
  Page 1 of 10 

Generating Perfect Reversals of Simple Linear-Codes 
GIT-CERCS-TR-03-04 

May 20, 2003 
 

Kalyan Perumalla  
kalyan@cc.gatech.edu 

 College of Computing, Georgia Tech 
Atlanta, GA 30332-0280 

Abstract 
Bi-directional execution – executing forward as well as in reverse – is useful in many contexts.  
However, traditional techniques for bi-directional execution are not scalable, as they require infinite 
storage in the presence of “destructive” assignments.  We present a new approach that eliminates the 
scalability problem for bi-directional execution of a class of functions called linear codes, which are 
sequences of assignments of arbitrary linear expressions to variables.  Examples of linear codes include 
Fibonacci-like sequence generators, and operators such as shift, swap and rotate.  We present an 
algorithm to generate perfect forward-reverse code pair from any given linear code, and show that any 
linear code can be perfectly inverted despite the presence of destructive assignments and apparent 
singularities in the input code. While existing techniques require memory size proportional to forward 
execution length, the code generated by our algorithm uses bounded amount of memory.  The memory is 
proportional only to the number of variables in the given forward code, and is independent of both 
forward code size and forward execution length. 

1. Introduction 
Many applications can benefit from the ability to 

execute forward as well as backwards.  Examples 
include speculative execution, debugging systems, 
and optimistic parallel simulation.  In such 
applications, reversal of the effects of a (forward) 
function/procedure is required at application-defined 
execution points. 

Reversal of a function implies that all the 
variables in the original input function are restored 
exactly to the values they held just prior to forward 
function execution.  Perfect reversal implies the 
memory required at runtime is bounded, and 
independent of forward/reverse execution length. 

However, traditional techniques for enabling bi-
directional execution are not scalable.  Their 
inability to scale is partly due to their unbounded 
storage requirement in the presence of “destructive” 
assignments that induce information loss during 
unabated forward execution.  Lack of scalability 
makes bi-directional execution either unappealing or 
impossible. 

Admittedly, efficient reversal of functions in 
general is quite hard, and perfect reversal is even 

more difficult or impossible.  However, reversibility 
in truth depends on the beholder’s eye.  While 
individual instructions might not be retraced 
backwards perfectly, some program fragments might 
be perfectly invertible when considered in aggregate.   
In other words, while individual instructions might 
not be easily invertible when considered in isolation, 
their combined effect could in fact be perfectly 
invertible.  We explore this aggregate-view approach 
in this paper.  We know that great potential exists for 
perfect reversal of aggregate code fragments, but we 
do not yet know how to automate it (e.g., tree 
insert/delete, enqueue/dequeue, etc.).  This is a first 
step in advancing the automation process for perfect 
reversal or state minimization. 

In this paper, we consider a simplified sub-
problem.  We focus on a class of functions called 
linear codes, which are sequences of assignments of 
arbitrary linear expressions to variables.  It turns out 
that even the simplified problem of reversing an 
assignment-sequence (linear control flow) requires a 
non-trivial algorithm. 

We present an approach that overcomes the 
scalability problem for linear codes.  We show that 
any linear code can be perfectly inverted despite the 
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presence of destructive assignments and apparent 
singularities in the input code.  We present a novel 
algorithm to generate perfect forward-reverse code 
pair from any given linear code.  While existing 
techniques require memory size proportional to 
forward execution length, the code generated by our 
algorithm uses bounded amount of memory 
proportional to the number of variables in the given 
forward code, and is independent of both forward 
code size and length of forward execution.  The 
number of assignments and the total computation in 
the generated reverse code is also bounded, being 
proportional to the number of variables, and 
independent of forward/reverse execution length. 

We present the algorithm and its operation on 
illustrative linear codes, including Fibonacci-like 
sequence generators.  Our algorithm can be readily 
incorporated into a compiler for automated 
identification, generation and optimization of 
perfectly reversible linear codes. 

