miss and invalidate patterns for a 16KB
on-die SoftCache storage.

can save the client repeated requests by preloading the next
working set on the first miss occurance.

Our initial analysis is based on extracting all symbols for
each “mode” from the program image. By pattern match-
ing from the original symbol set and original PC addresses,
modes can be found in the translated address space for the
core working set of the current u-kernel. In order to preload
the next working set, careful balancing must be performed
between the transitional code that must execute between
working sets as well as the forthcoming working set ker-
nel. We expect to find that most applications can have their
working sets characterized in such a fashion.

5 Related Work
5.1 Binary Rewriting and Program Analysis

Binary rewriting or translation is one result of program anal-
ysis. Using the application source code as a basis, compilers
perform a wide variety of static analysis techniques in code
generation. These can lead to dead-code and -data elimi-
nation, instruction block sequencing, and overall more effi-
cient binaries [13, 47]. Such analysis fails to capitalize on
optimizations that can only be determined dynamically with
how the application is behaving with live data.

Dynamic compilers can generate optimal instruction
traces, which can require sophisticated code cache manage-
ment schemes [20]. Based on input which cannot be pre-
dicted statically, further dead-code and -data path elimina-
tion becomes possible [3], as well as pointer disambigua-
tion. Additional benefits can be found by rearranging the
code or data layouts using profiling [35, 38].

The SoftCache must reconstruct knowledge of the pro-
gram behavior from the binary alone — rebuilding control-
and data-flow graphs with no a priori knowledge. While a
large body of work has been created around program anal-

ysis for data-flow or control-flow [21, 8, 2, 39, 44, 34], less
has been done directly on binary systems. Most binary anal-
ysis systems explored to date mandate certain restrictions
[12, 15, 26].

The Hot Pages system uses sophisticated pointer analysis
with a compiler that supports transformations [31]. Shasta
is a shared memory system that uses static binary rewriting
to share variables among multiprocessors [41]. While the
SoftCache could yield similar results, it offers more poten-
tial by use of dynamic program behavior.

Many simulators also use binary rewriting in varying
forms to achieve faster results compared to strict interpre-
tation simulators. Such systems as Talisman-2 [7], Shade
[14], and Embra [54] use this technique. These simulators
have further burdens of modeling additional resources and
behaviors rather than a goal of pure execution as in the Soft-
Cache.

Just-In-Time compilers, like those supporting Java, with
a distributed model of a JVM [45] also have some shared
ideas with SoftCache. These systems generate unoptimized
byte-code for programs, and when a “hot” trace is found,
it is highly optimized and rewritten into native platform in-
structions rather than JVM byte-code. Other efforts have
focused on tuning the Java garbage collector systems to in-
crease memory efficiency [11].

5.2 Alternate Caches

The eXtended Block Cache [24] proposed by Intel corpo-
ration adds an element of redundant instruction suppression
while lowering fragmentation. The XBC goals were to pro-
vide a method of comparable performance to trace caches
while being more efficient in design. Another modification
to the idea of a trace cache is the Block-Based Trace Cache
[9]. The key idea of the block-based design is to cache se-
quences of traces and then store a pointer to the translated
sequence. More complicated hardware designs like this re-
sult in a greater energy consumption.

Other techniques being pursued for reducing cache en-
ergy usage lie in putting regions of the cache storage in
“sleep” mode or using subdividing techniques. Some of
the recent work in this area [27, 56] concentrates on reor-
ganizing the layout of cache regions either into sub-blocks
for lower access energy, or for placing data banks into sleep
mode while keeping tags fully powered.

The Span Cache [52, 53] explores a model of direct-
addressing regions of the cache. It exposes the cache area
as directly addressable through additional registers, but has
a fall-back case of behaving exactly like a normal hardware
cache if an entry is not found within the direct-addressed
system. A benefit of this system is that it allows variable
cache block sizes with only a minor penalty when compared
to a traditional hardware cache design. The SoftCache also

10

provides variable block sizes, with full associativity, but in-
volves a hardware reduction rather than addition.

