
 Page 1 of 10

Generating Perfect Reversals of Simple Linear-Codes
GIT-CERCS-TR-03-04

May 20, 2003

Kalyan Perumalla
kalyan@cc.gatech.edu

 College of Computing, Georgia Tech
Atlanta, GA 30332-0280

Abstract
Bi-directional execution – executing forward as well as in reverse – is useful in many contexts.
However, traditional techniques for bi-directional execution are not scalable, as they require infinite
storage in the presence of “destructive” assignments. We present a new approach that eliminates the
scalability problem for bi-directional execution of a class of functions called linear codes, which are
sequences of assignments of arbitrary linear expressions to variables. Examples of linear codes include
Fibonacci-like sequence generators, and operators such as shift, swap and rotate. We present an
algorithm to generate perfect forward-reverse code pair from any given linear code, and show that any
linear code can be perfectly inverted despite the presence of destructive assignments and apparent
singularities in the input code. While existing techniques require memory size proportional to forward
execution length, the code generated by our algorithm uses bounded amount of memory. The memory is
proportional only to the number of variables in the given forward code, and is independent of both
forward code size and forward execution length.

1. Introduction
Many applications can benefit from the ability to

execute forward as well as backwards. Examples
include speculative execution, debugging systems,
and optimistic parallel simulation. In such
applications, reversal of the effects of a (forward)
function/procedure is required at application-defined
execution points.

Reversal of a function implies that all the
variables in the original input function are restored
exactly to the values they held just prior to forward
function execution. Perfect reversal implies the
memory required at runtime is bounded, and
independent of forward/reverse execution length.

However, traditional techniques for enabling bi-
directional execution are not scalable. Their
inability to scale is partly due to their unbounded
storage requirement in the presence of “destructive”
assignments that induce information loss during
unabated forward execution. Lack of scalability
makes bi-directional execution either unappealing or
impossible.

Admittedly, efficient reversal of functions in
general is quite hard, and perfect reversal is even

more difficult or impossible. However, reversibility
in truth depends on the beholder’s eye. While
individual instructions might not be retraced
backwards perfectly, some program fragments might
be perfectly invertible when considered in aggregate.
In other words, while individual instructions might
not be easily invertible when considered in isolation,
their combined effect could in fact be perfectly
invertible. We explore this aggregate-view approach
in this paper. We know that great potential exists for
perfect reversal of aggregate code fragments, but we
do not yet know how to automate it (e.g., tree
insert/delete, enqueue/dequeue, etc.). This is a first
step in advancing the automation process for perfect
reversal or state minimization.

In this paper, we consider a simplified sub-
problem. We focus on a class of functions called
linear codes, which are sequences of assignments of
arbitrary linear expressions to variables. It turns out
that even the simplified problem of reversing an
assignment-sequence (linear control flow) requires a
non-trivial algorithm.

We present an approach that overcomes the
scalability problem for linear codes. We show that
any linear code can be perfectly inverted despite the

mailto:kalyan@cc.gatech.edu

 Page 2 of 10

presence of destructive assignments and apparent
singularities in the input code. We present a novel
algorithm to generate perfect forward-reverse code
pair from any given linear code. While existing
techniques require memory size proportional to
forward execution length, the code generated by our
algorithm uses bounded amount of memory
proportional to the number of variables in the given
forward code, and is independent of both forward
code size and length of forward execution. The
number of assignments and the total computation in
the generated reverse code is also bounded, being
proportional to the number of variables, and
independent of forward/reverse execution length.

We present the algorithm and its operation on
illustrative linear codes, including Fibonacci-like
sequence generators. Our algorithm can be readily
incorporated into a compiler for automated
identification, generation and optimization of
perfectly reversible linear codes.