2. Background and Motivation 

2.1. Related Work 
Considerable amount of research has lately 

focused on theoretical aspects of bi-directional 
computation [1-4, 7-9, 11, 15-17].  Part of that work 
was triggered by the discovery of the relationship 
between reversible computations, quantum 
computing and power dissipation.  Theoretical work 
exists (turning machine to simulate irreversible over 
reversible, etc.), but it has not yet been translated to 
practice [10, 12].  It is shown in [6] that reversible 
execution of an irreversible program in general 
necessarily involves overheads in terms of space and 
time.  However, in practice, relatively little is known 
about actual runtime and memory efficiencies of bi-
directional execution of conventional computer 
applications, such as those written using the C 
language.  Reversibly and efficiently executing any 
arbitrary conventional application in general remains 
a challenging problem. 

While work exists on reversing functional 
language programs (e.g., LISP [1]), relatively little is 
known on perfectly reversing procedural language 
programs.  Here, we focus on programs written in 
procedural languages, such as the C language. 

In [17], hardware support for reverse execution is 

provided at the level of program counter and 
memory address value logging.  Although it is 
designed to support bi-directional execution of 
arbitrary programs, it does not actually employ true 
reverse execution operations, such an inverse 
operators.  Instead, a memory address-value pair 
checkpointing mechanism is employed. 

Re-execution approach is used in many other 
systems as well [13].  In fact, most “bi-directional 
execution” systems that we are aware of are based 
on checkpoint-and-re-execute paradigm.  More 
recently, in [5], program counters are generated and 
saved efficiently to enable efficient rollback.  Again, 
rollback is actually realized via re-execution, rather 
than reverse execution – execution is re-started from 
the most recently check-pointed state.  Admittedly, 
these approaches are more general-purpose in 
nature, while our current work is not.  However, our 
goal is to find efficient ways by which check-
pointing can be minimized or avoided altogether. 

A reverse execution capability is presented in [4], 
which is based on generating a log of inverse 
statements and interpreting them in reverse direction 
during reverse execution.  This approach, again, 
entails memory overheads for even simple code 
fragments such as linear codes considered here. 

It is worth re-iterating that perfect reversal 
capability is immensely useful in applications such 
as optimistic/speculative computing.  This is 
especially true considering the relatively high cost of 
memory accesses as compared to computation 
(CPU) cost.  Thus, while check-pointing-based 
approaches do get the (reversal) job done, it is 
important to find alternative means to minimize 
memory usage for check-pointing. 

In [7] it is shown how perfectly reversible code 
can deliver high performance for efficient optimistic 
execution.  Due to high speed of fine-grained 
discrete events in parallel simulation applications 
(such as ATM simulations), check-pointing methods 
are ill-suited as they accumulate a lot of memory 
very fast.  True reverse execution helps to not only 
avoid memory overheads, but also to eliminate 
forward computation overhead for check-pointing.  
In such applications, it is desirable to employ a 
compiler-based approach to automatically generate 
prefect reverse code from user-written simulation 
models. 
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2.2. Example: Fibonacci Sequence f() f() f() f() f() f()

f-1() f-1() f-1()
message

Processor 1

Processor 2

Fix up

f() f() f() f() f() f()

f-1() f-1() f-1()
message

Processor 1

Processor 2

Fix up

 

Consider the functions in  used to generate 
Fibonacci-like sequences (Xn=Xn-1+Xn-2): 

Table 1

Table 1: Functions for Fibonacci-like sequence generation.  
The variables a and b are initialized in init().  Thereafter, 
they can be updated one-step forward by calling f(), and one 
step backward by calling f-1().  The init() and f() are supplied 
by the user.  The f-1() needs to be automatically generated by 
a compiler. 

int a, b; 
void init() 
{ 
  a = …; 
  b = …; 
} 

void f() 
{ 
  int c = a; 
  a = b; 
  b = b + c; 
} 

void f-1() 
{ 
 
  ? 
 
} 

The variables a and b are initialized in init() to 0 
and 1 respectively for Fibonacci sequence, or to 2 
and 1 for Lucas numbers, and so on. Thereafter, f() is 
called multiple times to update a and b.  Calling f() n 
times makes a and b move n steps forward in the 
sequence. 

Suppose that, based on the code for f(), we would 
like to automatically generate a complementary 
function f-1() to move backward in sequence by 
undoing the effects of calls to f().  In other words, f() 
modifies a and b, and f-1() restores a and b to their 
original values.  This would provide the capability to 
move forward as well as backward in the sequence. 

