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Abstract— TCP is often blamed that it cannot use ef-
ficiently network paths with high Bandwidth-Delay Prod-
uct (BDP). The BDP is of fundamental importance because
it determines the required socket buffer size for maximum
throughput. In this paper, we re-examine the BDP concept,
considering the effects of network buffering and cross traf-
fic on the ‘bandwidth’ and ‘delay’ characteristics of a path.
We show that, with careful socket buffer sizing, a bulk TCP
transfer can saturate a network path independent of the BDP
or the available network buffers. In a non-congested path,
there is a certain socket buffer size (which depends on the
cross traffic type) that maximizes the throughput of a bulk
TCP transfer. In a congested path, the TCP throughput is
maximized when the connection is limited by the conges-
tion window, rather than by the socket buffers. Finally, we
present an application-layer mechanism (SOBAS) that au-
tomatically adjusts the socket buffer size close to its opti-
mal value, based on direct measurements of the maximum
received throughput and of the round-trip time, without re-
quiring prior knowledge of the path characteristics.

Keywords: TCP throughput, router buffers, available band-
width, bottleneck bandwidth, round-trip time, fast long-
distance networks.

I. INTRODUCTION

There is a significant interest recently in end-to-end per-
formance over high-bandwidth and long-distance networks
[1]. In particular, it is the scientific community that pushes
the edge of network performance with applications such
as distributed simulation, remote colaboratories, and with
huge transfers (gigabytes or more). Typically, such appli-
cations run over well-provisioned networks (Internet2, ES-
net, GEANT, etc) built with high-bandwidth links (OC-12 or
higher) that are lightly loaded in most of the time. Addition-
ally, through the gradual deployment of Gigabit Ethernet in-
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terfaces, congestion also becomes rare at the network edges
and end-hosts. With all this network bandwidth, it is not sur-
prising that users expect a superb end-to-end performance.
However, this is not always the case. A recent measure-
ment study at the Internet2 showed that 90% of the ‘bulk’
TCP transfers (i.e., transfers of more than 10MB) typically
receive less than 5Mbps [2]. This is an unsatisfactory result,
given that Internet2 uses OC-48 links that are rarely utilized
by more than 30%, while most universities connected to In-
ternet2 also operate high-bandwidth and well-provisioned
networks.

A popular belief is that a major reason for the relatively
low end-to-end throughput in fast long-distance networks is
TCP. This is either due to TCP itself (e.g., its congestion con-
trol algorithms and parameters), or because of local system
configuration (e.g., default TCP socket buffer size) [3], [4].1

TCP is blamed that it is slow in capturing the available band-
width of high-performance networks, especially in transfers
over long-distance paths. Two issues commonly identified
as the underlying reasons are:
1. Limited socket buffers at the TCP sender or receiver im-
pose a conservative upper bound on the effective window of
the transfer, and thus on the maximum achievable through-
put.
2. Packet losses cause a large and multiplicative window
reduction, and a subsequent slow (linear) window increase
rate, causing an overall low average throughput.
Other TCP-related issues that often impede performance are
multiple packet losses at the end of slow-start (commonly
resulting in timeouts), the inability to distinguish between
congestion and random packet losses, the use of small seg-
ments, the coarse granularity of the retransmission timeout,
or the initial value of the ssthresh parameter [5], [6].

Networking research has focused on these problems, pur-
suing mostly three approaches: modified congestion control
algorithms [7], [8], [9], [10], parallel TCP transfers [11],
[12], [13], [14], and improved socket buffer sizing [5], [15],
[16], [17]. Modified congestion control schemes, possibly
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with cooperation from routers [9], can lead to significant
benefits for both applications and networks, and they can
also address other important issues, such as the detection of
congestion unresponsive traffic. Modifying TCP, however,
is an enormously difficult task today, given the millions of
existing TCP installations and the fairness issues that would
arise during deployment of diverse congestion control algo-
rithms. Parallel TCP connections can increase the aggregate
throughput that an application receives. They also raise fair-
ness issues, however, because an aggregate of � connec-
tions decreases its aggregate window by a factor ���� , rather
than �� , upon a packet loss. Also, the aggregate window in-
crease rate is � times faster than that of a single connection.
This paper follows the socket buffer sizing approach, rather
than modifying TCP or using parallel connections. Socket
buffer sizing can be performed by applications, and so it
does not require changes at the TCP implementation or pro-
tocol. Also, it is a mechanism that can work complementary
with parallel connections. Even if TCP evolves to a differ-
ent protocol in the future, we believe that it is still important
to consider how we can improve application performance in
the shorter term, using the existing TCP incarnation.