2. Background and Motivation

2.1. Related Work
Considerable amount of research has lately

focused on theoretical aspects of bi-directional
computation [1-4, 7-9, 11, 15-17]. Part of that work
was triggered by the discovery of the relationship
between reversible computations, quantum
computing and power dissipation. Theoretical work
exists (turning machine to simulate irreversible over
reversible, etc.), but it has not yet been translated to
practice [10, 12]. It is shown in [6] that reversible
execution of an irreversible program in general
necessarily involves overheads in terms of space and
time. However, in practice, relatively little is known
about actual runtime and memory efficiencies of bi-
directional execution of conventional computer
applications, such as those written using the C
language. Reversibly and efficiently executing any
arbitrary conventional application in general remains
a challenging problem.

While work exists on reversing functional
language programs (e.g., LISP [1]), relatively little is
known on perfectly reversing procedural language
programs. Here, we focus on programs written in
procedural languages, such as the C language.

In [17], hardware support for reverse execution is

provided at the level of program counter and
memory address value logging. Although it is
designed to support bi-directional execution of
arbitrary programs, it does not actually employ true
reverse execution operations, such an inverse
operators. Instead, a memory address-value pair
checkpointing mechanism is employed.

Re-execution approach is used in many other
systems as well [13]. In fact, most “bi-directional
execution” systems that we are aware of are based
on checkpoint-and-re-execute paradigm. More
recently, in [5], program counters are generated and
saved efficiently to enable efficient rollback. Again,
rollback is actually realized via re-execution, rather
than reverse execution – execution is re-started from
the most recently check-pointed state. Admittedly,
these approaches are more general-purpose in
nature, while our current work is not. However, our
goal is to find efficient ways by which check-
pointing can be minimized or avoided altogether.

A reverse execution capability is presented in [4],
which is based on generating a log of inverse
statements and interpreting them in reverse direction
during reverse execution. This approach, again,
entails memory overheads for even simple code
fragments such as linear codes considered here.

It is worth re-iterating that perfect reversal
capability is immensely useful in applications such
as optimistic/speculative computing. This is
especially true considering the relatively high cost of
memory accesses as compared to computation
(CPU) cost. Thus, while check-pointing-based
approaches do get the (reversal) job done, it is
important to find alternative means to minimize
memory usage for check-pointing.

In [7] it is shown how perfectly reversible code
can deliver high performance for efficient optimistic
execution. Due to high speed of fine-grained
discrete events in parallel simulation applications
(such as ATM simulations), check-pointing methods
are ill-suited as they accumulate a lot of memory
very fast. True reverse execution helps to not only
avoid memory overheads, but also to eliminate
forward computation overhead for check-pointing.
In such applications, it is desirable to employ a
compiler-based approach to automatically generate
prefect reverse code from user-written simulation
models.

 Page 3 of 10

2.2. Example: Fibonacci Sequence f() f() f() f() f() f()

f-1() f-1() f-1()
message

Processor 1

Processor 2

Fix up

f() f() f() f() f() f()

f-1() f-1() f-1()
message

Processor 1

Processor 2

Fix up

Consider the functions in used to generate
Fibonacci-like sequences (Xn=Xn-1+Xn-2):

Table 1

Table 1: Functions for Fibonacci-like sequence generation.
The variables a and b are initialized in init(). Thereafter,
they can be updated one-step forward by calling f(), and one
step backward by calling f-1(). The init() and f() are supplied
by the user. The f-1() needs to be automatically generated by
a compiler.

int a, b;
void init()
{
 a = …;
 b = …;
}

void f()
{
 int c = a;
 a = b;
 b = b + c;
}

void f-1()
{

 ?

}

The variables a and b are initialized in init() to 0
and 1 respectively for Fibonacci sequence, or to 2
and 1 for Lucas numbers, and so on. Thereafter, f() is
called multiple times to update a and b. Calling f() n
times makes a and b move n steps forward in the
sequence.

Suppose that, based on the code for f(), we would
like to automatically generate a complementary
function f-1() to move backward in sequence by
undoing the effects of calls to f(). In other words, f()
modifies a and b, and f-1() restores a and b to their
original values. This would provide the capability to
move forward as well as backward in the sequence.

In general, we would like an automated method
(preferably incorporated into a compiler) to
automatically generate inverse functions for such
forward functions, so that code can be executed in
forward or reverse directions at will.