Exploring the possible usage of on-chip memories like
the ScratchPad [16], Panda began a series of experiments
on the concept of Scratch-Pad usage for optimizing data
accesses [36]. This work was later expanded on by the
efforts of many [37, 5, 46, 50], hinging on the same fun-
damental idea — adding a small on-chip RAM in addition
to the hardware cache system. Similarly the Cool-Cache
project advocated using a scratchpad for scalars [49]. To
manage this on-chip memory, efforts have focused on mod-
ifying a C compiler to statically (or with profiling feedback)
determine the most-executed blocks of code or referenced
data, and then generating in the program stream the neces-
sary load-to-scratchpad and evict-from-scratchpad instruc-
tions and controls. While relevant in one sense for the us-
age of on-chip memory, the SoftCache uses a truly dynamic
method for placing code or data into on-chip memory, and
removes the cache hardware.

6 Conclusion

We explored the claims and assumptions behind the recent
proposals for explicitly software managed cache systems.
We characterized how a SoftCache design fits into the over-
all landscape of computing devices to better understand the
mechanisms required to prove or disprove the assumptions
behind such a system. Evaluating the SoftCache on the cri-
teria of overhead storage cost, link vs. DRAM energy and
speed costs, space, and total energy consumption, we found
that the SoftCache was clearly a viable solution for some
devices. A natural class of such a device is proposed as an
embedded device within an ubiquitous computing frame-
work, but we have shown that under certain application
characteristics (low miss rate, infrequent mode changes) the
SoftCache is a more generally applicable mechanism. We
have shown that for a 256KB data transfer to switch modes,
1.45 hours must elapse to have a 1% application perfor-
mance degradation before switching to the next mode. Dur-
ing this time, roughly 700J can be conserved in a proces-
sor core such as the SA-110. These energy savings rep-
resent a 30% reduction over traditional designs. Obtain-
ing these savings also require replacing a 2MB DRAM chip
with a network link similar to the 40kbps ASTRX1 fully in-
tegrated transceiver. Modern embedded devices tend to use
faster network links and more DRAM parts than analyzed
here, which makes the SoftCache even more energy effi-
cient. Not addressed are the issues of protocol and security
for the network transmission, which are separate engineer-
ing problems.

Further work needs to be spent on examining the cache
structures not simulated in this study, as well as investigat-
ing the problems associated with data caching. Other ar-

eas that are under investigation include isolating “modes”
and swapping directly from mode-to-mode, without using
a gradual block replacement system; characterization of
medium- to large-scale applications and benchmarks for
performance behaviors; and refinement of the transistor
models and reference designs for both the SoftCache and
the SA-110 hardware comparison.

v

Acknowledgements

This work was funded in part by the National Science Foun-
dation under grants CCR-98-76180, CCR-01-21638, and
EIA-99-72872.

References

[1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

Gheith A. Abandah and Edward S. Davidson. Configuration
Independent Analysis for Characterizing Shared-Memory
Applications. Technical report, EECS Department, Uni-
verisity of Michigan, CSE-TR-357-98 1998.

Hiralal Agrawal. On Slicing Programs with Jump State-
ments. In Proceedings of the ACM SIGPLAN Conference
on PLDI, pages 302—312, June 1994.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
Dynamo: A Transparent Dynamic Optimization System. In
Proceedings of PLDI, Vancouver, Canada, 2000.

Chinnakrishnan Ballapuram and Hsien-Hsin S. Lee. Energy
Efficient d-TLB and Data Cache using Semantics-Aware
Multilateral Partitioning. In International Symposium on
Low Power Electronics and Design, 2003.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakr-
ishnan, and Peter Marwedel. Scratchpad Memory: A Design
Alternative for Cache On-chip memory in Embedded Sys-
tems. In Proceedings of the 10th International Workshop on
Hardware/Software Codesign, May 2002.

Ravi Batchu, Saul Levy, and Miles Murdocca. A Study
of Program Behavior to Establish Temporal Locality at the
Function Level. Technical report, Rutgers University, DCS
TR-475 2001.

Robert Bedichek. Talisman-2 — A Fugu System Simula-
tor. htt p:// bedi chek. org/robert/talisman2/,
August 1999.

David Binkley. Slicing in the presence of parameter aliasing.
In Software Engineering Research Forum, pages 261268,
Orlando, Florida, November 1993.

B. Black, B. Rychlik, and J. Shen. The Block-Based Trace
Cache. In Proceedings of the 26th ISCA, May 1999.

J. Blecher. Cell Phone Carrier Technology Chart. CNet Wire-
less Watch (http://ww. cnet.coniwirel ess),
September 2001.

G. Chen, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and
M.Wolczko. Adaptive Garbage Collection for Battery-
Operated Environments. In Proceedings of USENIX JVM02
Symposium, August 2002.