How can an application determine an appropriate size for
the socket buffer at the sender and receiver of a TCP trans-
fer? A first constraint is that the socket buffers cannot ex-
ceed the memory that the operating system makes available
for that connection. Throughout the paper, we assume that
the end-hosts have enough memory and that this constraint
is met. This is widely the case today, with the exception
perhaps of busy Web or file servers. A second constraint
is that the two socket buffers, or actually the smaller of the
two, should be sufficiently large so that the transfer can sat-
urate the underlying network path. This leads us to a funda-
mental concept in any window-controlled transport protocol:
the Bandwidth-Delay Product (BDP). Specifically, suppose
that the bottleneck link of a path has a transmission capac-
ity (‘bandwidth’) of � bps and the path between the sender
and the receiver has a Round-Trip Time (RTT) of � sec. The
connection will be able to saturate the path, achieving the
maximum possible throughput � , if its effective window is
���	� . This product is historically referred to as BDP. For
the effective window to be �
��� , however, the smaller of
the two socket buffers should be equally large. If the size
of that socket buffer is less than ���� , the connection will
underutilize the path. If it is more than ���	� , the connec-
tion will overload the path, and depending on the amount of
network buffering, it will cause congestion, packet losses,
window reductions, and possibly throughput drops.

The previous interpretation of the BDP, and its relation to
TCP throughput and socket buffer sizing, are well-known in
the networking literature. As we argue in Section II, how-
ever, the socket buffer size should be equal to the BDP only
in the case of a path that does not carry competing traffic

(‘cross traffic’) and that does not introduce queueing delays.
The presence of cross traffic means that the ‘bandwidth’ of
a path will not be � , but somewhat less than that. Also,
packet buffers in the network routers can cause queueing de-
lays, meaning that the RTT of the path will be larger than
the fixed delay � . Given these two additional effects (cross
traffic load, and queueing delays), how should we define the
BDP of a network path? Should we interpret the ‘bandwidth’
term of the BDP as the capacity � , the available bandwidth
which remains unclaimed from cross traffic, the ‘fair share’
in the path (for some definition of fairness), or as something
different than the above? And how should we interpret the
‘delay’ term of the BDP? Is it the minimum possible RTT,
the average RTT before the TCP connection starts (includ-
ing queueing delays due to cross traffic), or the average RTT
after the TCP connection starts? In Section III, we review
the previous work in the area of socket buffer sizing, arguing
that the BDP has been given different interpretations in the
past and that it is still unclear what is the socket buffer size
that maximizes the throughput of a bulk TCP transfer.

The first objective of this paper is to examine the effects
of the socket buffer size, the amount of network buffering,
and the cross traffic type on the throughput of a bulk TCP
transfer. In Section IV, we focus on the effect of network
buffering. We show that, with appropriate socket buffer siz-
ing, a TCP transfer can saturate a network path, independent
of how large the BDP is, and independent of the available
network buffering. In Sections V and VI, we examine the
effects of cross traffic on the TCP throughput. The type of
cross traffic is crucial, as it determines whether and by how
much the latter will decrease its send-rate upon the initiation
of a new TCP transfer. We identify four distinct common
types of cross traffic: rate-controlled UDP flows, TCP trans-
fers limited by congestion, TCP transfers limited by socket
buffers, and TCP transfers limited by size. We show that,
depending on the cross traffic type, the Maximum Feasible
Throughput of a TCP connection can be the Available Band-
width [18], the Bulk Transfer Capacity (BTC) [19], or the
maximum TCP throughput that does not cause packet losses
in the path. An important conclusion from Sections V and
VI is that, independent of cross traffic and network buffer-
ing, there is a certain socket buffer size that maximizes the
throughput of a bulk TCP transfer.

The second objective of this paper is to develop an
application-layer mechanism that can automatically set the
socket buffer size so that the TCP transfer receives its Max-
imum Feasible Throughput, or at least close to that. In
Section VII, we describe the proposed SOcket Buffer Auto-
Sizing (SOBAS) mechanism. SOBAS estimates the path’s
BDP from the maximum TCP goodput measured by the re-
ceiving application, as well as from out-of-band RTT mea-
surements. We emphasize that SOBAS does not require
changes in TCP, and that it can be integrated in principle



3

with any TCP-based bulk data transfer application. SOBAS
has been evaluated through simulations and Internet exper-
iments. Simulations are used to compare SOBAS with the
Maximum Feasible Throughput and with other socket buffer
sizing techniques under the same traffic conditions. Experi-
mental results provide us with confidence that SOBAS works
well, even with all the additional measurement inaccuracies,
traffic dynamics, non-stationarities, and noise sources of a
real Internet path. A key point about SOBAS is that it does
not require prior knowledge or estimation of path character-
istics such as the end-to-end capacity or available bandwidth.
We conclude in Section VIII.