2.3. Motivation: Speculative Execution
The need for (perfect) reversibility arises in the

context of any speculative parallel execution system,
such as optimistic parallel simulation.
shows an example in which processor 1 executes
ahead optimistically, invoking f() as a sequence
generator (e.g., population model) as it goes along.
If/when a remote message with a timestamp in
processor 1’s past is received, then processor 1
needs to restore its state to the point of
inconsistency. This happens quite commonly, in
protocols such as Time Warp. A similar problem
also manifests itself in speculative processor
execution of instruction blocks.

Figure 1

Figure 1: A distributed system example in which an
incoming remote message uncovers inconsistency at
processor 1 and initiates a fix up to undo erroneous
computation.

3. Traditional Solution Approach
One way to automatically generate reverse code is

to generate inverse statements corresponding to each
forward statement. For example, an increment
operation on a variable can be undone with its
inverse, namely, a decrement operation. However,
destructive assignment statements pose a major
challenge in the inversion process, since they are not
easily invertible. A destructive assignment is one in
which a variable is overwritten with a new value
from which the overwritten value cannot be easily
recovered, when the assignment is considered in
isolation.

Nevertheless, there exists an automated method
by which any destructive assignment can in fact be
undone, albeit, at the cost of additional memory
space used to hold the overwritten value. A copy of
the modified value is saved before modification
during forward execution, and the saved value is
restored during reverse execution. Since the saving
and restoring operations follow a last-in-first-out
(LIFO) discipline, a runtime stack is used to hold the
saved values. In the forward code, an assignment of
the form lvalue=rvalue, is made reversible by pushing
a copy of the current value of lvalue onto a runtime
stack. In the reverse code, the assignment is
inverted by restoring lvalue to the saved value
popped from top of the stack.

 Page 4 of 10

Table 2: Illustration of stack-based approach to reversal of
the Fibonacci sequence generator.

Stack-based Reversal Approach Original
Forward Forward Reverse

void f()
{
 int c = a;
 a = b;
 b = b + c;
}

void f()
{
 int c = a;
 PUSH(a);
 a = b;
 PUSH(b);
 b = b + c;
}

void f-1()
{
 POP(b);
 POP(a);
}

The stack-based approach is easy to automate,
and can be generated by a compiler, as demonstrated
in [14]. shows the stack-based approach
used to generate the modified forward code, and its
corresponding reverse code for the Fibonacci
example. A PUSH(v) instruction pushes the value of
v onto the top of the stack, while POP(v) pops the top
value of the stack and assigns the popped value to v.
Note in the example that the old value of the
temporary variable c is irrelevant, and hence not
saved.

Table 2

3.1. Memory Scalability
A major drawback of the stack-based approach

towards reversal is that the size of stack can become
quite large, growing proportionally with the length
of consecutive forward execution sequence. For
example, in the Fibonacci sequence function, the
size of the stack equals two integers times the
number of consecutive calls to f(). This is because
two values are pushed on to the stack for each f()
invocation. The stack values cannot be discarded
because they are needed for reversal in case f-1() is
called any time in the future.

Clearly, an alternative approach is needed that
eliminates the memory overhead of the stack-based
approach. But, how can a compiler automatically
detect an alternative perfect reversal solution in the
presence of individual destructive statements? The
solution lies in viewing the statements as a group
rather than viewing them separately in isolation of
each other. The group of statements must be
analyzed to uncover the underlying relation among
the modified variables, and then their inter-

relationships should be exploited towards realizing
perfect reversal.

4. Algorithm

4.1. Generalization: Linear Codes
We now consider a slightly more general

problem, of which the Fibonacci sequence generator
example is a special case. We consider any
sequence of assignments of linear expressions to
variables, which we call linear codes. In addition to
sequence generators such as Fibonacci, linear codes
encompass several common operations such as
swap, circular/destructive shift, rotate, etc.