In general, we would like an automated method 
(preferably incorporated into a compiler) to 
automatically generate inverse functions for such 
forward functions, so that code can be executed in 
forward or reverse directions at will. 

2.3. Motivation: Speculative Execution 
The need for (perfect) reversibility arises in the 

context of any speculative parallel execution system, 
such as optimistic parallel simulation.  
shows an example in which processor 1 executes 
ahead optimistically, invoking f() as a sequence 
generator (e.g., population model) as it goes along.  
If/when a remote message with a timestamp in 
processor 1’s past is received, then processor 1 
needs to restore its state to the point of 
inconsistency.  This happens quite commonly, in 
protocols such as Time Warp.  A similar problem 
also manifests itself in speculative processor 
execution of instruction blocks. 

Figure 1

Figure 1: A distributed system example in which an 
incoming remote message uncovers inconsistency at 
processor 1 and initiates a fix up to undo erroneous 
computation. 

 

3. Traditional Solution Approach 
One way to automatically generate reverse code is 

to generate inverse statements corresponding to each 
forward statement.  For example, an increment 
operation on a variable can be undone with its 
inverse, namely, a decrement operation.  However, 
destructive assignment statements pose a major 
challenge in the inversion process, since they are not 
easily invertible.  A destructive assignment is one in 
which a variable is overwritten with a new value 
from which the overwritten value cannot be easily 
recovered, when the assignment is considered in 
isolation. 

Nevertheless, there exists an automated method 
by which any destructive assignment can in fact be 
undone, albeit, at the cost of additional memory 
space used to hold the overwritten value.  A copy of 
the modified value is saved before modification 
during forward execution, and the saved value is 
restored during reverse execution.  Since the saving 
and restoring operations follow a last-in-first-out 
(LIFO) discipline, a runtime stack is used to hold the 
saved values.  In the forward code, an assignment of 
the form lvalue=rvalue, is made reversible by pushing 
a copy of the current value of lvalue onto a runtime 
stack.   In the reverse code, the assignment is 
inverted by restoring lvalue to the saved value 
popped from top of the stack. 
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Table 2: Illustration of stack-based approach to reversal of 
the Fibonacci sequence generator. 

Stack-based Reversal Approach Original 
Forward Forward Reverse 

void f() 
{ 
  int c = a; 
  a = b; 
  b = b + c; 
} 

void f() 
{ 
  int c = a; 
  PUSH(a); 
  a = b; 
  PUSH(b); 
  b = b + c; 
} 

void f-1() 
{ 
  POP(b); 
  POP(a); 
} 

The stack-based approach is easy to automate, 
and can be generated by a compiler, as demonstrated 
in [14].   shows the stack-based approach 
used to generate the modified forward code, and its 
corresponding reverse code for the Fibonacci 
example.  A PUSH(v) instruction pushes the value of 
v onto the top of the stack, while POP(v) pops the top 
value of the stack and assigns the popped value to v.  
Note in the example that the old value of the 
temporary variable c is irrelevant, and hence not 
saved. 

Table 2

3.1. Memory Scalability 
A major drawback of the stack-based approach 

towards reversal is that the size of stack can become 
quite large, growing proportionally with the length 
of consecutive forward execution sequence.  For 
example, in the Fibonacci sequence function, the 
size of the stack equals two integers times the 
number of consecutive calls to f().  This is because 
two values are pushed on to the stack for each f() 
invocation.  The stack values cannot be discarded 
because they are needed for reversal in case f-1() is 
called any time in the future. 

Clearly, an alternative approach is needed that 
eliminates the memory overhead of the stack-based 
approach.  But, how can a compiler automatically 
detect an alternative perfect reversal solution in the 
presence of individual destructive statements?  The 
solution lies in viewing the statements as a group 
rather than viewing them separately in isolation of 
each other.  The group of statements must be 
analyzed to uncover the underlying relation among 
the modified variables, and then their inter-

relationships should be exploited towards realizing 
perfect reversal. 

4. Algorithm 

4.1. Generalization: Linear Codes 
We now consider a slightly more general 

problem, of which the Fibonacci sequence generator 
example is a special case.  We consider any 
sequence of assignments of linear expressions to 
variables, which we call linear codes.  In addition to 
sequence generators such as Fibonacci, linear codes 
encompass several common operations such as 
swap, circular/destructive shift, rotate, etc. 