II. WHAT DOES BANDWIDTH-DELAY PRODUCT MEAN?

Consider a unidirectional TCP transfer from a sender�����
to a receiver ���	� . TCP is window-controlled, mean-

ing that
�����

is allowed to have up to a certain number
of transmitted but unacknowledged bytes, referred to as the
send-window 
�� , at any time. The send-window is limited
by


 ��������	� 
�����
������ ��� (1)

where 
�� is the sender’s congestion window [20], 
 � is the
receive-window advertised by ���!� , and � � is the size of
the send-socket buffer at

�����
. The receive-window 
 �

is the amount of available receive-socket buffer memory at
���	� , and is limited by the receive-socket buffer size �"� ,
i.e., 
���#$�%� . So, the send-window of a transfer is limited
by:


 ��&�'�(�)� 
�����* � (2)

where * +�'�(�)� �"�,��� � � is the minimum of the two socket
buffer sizes. If the send-window is limited by 
-� , we say
that the transfer is congestion-limited; otherwise, if the send-
window is limited by * , we say that the transfer is buffer-
limited. A transfer can be congestion-limited or buffer-
limited at different time periods. If �/.0
 �21 is the connec-
tion’s RTT when the send-window is 
 � , the transfer’s
throughput is

3  
 �
�/.0
 �21 

�'�(�!� 
��4�5* �
�/.6
 �21 (3)

Note that the RTT can vary with 
 � because of queueing
delays due to the transfer itself.

We next describe a model for the network path 7 that the
TCP transfer goes through. The bulk TCP transfer that we
focus on is referred to as the target transfer; the rest of the
traffic in the path is referred to as cross traffic. The forward
path from

�����
to ���!� , and the reverse path from ���!� to�����

, are assumed to be fixed and unique for the duration
of the target transfer. Each link 8 of the forward/reverse path
transmits packets with a capacity of ��9 bps, causes a fixed
delay :�9 , and it has link buffers that can store �"9 packets. Ar-
riving packets are discarded in a Drop-Tail manner when the

corresponding buffer is full. The minimum RTT of the path
is the sum of all fixed delays along the path �); =< 9?>�@ :49 .

Also, let AB9 be the initial average utilization of link 8 ,
i.e., the utilization at link 8 prior to the target transfer. The
available bandwidth CD9 of link 8 is then defined as CD9 
� 9 �-.FEHG A 9 1 . Due to cross traffic, link 8 introduces queue-
ing delays together with the fixed delay :,9 . Let I:�9KJL:49 be
the average delay at link 8 , considering both fixed and queue-
ing delays, prior to the target transfer. The exogenous RTT
of the path is the sum of all average delays along the path
�!M  < 9N>�@ I:�9 before the target transfer starts.

Adopting the terminology of [18], we refer to the link
of the forward path 7�O with the minimum capacity � 
�'��� @QP � �R9 � as the narrow link, and to the link with the min-
imum available bandwidth C &�'��� @	P � CD9 � as the tight link.
We say that a link is saturated when its utilization is 100%
(i.e., CD9 =0), and that it is congested when it drops packets
due to buffer overflow (i.e., non-zero loss rate). Note that
a link can be saturated but not congested, or congested but
not saturated. We assume that the only saturated and/or con-
gested link in the forward path is the tight link. A path is
called congested or saturated, if its tight link is congested or
saturated, respectively.

The narrow link limits the maximum throughput � that
the target transfer can get. The tight link, on the other hand,
is the link that becomes saturated and/or congested after the
target transfer starts, when the latter has a sufficiently large
send-window. The buffer size of the tight link is denoted
by �DS , while T�DS�#U�DS is the average available buffer size
at the tight link prior to the target transfer. We refer to � ,
� ; , and � S as the structural path characteristics, and to C ,
�!M , and T�HS as the dynamic path characteristics prior to the
target transfer. The dynamic path characteristics depend on
the cross traffic.

Equation (3) shows that the throughput of the target trans-
fer depends on the minimum socket buffer size * . If we view
the throughput

3
as a function

3 .0* 1 , an important question
is: given a network path 7 , with certain structural and dy-
namic characteristics, for what value(s) of the socket buffer
size V* the target transfer throughput

3 .6* 1 is maximized?
We refer to the maximum value of the function

3 .6* 1 as the
Maximum Feasible Throughput (MFT) V3 . The conventional
wisdom, as expressed in networking textbooks [21], oper-
ational handouts [4], and research papers [16], is that the
socket buffer size * should be equal to the Bandwidth-Delay
Product of the path, where ‘bandwidth’ is the capacity of the
path � , and ‘delay’ is the minimum RTT of the path � ; , i.e.,
*  � � � ; . Indeed, if the send-window is 
 �  � � � ; ,
and assuming that there is no cross traffic in the path, the
tight link becomes saturated but not congested, and the target
transfer achieves its Maximum Feasible Throughput V3  � .
Thus, in the case of no cross traffic, V*  � � � ; .