4.2. Rationale
The main idea behind our algorithm is that the

linear sequence of assignments can be analyzed and
its net effect can be represented as a matrix product
operation. Let the old values of the variables be
represented as a column vector V'. Let the
operations of linear code assignments be represented
as a matrix of constants W. Then, the matrix product
WV' gives a new column vector corresponding the
new values of the variables V= WV'. This indicates
that we only need to multiply both sides by the
inverse of W. The resulting equation W-1V= V'
delivers the old values in terms of current values.
Thus, all we would need to do to recover old values
from current values is to apply the inverse of W. The
meat of the algorithm is then concerned with
addressing singularities, when W (as obtained from
user-written code) is non-invertible.

4.3. Algorithm Outline
This algorithm is focused on a single code

fragment of contiguous sequence of assignments.
The algorithm consists of the following sequence of
steps:

1. Preprocess forward code.
2. Obtain matrix representation.
3. Iteratively eliminate matrix singularity:

a. Row elimination
b. Column elimination.

4. Invert matrix.
5. Generate optimized reverse code.

 Page 5 of 10

4.4. Definitions and Notation
We will use L(…) to denote any linear expression

of variables and constants.
For any variable v, denote by v' the value of that

variable just prior to the first modification during an
invocation by the forward function.

4.5. Input Function
Variables can be assigned multiple times or not at

all. Local variables can also be used. However, no
jump instructions, branch statements, loops or
recursion are allowed – the function must consist of
only a single sequence of assignment statements.

For any sequence of linear expressions, we
generate equivalent forward and reverse code such
that the reverse function exactly restores the values
of variables changed by the forward function. This
is achieved with memory space whose size is
independent of the number of invocations (either
consecutive or mixed) of the forward and reverse
functions.

4.6. Preprocessing
Input: The input is a sequence of assignment

statements, F0 ≡ {vi=L0k(1,v1,…,vn)}, where n is the
number of variables, and 1≤i≤n, and 0≤k≤|F0|.

Note that each vi could appear as the left hand side
(LHS) of zero or more assignment statements, and
hence the number of assignments can be larger or
smaller than n.

Preprocess: Convert the input function to an
equivalent function (with possibly greater or lesser
number of lines), such that:

(a) Each variable appears as the LHS of
exactly one assignment

(b) All right hand side (RHS) expressions are
rewritten equivalently in terms of values
held by each variable immediately prior to
the first assignment statement in the
function.

Algorithm:
1. Temporarily, treat local variables as global.
2. For each variable vi, add the assignment vi=v'i

to the top of the function, i.e., F0←{vi=v'i} U F0.
3. For each assignment vi=L0k(1,v1,…,vn), replace

it with vi=L0k(1,X(v1),…,X(vn)), where X(v) is the
RHS expression of the most recent
assignment to v.

4. For each local variable vi, delete all
assignments to vi (at this point, no global
variable will have dependency on any local
variable).

5. For each vi, delete all except the last
assignment to vi.

Output: F={vi=Li(1,v'1,…,v'n)}, 1<=i<=n.
Note that F0 is a sequence, but F is a set (order of

statements is important in F0, but not important in F).

4.7. Matrix Representation
After preprocessing, let Li=wi0+Σnj=1wijv'j, 1≤i≤n.

Then F can be written as:





































=



















nnnnn

n

n v

v

www

www

v

v

'

'
10011

1

00

111101

M

L

MLMM

L

L

M

We will represent it equivalently as V=WV'.
If W is non-singular, then it is easy to recover V'

by multiplying both sides of the equation by the
inverse matrix of W: W-1V=V'.