4.2. Rationale 
The main idea behind our algorithm is that the 

linear sequence of assignments can be analyzed and 
its net effect can be represented as a matrix product 
operation.  Let the old values of the variables be 
represented as a column vector V'.  Let the 
operations of linear code assignments be represented 
as a matrix of constants W.  Then, the matrix product 
WV' gives a new column vector corresponding the 
new values of the variables V= WV'.  This indicates 
that we only need to multiply both sides by the 
inverse of W.  The resulting equation W-1V= V' 
delivers the old values in terms of current values.  
Thus, all we would need to do to recover old values 
from current values is to apply the inverse of W.  The 
meat of the algorithm is then concerned with 
addressing singularities, when W (as obtained from 
user-written code) is non-invertible. 

4.3. Algorithm Outline 
This algorithm is focused on a single code 

fragment of contiguous sequence of assignments.  
The algorithm consists of the following sequence of 
steps: 

1. Preprocess forward code. 
2. Obtain matrix representation. 
3. Iteratively eliminate matrix singularity: 

a. Row elimination 
b. Column elimination. 

4. Invert matrix. 
5. Generate optimized reverse code. 
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4.4. Definitions and Notation 
We will use L(…) to denote any linear expression 

of variables and constants. 
For any variable v, denote by v' the value of that 

variable just prior to the first modification during an 
invocation by the forward function. 

4.5. Input Function 
Variables can be assigned multiple times or not at 

all.  Local variables can also be used.  However, no 
jump instructions, branch statements, loops or 
recursion are allowed – the function must consist of 
only a single sequence of assignment statements. 

For any sequence of linear expressions, we 
generate equivalent forward and reverse code such 
that the reverse function exactly restores the values 
of variables changed by the forward function.  This 
is achieved with memory space whose size is 
independent of the number of invocations (either 
consecutive or mixed) of the forward and reverse 
functions. 

4.6. Preprocessing 
Input:  The input is a sequence of assignment 

statements, F0 ≡ {vi=L0k(1,v1,…,vn)}, where n is the 
number of variables, and 1≤i≤n, and 0≤k≤|F0|. 

Note that each vi could appear as the left hand side 
(LHS) of zero or more assignment statements, and 
hence the number of assignments can be larger or 
smaller than n. 

Preprocess: Convert the input function to an 
equivalent function (with possibly greater or lesser 
number of lines), such that: 

(a) Each variable appears as the LHS of 
exactly one assignment 

(b) All right hand side (RHS) expressions are 
rewritten equivalently in terms of values 
held by each variable immediately prior to 
the first assignment statement in the 
function. 

Algorithm: 
1. Temporarily, treat local variables as global. 
2. For each variable vi, add the assignment vi=v'i 

to the top of the function, i.e., F0←{vi=v'i} U F0. 
3. For each assignment vi=L0k(1,v1,…,vn), replace 

it with vi=L0k(1,X(v1),…,X(vn)), where X(v) is the 
RHS expression of the most recent 
assignment to v. 

4. For each local variable vi, delete all 
assignments to vi (at this point, no global 
variable will have dependency on any local 
variable). 

5. For each vi, delete all except the last 
assignment to vi. 

Output: F={vi=Li(1,v'1,…,v'n)}, 1<=i<=n. 
Note that F0 is a sequence, but F is a set (order of 

statements is important in F0, but not important in F). 

4.7. Matrix Representation 
After preprocessing, let Li=wi0+Σnj=1wijv'j, 1≤i≤n.  

Then F can be written as: 
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We will represent it equivalently as V=WV'. 
If W is non-singular, then it is easy to recover V' 

by multiplying both sides of the equation by the 
inverse matrix of W: W-1V=V'. 
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Singularity Example:  
Forward: a=a+b; b=2a; Example: Consider the Fibonacci sequence 

generator f() given in .  The following shows 
the series of transformations performed by each step 
of the algorithm: 

Table 1 After preprocessing: a=a'+b'; b=2a'+2b'; 
The resultant matrix relation is given by: 
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 int 
c=a 
a=b 
b=b+c 