In practice, a network path always carries some cross traf-
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fic, and thus C�� � . If the socket buffer size is set to �� �); ,
the target transfer will saturate the tight link, and depending
on the number of buffers at the tight link �%S , it may also
cause congestion. Congestion, however, causes multiplica-
tive drops in the target transfer’s send-window, and, poten-
tially, throughput reductions as well. Thus, the amount of
buffering �DS at the tight link is an important factor for socket
buffer sizing, as it determines the point at which the tight
link becomes congested. The presence of cross traffic has
two additional implications. First, cross traffic causes queue-
ing delays in the path, and thus the initial RTT of the target
transfer becomes the exogenous RTT � M , rather than the min-
imum RTT � ; . With larger � S and with burstier cross traf-
fic, the difference between �!; and �!M becomes more signifi-
cant. Second, if the cross traffic is TCP (or TCP-friendly), it
will react to the initiation of the target TCP transfer reducing
its throughput, either because of packet losses, or because
the target transfer has increased the RTT in the path. Thus,
the target transfer can achieve a higher throughput than what
was the initial available bandwidth C .

In the next section, we review the previous work in the
area of socket buffer sizing, and identify several interpreta-
tions that have been given to the BDP:
1. BDP � : *  � � � ;
2. BDP � : *  � � �!M
3. BDP � : *  C � �	;
4. BDP � : *  C � �!M
5. BDP � : *  BTC � ���
6. BDP � : *  *�� (where *	��
 ���� 
�� )
The first four BDP definitions should be clear from the previ-
ous model. The bandwidth term in BDP � is the Bulk Trans-
fer Capacity (BTC), i.e., the average throughput of a bulk
congestion-limited TCP transfer [22]. It can be argued that
the BTC is the ‘fair-share’ of the target transfer in the path,
according to TCP’s bandwidth sharing properties. ��� is the
average RTT of the path, after the target transfer has started,
and so it includes the queueing load due to the target trans-
fer. BTC is determined by the congestion window and the
average RTT of the target transfer, and so BDP � is related to
the average congestion window of the transfer.

In BDP � , * is set to a sufficiently large value, so that it is
always larger than the congestion window. So, the meaning
of BDP � is that connection should be always congestion-
limited. Of course, in the absence of any previous infor-
mation about the path, it is hard to know how large the
maximum congestion window will be. Note that BDP � and
BDP � are different: in the former, the connection may be
buffer-limited during parts of its lifetime, while in the latter
the connection’s send-window is never limited by the socket
buffers.

III. PREVIOUS WORK ON SOCKET BUFFER SIZING

There are several measurement and estimation techniques
for bandwidth-related metrics, such as the capacity, available

bandwidth, or Bulk Transfer Capacity of a path [18], [22],
[23], [24]. An application of such techniques is that they can
be used to estimate the bandwidth term of a path’s BDP.

An auto-tuning technique that is based on active band-
width estimation is the Work Around Daemon (WAD) [5].
WAD uses ping to measure the minimum RTT �); prior to
the start of a TCP connection, and pipechar to estimate the
capacity � of the path [25]. In other words, [5] attempts to
set the socket buffer size as in BDP � . A similar approach
is taken by the NLANR Auto-Tuning FTP implementation
[26]. In that work, however, the socket buffer sizing is based
on the median, rather than the minimum, of the bandwidth-
delay product measurements and so it is closer to BDP � .
Similar BDP interpretations are given at the manual socket
buffer sizing guidelines of [4] and [15].

A different bandwidth metric is considered in [27]. That
work proposes a TCP variant in which the send-window is
adjusted based on the available bandwidth of a path. The
proposed protocol is called TCP-Low Priority (TCP-LP),
and it is able to utilize any excess network bandwidth that
would not be used normally by the regular TCP workload
[27]. Even though TCP-LP is not a socket buffer sizing
scheme, it relates more to BDP � or BDP � because it is the
available bandwidth, rather than the capacity, that limits the
transfer’s send-window.

The first proposal for automatic TCP buffer tuning was
[16]. The goal of that work was to allow a host (typically a
server) to fairly share kernel memory between multiple on-
going connections. The proposed mechanism, even though
simple to implement, requires changes in the operating sys-
tem. An important point about [16] is that the BDP of a path
was estimated based on the congestion window (cwnd) of
the TCP connection. Thus, the socket buffer sizing objective
in that work was similar to BDP � . The receive-socket buffer
size was set to a sufficiently large value so that it does not
limit the transfer’s throughput.