 Page 6 of 10

Singularity Example:
Forward: a=a+b; b=2a; Example: Consider the Fibonacci sequence

generator f() given in . The following shows
the series of transformations performed by each step
of the algorithm:

Table 1 After preprocessing: a=a'+b'; b=2a'+2b';
The resultant matrix relation is given by:
















=

































b
a

b
a

1

'
'

1

220
110
001

 int
c=a
a=b
b=b+c

⇒
c=a
a=b
b=b+c

⇒

a=a'
b=b'
c=c'
c=a
a=b
b=b+c

⇒

a=a'
b=b'
c=c'
c=a'
a=b'
b=b'+a'

⇓

a=a'
b=b'
a=b'
b=b'+a'

⇒ a=b'
b=b'+a' ⇒
































=

















'
'

1

110
100
0011

b
a

b
a

⇓
















=
































−

'
'

11

010
110
001

b
a

b
a ⇒

Reverse:
a'=-a+b
b'=a

⇒

Reverse:
int c=a
a=-a+b
b=c

Clearly, the matrix is non-invertible, because of
linear relationship between the last two rows (or
columns). So, it is not possible to simply multiply
the two sides of the equations by the matrix’s
inverse to get the reverse code. Does this imply
reverse code doesn’t exist for this forward code?
No. In fact, the following is one of the possible
reverse codes that can invert the given forward code:

Reverse: a'=a/3; b'=2a';
So, how do we obtain the inverse code for

forward codes whose matrices cannot be inverted?
The solution is to eliminate simple linear
combination relationships among the variables or
sub-expressions. In the preceding example, the RHS
expressions of both the variables a and b are simply
linearly related to each other, which makes the
resultant matrix non-invertible.

Thus, the reverse code is generated to be the
following:

void f()
{
 int c = a;
 a = b;
 b = b + c;
}

void f-1()
{
 int c = a;
 a = -a + b;
 b = c;
}

We now address both the possibilities for
singularity – dependencies across rows and columns.

Note: If there is a choice between row elimination
and column elimination, it appears to be better to
perform row elimination first, because (1) it is easier
to perform (2) it does not add any new variables,
thereby minimizing memory usage (3) the column
dependency might in fact disappear after row
elimination.

5. Eliminating Singularity
When the matrix W is invertible, as in the

preceding example, it is clear that it is
straightforward to recover the old values V' of the
variables V. But what if W turns out to be singular,
with no inverse? We now address that case. 5.1. Row Elimination

Suppose the singularity can be attributed to linear
dependency across rows. Let W be represented as a
column matrix of rows Ri, 0≤i≤n, as follows:

When W is singular, we know from linear algebra
that at least one of the following two possibilities
holds:
















=

nR

R
W M

0

1. One of the rows can be expressed as a linear

combination of the rest of the rows.
2. One of the columns can be expressed as a

linear combination of the rest of the columns.
If W is singular due to linear dependency across

rows, then any one of its rows can be expressed as
Consider the following simple linear code using

two variables a and b:

 Page 7 of 10

linear combination of the rest of the rows. Except
for the first row R0 (which represents the constant
component of all Li), pick any row Rr, 0<r≤n such
that Rr=Lr(Ri, 0≤i≤n,i≠r), for some linear function Lr on
the rest of the row matrices Ri.

It is then clear that vr can be expressed as a linear
combination of all variables except itself. This
permits us to eliminate vr from the RHS of all
variables (including vr). Thus, F can be rewritten as:
F={vi=Li(1,v'1,…,Lr(1,vj, 1≤j≤n,j≠r),…,v'n)}, 1<=i<=n. In
other words, vr is replaced by its equivalent
expression that does not contain vr or v'r.

The resultant new matrix becomes:





















































=



























n

r

nnnn

rnrr

n

n

r

v

v

v

www

www

www

v

v

v

'

'

'
1

0

0

0
00011

1

10

10

111101

M

M

LL

MLMLMM

LL

MLMLMM

LL

LL

M

M

Notice that the (r+1)th column becomes zero.
Since vr becomes a trivial variable that can always be
easily recovered by evaluating its RHS expression
on the rest of the variables, we now remove vr from
consideration for reversal. The (r+1)th row and (r+1)th
column are removed from W, and vr and v'r are
removed from V and V' respectively. During reverse
code generation phase, a corresponding assignment
statement is generated to recreate the v'r based on the
recovered values of the rest of the variables.

In the preceding singularity example, the second
row can be expressed as two times the first row:

a=a'+b'; b=2a; ⇒ b'=2a' ⇒ a=a'+2a' ⇒ a=3a'
⇒ a'=a/3; b'=2a'
Thus, the reverse code is given as specified

previously:
Reverse: a'=a/3; b'=2a';.