11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. As-
sembly to High-Level Language Translation. Technical Re-
port 439, University of Queensland, August 1998.

Andrea G.M. Cilio and Henk Corporaal. A linker for effec-
tive whole-program optimizations. In Proceedings of HPCN,
pages 643—-652, Amsterdam, The Netherlands, April 1999.

R. F. Cmelik and D. Keppel. Shade: A Fast Instruction-Set
Simulator for Execution Profiling. Technical Report CSE-
93-06-06, University of Washington, 1993.

Keith D. Cooper, Timothy J. Harvey, and Todd Waterman.
Building a Control-flow Graph from Scheduled Assembly
Code. Technical Report TR02-399, Rice University, June
2002.

Intel Corporation. Intel XScale Microarchitecture Technical
Summary. Technical report, Intel WWW Site, 2000.

Deborah Estrin, David Culler, Kris Pister, and Gaurav
Sukhatme. Connecting the Physical World with Pervasive
Networks. In Pervasive Computing, Jan 2002.

Fryman et al. Energy Analysis in SoftCache Systems.
Technical report, Georgia Institute of Technology, Tech Re-
port Draft, 2003. http://ww. cc. gat ech. edu/ -
~fryman.

Joshua B. Fryman, Chad M. Huneycutt, and Kenneth M.
Mackenzie. Investigating a SoftCache using Dynamic
Rewriting. In Feedback Directed and Dynamic Optimization
Workshop 4, November 2001.

Kim Hazelwood and Michael D. Smith. Code Cache Man-
agement Schemes for Dynamic Optimizers. In Proceedings
of the Sixth Annual Workshop on Interaction between Com-
pilers and Computer Architectures, 2002.

Susan Horowitz, Thomas Reps, and David Binkley. Interpro-
cedural slicing using dependence graphs. In ACM TOPLAS,
volume 12, No. 1, January 1990.

Chad M. Huneycutt, Joshua B. Fryman, and Kenneth M.
Mackenzie. Software Caching using Dynamic Binary
Rewriting for Embedded Devices. In International Confer-
ence on Parallel Processing, 2002.

NTT Japan. BLUEBIRD Project. 2003. htt p:// wwwv. -
ntts.co.jp/javal bluegrid/en/.

Stephen Jourdan, Lihu Rappoport, Yoav Almog, Mattan
Erez, Adi Yoaz, and Ronny Ronen. eXtended Block Cache.
In Proceedings of the Sixth International Symposium on
HPCA, January 2000.

Philo Juang, Hidekazu OKki, Yong Wang, Margaret
Martonosi, Li-Shiuan Peh, and Daniel Rubenstein. Energy-
Efficient Computing for Wildlife Tracking: Design Trade-
offs and Early Experiments with ZebraNet. In Proceesings
of ASPLOS-X, October 2002.

Daniel Késtner and Stephan Wilhelm. Generic Control Flow
Reconstruction From Assembly Code. In Proceedings on
LCTES, pages 46-55, 2002.

Soontae Kim, N. Vijaykrishnan, Mahmut Kandermir, Anand
Sivasubramaniam, and Mary Jane Irwin. Partitioned In-
struction Cache Architecture for Energy Efficiency. In ACM
Transactions on Embedded Computing Systems, June 2002.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David
Culler, and John Anderson. Wireless Sensor Networks
for Habitat Monitoring. In ACM International Workshop
on Wireless Sensor Networks and Applications, September
2002.

MIPS. MIPS32 R4Kp Core Datasheet, Rev. 01.07. Technical
report, MIPS Technologies, 2002.

James Montanaro and et al. A 160-MHz, 32-b, 0.5-W CMOS
RISC Microprocessor. In IEEE Journal of Solid-State Cir-
cuits, volume 31, No. 11, pages 1703—1714, November 1996.

C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot
Pages: Software Caching for Raw Microprocessors. Tech-
nical Report MIT-LCS-TM-599, Massachusetts Institute of
Technology, 1999.

Motorola. MPC850 Family User’s Manual, Rev. 1. Technical
report, Document MPC850UM/D, 2001.

Georgia Institute of Technology. The Aware Home Project.
1999-2003. http://ww. cc. gat ech. edu/ fce/ -
ahri/publications/index.htm.

Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Ef-
fects of Pointers on Data Dependences. In Proceedings of
the 9th International Workshop on Program Comprehension,
2001.

Krishna V. Palem and Rodric M. Rabbah. Bridging Proces-
sor and Memory Performance in ILP Processors via Data-
Remapping. Technical Report GIT-CC-01-014, Georgia In-
stitute of Technology, June 2001.

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau.
Efficient Utilization of Scratch-Pad Memory in Embedded
Processor Applications. In Proceedings of European Design
and Test Conference, March 1997.

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau.
On-chip vs. Off-chip Memory: The Data Partitioning Prob-
lem in Embedded Processor-Based Systems. In ACM Trans-
actions on Design Automation of Electronic Systems, pages
682—704, July 2000.

Rodric M. Rabbah and Krishna V. Palem. Design Space Op-
timization of Embedded Memory Systems via Data Remap-
ping. Technical Report GIT-CC-02-011, Georgia Institute of
Technology, March 2002.

John L. Ross and Mooly Sagiv. Building a Bridge between
Pointer Aliases and Program Dependences, 1998.

Kaushik Roy and Sharat Prasad. Low-Power CMOS VLSI
Circuit Design. Wiley-Interscience, USA, 2000.

D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:
A Low Overhead, Software-Only Approach for Supporting
Fine-grain Shared Memory. In Seventh International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 174—185, 1996.

AMI Semiconductor. ASTRX1 - Single Chip Transceiver.
Technical report, Datasheet, Model ASTRX1 2001.
Digital Semiconductor. SA-110 Microprocessor Technical

Reference Manual, Rev. C. Technical report, Order No. EC-
QPWLC-TE, 1996.

12

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Saurabh Sinha, Mary Jean Harrold, and Gregg Rother-
mel. Systems-Dependence-Graph-Based Slicing of Pro-
grams with Arbitrary Interprocedural Control Flow. In Inter-
national Conference on Software Engineering, pages 432—
441, 1999.

E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Bershad. De-
sign and Implementation of a Distributed Virtual Machine for
Networked Computers. In 17th ACM Symposium on Operat-
ing Systems Principles, pages 202—216, 1996.

Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari
Banakar, M. Balakrishnan, and Peter Marwedel. Reducing
Energy Consumption by Dynamic Copying of Instructions
onto Onchip Memory. In Proceedings of the International
Symposium on System Synthesis, October 2002.

Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, and
Saumya Debray. Combining global code and data com-
paction. In Proceedings of ACM SIGPLAN Workshop on
Languages, Compilers, and Techniques for Embedded Sys-
tems, 2001.

Sameer Tilak, Nael Abu-Ghazaleh, and Wendi Heinzelman.
A Taxonomy of Wireless Micro-Sensor Network Models. In
Mobile Computing and Communication Review, April 2002.

Osman S. Unsal, Raksit Ashok, Israel Koren, C. Mani Kr-
ishna, and Csaba Andras Moritz. Cool-Cache for Hot Multi-
media. In MICRO-34, 2001.

Manish Verma, Stefan Steinke, and Peter Marwedel. Data
Partitioning for Maximal Scratchpad Usage. In Proceedings
of Asia South Pacific Design Automated Conference, January
2003.

VISHAY. Fast Infrared Transceiver Module. Technical re-
port, Datasheet, Model TFDU6102 2001.

Emmett Witchel and Krste Asanovic. The Span Cache: Soft-
ware Controlled Tag Checks and Cache Line Size. In Work-
shop on Complexity-Effective Design at the 28th ISCA, June
2001.

Emmett Witchel, Sam Larsen, C. Scott Ananian, and Krste

Asanovi¢c. Direct Addressed Caches for Reduced Power
Consumption. In MICRO-34, pages 124-133, December
2001.

W. Witchel and M. Rosenblum. Embra: Fast and Flexible
Machine Simulation. In Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 1996.

Dong Zhou, Santosh Pande, and Karsten Schwan. Method
Partitioning - Runtime Customization of Pervasive Programs
without Design-time Application Knowledge. In Interna-
tional Conference on Distributed Computing Systems, May
2003.

Huiyang Zhou, Mark C. Toburen, Eric Rotenberg, and
Thomas M. Conte. Adaptive Mode Control: A Static-Power-
Efficient Cache Design. In Proceedings of the International
Conference on Parallel Architectures and Compilation Tech-
niques, September 2001.