An application-based socket buffer auto-tuning technique,
called Dynamic Right-Sizing (DRS), has been proposed in
[17]. DRS measures the RTT of the path prior to the start
of the connection (exogenous RTT). To estimate the band-
width of the path, DRS measures the average throughput at
the receiving side of the application. It is important to note
however, that the target transfer throughput does not only
depend on the congestion window, but also on the current
socket buffer size. Thus, DRS will not be able to estimate in
general the socket buffer size that maximizes the target trans-
fer’s throughput, as it may be limited by the current socket
buffer size. The socket buffer sizing objective of DRS does
not correspond to one of the BDP definitions in the previous
section. A comparison of some socket buffer sizing mecha-
nisms is made in [28].

We finally note that the latest stable version of the Linux
kernel (2.4) uses a non-standardized socket buffer sizing al-



5

gorithm. In particular, even if the application has specified a
large receive-socket buffer size (using the setsockopt system
call), the TCP receiver advertizes a small receive-window
that increases gradually with every ACKed segment. It also
appears that Linux 2.4 adjusts the send-socket buffer size
dynamically, based on the available system memory and the
transfer’s send-socket buffer backlog.

IV. UNDER-BUFFERED AND OVER-BUFFERED PATHS

Let us first examine the effect of network buffering on the
throughput of a bulk TCP transfer, in the simple case of a
path that does not carry cross traffic. Consider the model
of � II. What is the average throughput

3 .0* 1 of a bulk TCP
transfer, as a function of the socket buffer size * , the path
capacity � , the minimum RTT �!; , and the tight link buffer
size �DS ? The following result, proven in Appendix-1, shows
that we need to consider two cases, depending on the net-
work buffering �%S .

If � S is less than BDP � , i.e., if � S � � � ; ,

3 .0* 1 

��������� ��������

���� if * # � � ;

� if � � ; �&* #
� � ;
	 � S

���
� ������ � ������������� � ����� ��� ��� � ��� � � if * 
 � � ;
	 � S

(4)
When * is less than � � � ; , the connection is buffer-
limited and it does not saturate the path. As * increases, the
throughput

3 .0* 1 increases linearly until * becomes large
enough ( � �	; ) to saturate the path. If * is sufficiently large
to saturate the path, but without causing congestion, i.e.,
� � ; �&* # � � ;�	 � S , the transfer achieves its Maximum
Feasible Throughput V3 , that is equal to the capacity � . For a
larger socket buffer size ( * 
 � �!; 	 �HS ), the transfer causes
packet losses at the tight link, and it becomes congestion-
limited. Its throughput then depends on the amount of net-
work buffering �%S . If �DS � � �Q; , the transfer cannot satu-
rate the path when *�
 � �!; 	 �DS because the ‘sawtooth’
variations of the congestion window also cause throughput
reductions. In other words, the transfer’s backlog at the tight
link is not enough to absorb the loss-induced reduction of the
transfer’s send-rate. When �%S � � �Q; , we say that the path
is under-buffered for the target TCP transfer. The resulting
throughput

3 .0* 1 depends on the number of dropped packets
each time the tight link buffer overflows; the expression in
(4) assumes single packet losses. In the extreme case that
�HS���� , the target transfer can only achieve 75% utilization
of the tight link.

On the other hand, if �%S�J � �	; the target transfer can
saturate the path even if * 
 � � ;�	 � S , assuming again

single packet losses:

3 .0* 1 
�� � ���� if * # � � ;

� if * 
 � � ;
(5)

The important difference in this case is that losses, and the
subsequent send-window reductions, do not decrease the
transfer’s throughput. This is because the transfer’s backlog
at the tight link is sufficiently large to keep that link saturated
while the send-rate is less than � . When �%S 
 � �	; , we say
that the path is over-buffered for the target transfer.

Note that whether the path is under-buffered or over-
buffered depends on the target transfer’s RTT �! . If the net-
work operator provisions the network buffer size as �"S 
� � �" based on the RTT �� , the path will be under-buffered
for connections with larger RTT, and over-buffered for con-
nections with smaller RTTs.

The previous result also shows why TCP often performs
inefficiently in high bandwidth-delay product paths. Such
paths require significant amounts of network buffering at
each router/switch interface that may become the tight link
of the transfer. The required buffering is at least ���	�! in
terms of bytes, or at least �� in terms of seconds. If the inter-
face buffers are dimensioned based on open-loop (non-TCP)
traffic, such as in [29], the path can be significantly under-
buffered for most TCP traffic. For this reason, some network
providers install hundreds of msec worth of buffering in their
router interfaces. Large amounts of network buffering, how-
ever, can also cause large queueing delays and jitter, affect-
ing the performance of real-time and streaming applications.