5.2. Column Elimination
A more challenging case arises when one of the

columns equals a linear combination of the rest of
the columns. Column dependency arises due the
existence of the same common sub-expressions in all
rows. This is a slightly harder case, since we cannot
simply eliminate any variables, but instead need to

isolate sub-expressions that are common across
rows.

Let W be represented as a row matrix of columns
Cj, 0≤j≤n, as follows:

[]nCCW L0=

If W is singular due to linear dependency across
columns, then any one of its columns can be
expressed as linear combination of the rest of the
columns. Pick any column Cc, 0<c≤n such that
Cc=Lc(Cj, 0≤j≤n,j≠c), for some linear function Lc on the
rest of the column matrices Cj. Note that we avoid
choosing the first column C0 as Cc, since it
corresponds to the constants in the linear
expressions.

In the linear function Lc, consider only those
columns, Cj, whose coefficients are non-zero. In
other words, Cc= Σnck=1xkCjk, for some constants xk and
some column numbers jk, 1≤k≤nc, and let denote c by
j0.

In the preceding singularity example, for
illustration, let us apply column elimination instead
of row elimination. Since a'+b' is the common sub-
expression, we instantiate a new variable, c=a+b:

a=(a'+b'); b=2(a'+b'); ⇒
a=(a'+b'); b=2(a'+b'); c=a+b; ⇒
a=c'; b=2c'; c=a+b; ⇒
a=c'; b=2c'; c=c'+2c'; ⇒
a=c'; b=2c'; c=3c'; ⇒
a'=c''; b'=2c''; c'=c/3; c''=c'/3;⇒
c'=c/3; a'=c/9; b'=2c/9;
Thus, an equivalent, alternative forward-reverse

code pair is given as:
Initial: a=a0; b=b0; c=a0+b0;
Forward: a=c; b=2c; c=3c;
Reverse: a=c/9; b=2c/9; c=c/3;
Guards are, of course, needed to deal with

boundary condition (for initial values).
Note the use of c'' in the derivation. Even though

we can compute c', we still need to recover the user’s
original values of a' and b'. Since c'=a'+b' gives only
one equation with two unknowns, we cannot recover
a' and b' from c' alone. Computing c'' and re-
evaluating a' and b' from c'' solves the problem.

 Page 8 of 10

In this example, nc=2, so we add v5= x1v1+ v2, and
v6= x2v1+ v3. This implies v'5= x1v'1+ v'2, and v6= x2v'1+
v'3. We can now use the newly added variables to
eliminate v'1, v'2 and v'3 from the RHS of v1, v2 and v3,
by rewriting them in terms of v'5 and v'6.

Another Example:

Consider the following linear code with four
variables, obtained after the preprocessing phase:

444343242141404

434333232131303

424323222121202

414313212111101

''''
''''
''''
''''

vwvwvwvwwv
vwvwvwvwwv
vwvwvwvwwv
vwvwvwvwwv

++++=
++++=
++++=
++++=

3126

2115

643542444404

633532434303

623522424202

613512414101

'''
'''
'''
'''

vvxv
vvxv

vwvwvwwv
vwvwvwwv
vwvwvwwv
vwvwvwwv

+=
+=

+++=
+++=
+++=
+++=

The corresponding matrix form V=WV' is as
follows:

We can now rewrite the same to eliminate v1, v2
and v3 from the RHS of v5 and v6 by substituting
them with their corresponding RHS’s, giving the
following:













































=























4

3

2

1

4443424140

3433323130

2423222120

1413121110

4

3

2

1

'
'
'
'
1000011

v
v
v
v

wwwww
wwwww
wwwww
wwwww

v
v
v
v

633132532122434142201026

623131522121424141201015

643542444404

633532434303

623522424202

613512414101

')(')(')()(
')(')(')()(

'''
'''
'''
'''

vwwxvwwxvwwxwwxv
vwwxvwwxvwwxwwxv

vwvwvwwv
vwvwvwwv
vwvwvwwv
vwvwvwwv

+++++++=
+++++++=

+++=
+++=
+++=
+++=

Suppose the matrix W is singular due to linear
dependency among some of its columns, say among
columns 1, 2 and 3: C1=x1C2 + x2C3, i.e.,



















+



















=



















43

33

23

13

2

42

32

22

12

1

41

31

21

11

000

w
w
w
w

x

w
w
w
w

x

w
w
w
w

.