⇒ 
c=a 
a=b 
b=b+c 

⇒ 
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⇒ a=b' 
b=b'+a' ⇒ 
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Reverse: 
a'=-a+b 
b'=a 

⇒ 

Reverse: 
int c=a 
a=-a+b 
b=c 

Clearly, the matrix is non-invertible, because of 
linear relationship between the last two rows (or 
columns).  So, it is not possible to simply multiply 
the two sides of the equations by the matrix’s 
inverse to get the reverse code.  Does this imply 
reverse code doesn’t exist for this forward code?  
No.  In fact, the following is one of the possible 
reverse codes that can invert the given forward code: 

Reverse: a'=a/3; b'=2a'; 
So, how do we obtain the inverse code for 

forward codes whose matrices cannot be inverted?  
The solution is to eliminate simple linear 
combination relationships among the variables or 
sub-expressions.  In the preceding example, the RHS 
expressions of both the variables a and b are simply 
linearly related to each other, which makes the 
resultant matrix non-invertible. 

Thus, the reverse code is generated to be the 
following: 

void f() 
{ 
  int c = a; 
  a = b; 
  b = b + c; 
} 

void f-1() 
{ 
  int c = a; 
  a = -a + b; 
  b = c; 
} 

We now address both the possibilities for 
singularity – dependencies across rows and columns. 

Note: If there is a choice between row elimination 
and column elimination, it appears to be better to 
perform row elimination first, because (1) it is easier 
to perform (2) it does not add any new variables, 
thereby minimizing memory usage (3) the column 
dependency might in fact disappear after row 
elimination. 

5. Eliminating Singularity 
When the matrix W is invertible, as in the 

preceding example, it is clear that it is 
straightforward to recover the old values V' of the 
variables V.  But what if W turns out to be singular, 
with no inverse?  We now address that case. 5.1. Row Elimination 

Suppose the singularity can be attributed to linear 
dependency across rows.  Let W be represented as a 
column matrix of rows Ri, 0≤i≤n, as follows: 

When W is singular, we know from linear algebra 
that at least one of the following two possibilities 
holds: 
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1. One of the rows can be expressed as a linear 

combination of the rest of the rows. 
2. One of the columns can be expressed as a 

linear combination of the rest of the columns. 
If W is singular due to linear dependency across 

rows, then any one of its rows can be expressed as 
Consider the following simple linear code using 

two variables a and b: 
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linear combination of the rest of the rows.  Except 
for the first row R0 (which represents the constant 
component of all Li), pick any row Rr, 0<r≤n such 
that Rr=Lr(Ri, 0≤i≤n,i≠r), for some linear function Lr on 
the rest of the row matrices Ri. 

It is then clear that vr can be expressed as a linear 
combination of all variables except itself.  This 
permits us to eliminate vr from the RHS of all 
variables (including vr).  Thus, F can be rewritten as: 
F={vi=Li(1,v'1,…,Lr(1,vj, 1≤j≤n,j≠r),…,v'n)}, 1<=i<=n.  In 
other words, vr is replaced by its equivalent 
expression that does not contain vr or v'r. 

The resultant new matrix becomes: 
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Notice that the (r+1)th column becomes zero.  
Since vr becomes a trivial variable that can always be 
easily recovered by evaluating its RHS expression 
on the rest of the variables, we now remove vr from 
consideration for reversal.  The (r+1)th row and (r+1)th 
column are removed from W, and vr and v'r are 
removed from V and V' respectively.  During reverse 
code generation phase, a corresponding assignment 
statement is generated to recreate the v'r based on the 
recovered values of the rest of the variables. 

In the preceding singularity example, the second 
row can be expressed as two times the first row: 

a=a'+b'; b=2a; ⇒ b'=2a' ⇒ a=a'+2a' ⇒ a=3a' 
⇒ a'=a/3; b'=2a' 
Thus, the reverse code is given as specified 

previously: 
Reverse: a'=a/3; b'=2a';. 

5.2. Column Elimination 
A more challenging case arises when one of the 

columns equals a linear combination of the rest of 
the columns.  Column dependency arises due the 
existence of the same common sub-expressions in all 
rows.  This is a slightly harder case, since we cannot 
simply eliminate any variables, but instead need to 

isolate sub-expressions that are common across 
rows. 