Sometimes applications set their socket buffer size to the
largest possible value that the operating system allows, in an
attempt to maximize the resulting throughput. In that case,
however, the transfer may become congestion-limited. Then,
if the path is under-buffered for that transfer, the latter will
not manage to saturate the path. Even if the path is over-
buffered, the target transfer may not be able to get its Maxi-
mum Feasible Throughput when it loses several packets at a
congestion event.2

Equations (4) and (5), however, show an important and
positive point that we should focus on: a TCP transfer can
achieve its Maximum Feasible Throughput independent of
the network buffering �%S , as long as the socket buffer size is
limited in the range � � ; � *+#�� � ;#	 � S . That range
results in path saturation, but without congestion. To operate
at that ‘sweet spot’, the socket buffer size * must be chosen
based on the bandwidth and RTT characteristics of the path,
rather than to be blindly set to its maximum possible value.

To illustrate this point, Figure 1 shows the good-
put of two successive 1-gigabyte transfer from host
bwest.cc.gt.atl.ga.us to host nyu.ron.lcs.mit.edu. The BDP �$

Bursty losses are quite common in Drop-Tail buffers [30].



6

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

GaTech to NYU 
Receive Socket Buffer: 470KB

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Time (sec)

0

20

40

60

80

100

T
C

P 
th

ro
ug

hp
ut

 (
M

bp
s)

Receive Socket Buffer: 950KB

Fig. 1. Throughput of 1-gigabyte transfer with two socket buffer sizes.

of this path is 436KB3, with a layer-2 capacity of 100Mbps.
In the top transfer of Figure 1, the receive-socket buffer size
(which is smaller than the send-socket buffer size) is 470KB.
With this value of * , the transfer does not experience any
packet losses, and its goodput is about 91.3Mbps, close to
the capacity of this path. On the other hand, in the bot-
tom transfer of Figure 1, the receive-socket buffer size is set
to 950KB, and the transfer receives an average goodput of
only 61.7Mbps. The reason is that with the larger socket
buffer size, the transfer overloads the network buffers, caus-
ing (bursty) packet losses, and subsequent large window re-
ductions. This experiment illustrates that a limited socket
buffer size can improve the throughput of a TCP transfer,
when it is large enough to saturate the path, but not so large
that it would cause congestion.

V. MFT AT A NON-CONGESTED PATH

In this section, we consider a path that is not congested
(i.e., no packet losses at tight link) prior to the target TCP
transfer. Our objective is to examine the relation between the
throughput

3 .6* 1 of the target transfer and its socket buffer
size * , and to identify the Maximum Feasible Throughput
for different types of cross traffic.

This throughput of the target transfer depends on the con-
gestion responsiveness of cross traffic, i.e., the way in which
the throughput of cross traffic flows is reduced after the start
of the target transfer. We consider three types of cross traffic
in a non-congested path:
1. Rate-controlled UDP sources with constant average rate.
2. Buffer-limited persistent TCP transfers (‘elephants’).
3. Size-limited short TCP transfers (‘mice’).
As will be shown next, the previous traffic types are funda-
mentally different in terms of their congestion responsive-
ness. Even though we do not claim that these are the only

�
Throughout the paper, KB means 1000 bytes.

types of cross traffic, they represent three distinct and major
points in the congestion responsiveness space.
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The following results are illustrated with NS simulations.
The simulated network is shown in Figure 24. All data pack-
ets are 1000 bytes long. The structural path characteristics
are � =50Mbps, �!; =100msec, and so � �	; =625,000 bytes
or 625 data packets. For each cross traffic type, we sim-
ulate three tight link buffer sizes � S : �� � � ; =313 packets
(under-buffered), � � ; =625 packets, (well-buffered), and� � �Q; =1250 packets (over-buffered). Depending on the
type of cross traffic that we consider next, some of the
sources shown in Figure 2 are turned off. The reverse path
carries the same cross traffic as the forward path.

A. Cross traffic with constant average rate

Suppose that the tight link of the path carries only rate-
controlled cross traffic, with constant average rate

3 � � � S .
This type of cross traffic will not adapt its send-rate after
the target TCP transfer starts, independent of any losses or
queueing delays in the path. For this reason, we also refer
to it as congestion unresponsive. The dynamic characteris-
tics of the path, prior to the target transfer, need to include
the additional load, average queueing delay, and buffer oc-
cupancy that the cross traffic causes in the tight link of the

�
We use this simplistic topology here to isolate the cross traffic type from

more complex effects that can appear in a multihop topology. A more com-
plex network is simulated in � VII.
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path. Specifically, the available bandwidth is C  � G 3 � ,
the average exogenous RTT is �)M�J �	; , and the average
available buffer space at the tight link is T�DS #&�DS .