In general, the RHS of all vjk, 0≤k≤nc, can be
rewritten only in terms of v'i, 1≤i≤n+nc, and i≠jk,
thereby eliminating vjk from the RHS of all variables.

5.3. Termination
Each step of column elimination or row

elimination removes at least one source of
singularity due to the linear dependency across
columns. Since at each iteration, the size of the
matrix is reduced by at least one (one row reduced
by row elimination, or one column reduced by
column elimination), the algorithm is guaranteed to
terminate.

This implies that we can rewrite the RHS of each
vi by regrouping the sub-expressions differently:

4443432421432421404

4343332321332321303

4243232221232221202

4143132121132121101

'''')(
'''')(
'''')(
'''')(

vwvwvwvwxwxwv
vwvwvwvwxwxwv
vwvwvwvwxwxwv
vwvwvwvwxwxwv

+++++=
+++++=
+++++=
+++++=

The same can be rewritten with a different

grouping of the variables as follows by grouping the
columns reflecting the linear dependency of C1, C2
and C3:

5.4. Guards for Initial Values
Initial values of the variables can be easily

protected by generating “guard” conditions in the
code, such that reverse execution does not go
backwards beyond the valid forward-reverse code
relationship. Note that this might require protecting
between 0 and n initial conditions, where n is the
number of variables in the original user-specified
forward code.

4443124321142404

4343123321132303

4243122321122202

4143121321112101

')''()''(
')''()''(
')''()''(
')''()''(

vwvvxwvvxwwv
vwvvxwvvxwwv
vwvvxwvvxwwv
vwvvxwvvxwwv

+++++=
+++++=
+++++=
+++++=

We now add nc number of new variables, vn+1…
vn+nc, into the representation, such that vn+k= xkvj0+vjk,
1≤k≤nc.

 Page 9 of 10

6. Fast-backwards
A natural and simple extension of the matrix

approach is in reversing more than one step
backwards at a time. While normal reverse
execution mode might entail reversing one forward
invocation at a time, it is also possible to efficiently
jump s steps backwards in one step. Since V= WV',
V=WsV's, (Ws)-1V=V's.

In the Fibonacci generator example, we can jump
s=2 steps backwards at a time, using the following
deductions:
































=

















'
'

1

110
100
0011

b
a

b
a

⇒















































=

















''
''

1

110
100
001

110
100
0011

b
a

b
a

⇒































=

















''
''

1

210
110
0011

b
a

b
a

⇒















=

































−
−

''
''

11

110
120

001

b
a

b
a

⇒ a''=2a-b; b''= -a + b;
Thus, the reverse code to jump backwards two

steps at a time, f-2(), is given as.
void f()
{
 int c = a;
 a = b;
 b = b + c;
}

void f-1()
{
 int c = a;
 a = -a + b;
 b = c;
}

void f-2()
{
 int c = a;
 a = 2a - b;
 b = -c+ b;
}

7. Conclusions and Future Work
We presented an algorithm that works around the

destructive assignment problem for perfect reverse
execution, thereby eliminating memory overheads
even in infinite speculative execution. In view of the
current gross speed differential between CPU versus

memory systems, we believe that our perfect reverse
execution is preferable to check-pointing based
approaches. We are working on extending this
approach further to more general program
constructs. In general, programs make use of a
plethora of operations which have perfect inverses
(e.g., enqueue/dequeue, insert/delete, etc.) We are
investigating automated detection and perfect
reversal of the same, and combining them with the
linear code algorithm presented here. Although we
illustrated the algorithm with the Fibonacci example,
it should be noted that the algorithm is valid on a
wider set of input codes, namely, all linear codes,
including those whose corresponding matrices are
singular.