Let W be represented as a row matrix of columns 
Cj, 0≤j≤n, as follows: 

[ ]nCCW L0=  

If W is singular due to linear dependency across 
columns, then any one of its columns can be 
expressed as linear combination of the rest of the 
columns.  Pick any column Cc, 0<c≤n such that 
Cc=Lc(Cj, 0≤j≤n,j≠c), for some linear function Lc on the 
rest of the column matrices Cj.  Note that we avoid 
choosing the first column C0 as Cc, since it 
corresponds to the constants in the linear 
expressions. 

In the linear function Lc, consider only those 
columns, Cj, whose coefficients are non-zero.  In 
other words, Cc= Σnck=1xkCjk, for some constants xk and 
some column numbers jk, 1≤k≤nc, and let denote c by 
j0. 

In the preceding singularity example, for 
illustration, let us apply column elimination instead 
of row elimination.  Since a'+b' is the common sub-
expression, we instantiate a new variable, c=a+b: 

a=(a'+b'); b=2(a'+b'); ⇒ 
a=(a'+b'); b=2(a'+b'); c=a+b; ⇒ 
a=c'; b=2c'; c=a+b; ⇒ 
a=c'; b=2c'; c=c'+2c'; ⇒ 
a=c'; b=2c'; c=3c'; ⇒ 
a'=c''; b'=2c''; c'=c/3; c''=c'/3;⇒ 
c'=c/3; a'=c/9; b'=2c/9; 
Thus, an equivalent, alternative forward-reverse 

code pair is given as: 
Initial: a=a0; b=b0; c=a0+b0; 
Forward: a=c; b=2c; c=3c; 
Reverse: a=c/9; b=2c/9; c=c/3; 
Guards are, of course, needed to deal with 

boundary condition (for initial values). 
Note the use of c'' in the derivation.  Even though 

we can compute c', we still need to recover the user’s 
original values of a' and b'.  Since c'=a'+b' gives only 
one equation with two unknowns, we cannot recover 
a' and b' from c' alone.  Computing c'' and re-
evaluating a' and b' from c'' solves the problem. 
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In this example, nc=2, so we add v5= x1v1+ v2, and 
v6= x2v1+ v3.  This implies v'5= x1v'1+ v'2, and v6= x2v'1+ 
v'3.  We can now use the newly added variables to 
eliminate v'1, v'2 and v'3 from the RHS of v1, v2 and v3, 
by rewriting them in terms of v'5 and v'6. 

 
Another Example: 

Consider the following linear code with four 
variables, obtained after the preprocessing phase: 

444343242141404

434333232131303

424323222121202

414313212111101

''''
''''
''''
''''

vwvwvwvwwv
vwvwvwvwwv
vwvwvwvwwv
vwvwvwvwwv

++++=
++++=
++++=
++++=

 

3126

2115

643542444404

633532434303

623522424202

613512414101

'''
'''
'''
'''

vvxv
vvxv

vwvwvwwv
vwvwvwwv
vwvwvwwv
vwvwvwwv

+=
+=

+++=
+++=
+++=
+++=

 

The corresponding matrix form V=WV' is as 
follows: 

We can now rewrite the same to eliminate v1, v2 
and v3 from the RHS of v5 and v6 by substituting 
them with their corresponding RHS’s, giving the 
following: 













































=























4

3

2

1

4443424140

3433323130

2423222120

1413121110

4

3

2

1

'
'
'
'
1000011

v
v
v
v

wwwww
wwwww
wwwww
wwwww

v
v
v
v

 

633132532122434142201026

623131522121424141201015

643542444404

633532434303

623522424202

613512414101

')(')(')()(
')(')(')()(

'''
'''
'''
'''

vwwxvwwxvwwxwwxv
vwwxvwwxvwwxwwxv

vwvwvwwv
vwvwvwwv
vwvwvwwv
vwvwvwwv

+++++++=
+++++++=

+++=
+++=
+++=
+++=

 

Suppose the matrix W is singular due to linear 
dependency among some of its columns, say among 
columns 1, 2 and 3: C1=x1C2 + x2C3, i.e., 



















+



















=



















43

33

23

13

2

42

32

22

12

1

41

31

21

11

000

w
w
w
w

x

w
w
w
w

x

w
w
w
w

. 