As a first-order approximation, we assume a fluid model
for both the cross traffic and the target transfer. Under this
assumption, the dynamic characteristics of the path become
constant. Following the same derivations as in Appendix-1,
the throughput of the target transfer would be then given by
Equations (4) and (5), replacing � by C , � ; by � M , and � S
by T� S . So, the path would be over-buffered if T� S J&C � M , and
in that case the target transfer throughput would be

3 .0* 1 
*�� �!M if * #&C �!M , and

3 .0* 1  C if * 
&C �)M . If the path is
under-buffered (i.e., T� S �&C � M ), the throughput will drop to
���
� . T� S 	 C � M 1 � ����. T� S 	 C � M 1 � G T� S C � M�� when * 
&C � M�	
T�HS . So, when the cross traffic has a constant average rate

3 � ,
the MFT of the target transfer is the available bandwidth C ,
i.e., V3  C  �$G 3 � . Also, the optimal socket buffer size
V* would be any value in � C � M � C � M�	 T� S�� .

Because of traffic burstiness however, a backlog will be
created at the tight link even when * � C ��M , and packet
losses can occur even when * �&C �)M 	 T�HS . As the network
buffering �DS decreases, the deviations between the fluid traf-
fic model and bursty traffic would be larger. So, the MFT in
practice can be less than C , especially in paths with inade-
quate network buffering. For the same reason, the optimal
socket buffer size in practice would be closer to V*  C �!M
(empty buffer) rather than to C � M�	 T� S (full buffer).

Figure 3 shows the target transfer throughput
3 .6* 1 , for

three network buffering levels, as a function of the socket
buffer size * . The cross traffic is generated from 10 sources
with Pareto distributed packet interarrivals (scale param-
eter � =1.5). The tight link utilization is 70% initially
( C =15Mbps), and the exogenous RTT is 102ms. Accord-
ing to the previous model, the optimal socket buffer size
would be V*  C �	M =191pkts. When �DS =1250pkts, we see
that the target transfer can saturate the path ( V3 =15Mbps,
V* =250-350pkts). For lower network buffering (625pkts and

313pkts), the target transfer has a lower MFT (14.5Mbps and
12Mbps), and a smaller optimal socket buffer size (250pkts
and 150pkts) because the tight link buffers overflow before
that link is saturated.

In summary, when the cross traffic consists of congestion
unresponsive flows with constant average rate, the MFT of
the target TCP transfer can be up to the initial available band-
width C .

B. Buffer-limited TCP transfers

Suppose that the cross traffic is generated from a persistent
and buffer-limited TCP transfer with maximum window 
-�0S
and RTT �!�0S . Since the transfer is buffer-limited, it does not
create congestion in the path, and its throughput is

3 �0S 

 �0S � � �0S # � .

In the following derivations, we assume again a fluid traf-
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Fig. 4. Cross traffic: buffer-limited persistent TCP transfers.

fic model. Before the target TCP transfer starts, the available
bandwidth in the path is C = � G 3 �0S J 0, the exogenous RTT
is �!M , and the available tight link buffer space is T�DS #��HS . If
the target transfer’s socket buffer size is * # C ��M , it will
not saturate the path, and

3 .6* 1  *�� � M # C . If how-
ever C �!M � * # 3 ; �
	 �!M 	 T�HS , where

3 ; �
	 is the maxi-
mum target transfer throughput for which there are no packet
losses at the tight link (will be derived later), the target trans-
fer will saturate the tight link and it will create a backlog�  *�G 3 .0* 1 �!M . The backlog

�
will increase the RTT of

the cross traffic transfer to ���0S  �!�0S 	 � � � . The window of
that transfer is limited to 
 �0S however, and so its throughput
will be now reduced to

3 ��0S  
 �0S
�!�0S 	 � � �  . � G C 1

� �0S
�	�0S 	 � � � �

3 �0S (6)

Thus, the target transfer’s throughput will be

3 .0* 1  � G 3 ��0S  C � �0S"	 � �2C
�	� 	 � � � J�C (7)

which means that the target transfer received some of the
bandwidth that was previously utilized by the cross traffic
transfer. The MFT of the target transfer is achieved when
the latter fills up the available buffer at the tight link, but
without causing packet losses,

V3  C � �0S"	 T� S � C
�!�0S 	 T�DS�� � #�C � �0S"	 ��� C

�!�0S 	 ��� � (8)

and so the optimal socket buffer size is V*  V3 � M 	 T� S .
Also note that the maximum lossless throughput of the target
transfer

3 ; ��	 is equal to the MFT.
Figure 4 shows the target transfer throughput

3 .0* 1 , for
three network buffering levels, as a function of the socket
buffer size. The buffer-limited persistent transfers are gen-
erated from 20 TCP Reno sources. The average RTT of
the cross-traffic transfers is 100msec, and their maximum
window size is 22 packets so that they create a tight link
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Fig. 5. Cross traffic: size-limited short TCP transfers.

utilization of 70% ( C =15Mbps). The measured MFTs are:
24Mbps ( �DS =313pkts), 29Mbps ( �%S =625pkts), and 36Mbps
( � S =1250pkts). The corresponding MFTs from Equation (8)
are 27Mbps, 32Mbps, and 38Mbps. As in � V-A, the model
overestimates the MFT and the optimal socket buffer size,
because it assumes that losses occur only when the tight link
is saturated and the average available buffer space is zero.