As another application domain, we are
investigating the use of our linear code algorithm in
speculative microprocessor execution. Since certain
blocks of register instructions/operations can be
expressed as linear codes, it should be possible to
exploit their perfect reversibility on the fly.

8. References
[1] H. Baker, "NReversal of Fortune -- The

Thermodynamics of Garbage Collection,"
presented at International Workshop on
Memory Management, 1992.

[2] C. Bennet, "Thermodynamics of
Computation," International Journal of
Physics, vol. 21, pp. 905-940, 1982.

[3] P. Bishop, "Using Reversible Computing to
Achieve Fail-Safety," presented at ISSRE-
97, 1997.

[4] B. Biswas and R. Mall, "Reverse Execution
of Programs," in ACM SIGPLAN Notices,
vol. 34, 1999, pp. 61-69.

[5] B. Boothe, "Efficient Algorithms for
Bidirectional Debugging," presented at
Programming Language Design and
Implementation, Vancouver, British
Columbia, Canada, 2000.

[6] H. Buhrman, J. Tromp, and P. Vitanyi,
"Time and Space Bounds for Reversible
Simulation," Journal of Physics A:
Mathematical and General, vol. 34, pp.
6821-6830, 2001.

[7] C. Carothers, K. S. Perumalla, and R. M.

 Page 10 of 10

Fujimoto, "Efficient Optimistic Parallel
Simulations using Reverse Computation,"
ACM Transactions on Modeling and
Computer Simulation, vol. 9, 1999.

[8] W. Chen and J. Udding, "Program
Inversion: More than Fun!," Science of
Computer Programming, vol. 15, pp. 1-13,
1990.

[9] D. Eppstein, "A Heuristic Approach to
Program Inversion," presented at
Internationl Joint Conference on Artificial
Intelligence, 1985.

[10] E. Fredkin and T. Toffoli, "Conservative
Logic," International Journal of Theoretical
Physics, vol. 21, pp. 905-940, 1982.

[11] C. N. Ip and D. L. Dill, "State Reduction
Using Reversible Rules," presented at 33rd
Design Automation Conference, 1996.

[12] M. Li and P. Vitanyi, "Reversible
Simulation of Irreversible Computation,"
presented at IEEE Conference on
Computational Complexity (CCC), 1996.

[13] R. H. B. Netzer and M. H. Weaver,
"Optimal Tracing and Incremental Re-
execution for Debugging Long-Running
Programs," presented at Programming
Language Design and Implementation,
1994.

[14] K. S. Perumalla and R. M. Fujimoto,
"Source Code Transformations for Efficient
Reversibility," College of Computing,
Georgia Institute of Technology, Atlanta,
Technical Report GIT-CC-99-21,
1999/09/01 1999.

[15] B. J. Ross, "Running Programs Backwards:
the Logical Inversion of Imperative
Computation," Dept. of Computer Science,
Brock University, St. Catharines, Ontario,
Technical Report CS-94-03, 1994/01/01
1994.

[16] B. J. Ross, "Running Programs Backwards:
the Logical Inversion of Imperative
Computation," Journal of Formal Aspects of
Computing, vol. 9, pp. 331-348, 1997.

[17] R. Sosic, "History Cache: Hardware Support
for Reverse Execution," in Computer
Architecture News, vol. 22, 1994, pp. 11-18.

	Abstract
	Introduction
	Background and Motivation
	Related Work
	Example: Fibonacci Sequence
	Motivation: Speculative Execution

	Traditional Solution Approach
	Memory Scalability

	Algorithm
	Generalization: Linear Codes
	Rationale
	Algorithm Outline
	Definitions and Notation
	Input Function
	Preprocessing
	Matrix Representation

	Eliminating Singularity
	Row Elimination
	Column Elimination
	Termination
	Guards for Initial Values

	Fast-backwards
	Conclusions and Future Work
	References