In general, the RHS of all vjk, 0≤k≤nc, can be 
rewritten only in terms of v'i, 1≤i≤n+nc, and i≠jk, 
thereby eliminating vjk from the RHS of all variables. 

5.3. Termination 
Each step of column elimination or row 

elimination removes at least one source of 
singularity due to the linear dependency across 
columns.  Since at each iteration, the size of the 
matrix is reduced by at least one (one row reduced 
by row elimination, or one column reduced by 
column elimination), the algorithm is guaranteed to 
terminate. 

This implies that we can rewrite the RHS of each 
vi by regrouping the sub-expressions differently: 

4443432421432421404

4343332321332321303

4243232221232221202

4143132121132121101

'''')(
'''')(
'''')(
'''')(

vwvwvwvwxwxwv
vwvwvwvwxwxwv
vwvwvwvwxwxwv
vwvwvwvwxwxwv

+++++=
+++++=
+++++=
+++++=

 
The same can be rewritten with a different 

grouping of the variables as follows by grouping the 
columns reflecting the linear dependency of C1, C2 
and C3: 

5.4. Guards for Initial Values 
Initial values of the variables can be easily 

protected by generating “guard” conditions in the 
code, such that reverse execution does not go 
backwards beyond the valid forward-reverse code 
relationship.  Note that this might require protecting 
between 0 and n initial conditions, where n is the 
number of variables in the original user-specified 
forward code. 

4443124321142404

4343123321132303

4243122321122202

4143121321112101

')''()''(
')''()''(
')''()''(
')''()''(

vwvvxwvvxwwv
vwvvxwvvxwwv
vwvvxwvvxwwv
vwvvxwvvxwwv

+++++=
+++++=
+++++=
+++++=

 

We now add nc number of new variables, vn+1… 
vn+nc, into the representation, such that vn+k= xkvj0+vjk, 
1≤k≤nc. 
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6. Fast-backwards 
A natural and simple extension of the matrix 

approach is in reversing more than one step 
backwards at a time.  While normal reverse 
execution mode might entail reversing one forward 
invocation at a time, it is also possible to efficiently 
jump s steps backwards in one step.  Since V= WV', 
V=WsV's, (Ws)-1V=V's. 

In the Fibonacci generator example, we can jump 
s=2 steps backwards at a time, using the following 
deductions: 
































=

















'
'

1

110
100
0011

b
a

b
a  

⇒  















































=

















''
''

1

110
100
001

110
100
0011

b
a

b
a

⇒  































=

















''
''

1

210
110
0011

b
a

b
a

⇒  















=

































−
−

''
''

11

110
120

001

b
a

b
a

⇒ a''=2a-b; b''= -a + b; 
Thus, the reverse code to jump backwards two 

steps at a time, f-2(), is given as. 
void f() 
{ 
  int c = a; 
  a = b; 
  b = b + c; 
} 

void f-1() 
{ 
  int c = a; 
  a = -a + b; 
  b = c; 
} 

void f-2() 
{ 
  int c = a; 
  a = 2a - b; 
  b = -c+ b; 
} 

 

7. Conclusions and Future Work 
We presented an algorithm that works around the 

destructive assignment problem for perfect reverse 
execution, thereby eliminating memory overheads 
even in infinite speculative execution.  In view of the 
current gross speed differential between CPU versus 

memory systems, we believe that our perfect reverse 
execution is preferable to check-pointing based 
approaches.  We are working on extending this 
approach further to more general program 
constructs.   In general, programs make use of a 
plethora of operations which have perfect inverses 
(e.g., enqueue/dequeue, insert/delete, etc.)  We are 
investigating automated detection and perfect 
reversal of the same, and combining them with the 
linear code algorithm presented here.  Although we 
illustrated the algorithm with the Fibonacci example, 
it should be noted that the algorithm is valid on a 
wider set of input codes, namely, all linear codes, 
including those whose corresponding matrices are 
singular. 

As another application domain, we are 
investigating the use of our linear code algorithm in 
speculative microprocessor execution.  Since certain 
blocks of register instructions/operations can be 
expressed as linear codes, it should be possible to 
exploit their perfect reversibility on the fly. 
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