In summary, when the cross traffic consists of buffer-
limited persistent TCP connections, the MFT of the target
TCP transfer is larger than the initial available bandwidth C ,
and it corresponds to the maximum socket buffer size that
does not cause packet losses at the tight link.

C. Size-limited TCP transfers

Suppose that the cross traffic is an aggregation of many
short TCP transfers (‘mice’). Each mouse is a TCP con-
nection, and so it reacts to packet losses by a reduction of
its congestion window, and possibly by a timeout. Also,
each mouse is window-controlled, which means that RTT
increases, due to queueing delays, will also decrease its
throughput. These are similar congestion responsiveness
characteristics as with buffer-limited TCP transfers (‘ele-
phants’).

An aggregate of many mice, however, has the additional
characteristic that new transfers enter the network constantly
over time. The new transfers operate in slow-start, rather
than in congestion avoidance, meaning that their window in-
creases exponentially rather than linearly. Also, when con-
gestion occurs, the number of active connections in the net-
work increases because it takes longer for the previously ac-
tive connections to complete. How would an aggregate of
many mice share its utilized bandwidth with the target TCP
transfer? This question is hard to model mathematically,5

and so we limit the analysis of this cross traffic type to sim-
ulation results.

Figure 5 shows the target transfer throughput
3 .6* 1 , for

three network buffering levels, as a function of the socket
�
See [31] for some relevant analytical results however.

buffer size. The mice are generated from 2000 TCP Reno
sources (200 at each of 10 nodes) that transfer 10-15 data
packets, and then they ‘sleep’ for a time interval

�
before

starting a new TCP connection.
�

is uniformly distributed
between 4.25 to 4.75 seconds here to achieve a 70% utiliza-
tion at the tight link ( C =15Mbps).

Note that the throughput function
3 .6* 1 is similar, in

shape, with the corresponding function of buffer-limited
cross traffic in Figure 4:
1)
3 .0* 1 increases linearly with * up to C , until the target

transfer saturates the path (if the path is adequately buffered),
2) then,

3 .0* 1 increases sublinearly with * up to the MFT V3 ,
as the target transfer accumulates backlog at the tight link,
increasing the mice’s RTT and decreasing their throughput,
3) finally, the target transfer causes packet losses at the tight
link, becomes congestion-limited, and its throughput drops
to the BTC.

A major difference between mice and elephants, however,
is that the MFT with the former cross traffic type is much
lower: 14.5Mbps ( �DS =313pkts), 16Mbps ( �%S =625pkts), and
19.5Mbps ( �DS =1250pkts); the corresponding MFT values
for elephants were 24Mbps, 29Mbps, and 36Mbps. The
MFTs with mice cross traffic are close to the available band-
width ( C =15Mbps), which is generally the case with con-
gestion unresponsive cross traffic. Actually, in the extreme
case where the size of each mouse is only a single packet, the
aggregate of many mice entering the network with a constant
arrival rate would be strictly congestion unresponsive.

In summary, size-limited TCP transfers behave, in terms
of their congestion responsiveness, somewhere between
buffer-limited persistent TCP transfers and rate-controlled
UDP flows: they react individually to losses and increased
RTTs, but as an aggregate they do not share much of the
bandwidth that they already possess. The MFT with size-
limited TCP cross traffic results (as in the case of buffer-
limited TCP cross traffic) from the maximum socket buffer
size that does not cause packet losses at the tight link.

VI. MFT AT A CONGESTED PATH

In this section, we consider a path that is congested (i.e.,
packet losses occur at the tight link) prior to the target TCP
transfer. As in � V, we examine the relation between the
throughput

3 .0* 1 of the target transfer and its socket buffer
size * , and identify the Maximum Feasible Throughput for
different types of cross traffic.

The key point in the case of a congested path is that
the target transfer can experience packet losses caused by
cross traffic. This is a consequence of Drop-Tail buffering:
dropped packets belong to any flow, rather than only to the
flows that cause congestion. So, the target transfer can be-
come congestion-limited not due to its own send-window,
but because other flows overload the tight link of the path. A
limited socket buffer in this case can only reduce the target
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Fig. 6. Cross traffic: congestion-limited persistent TCP transfers.

transfer’s throughput. Thus, to maximize the target transfer’s
throughput, the socket buffer size * should be sufficiently
large so that the transfer is congestion-limited. Note that this
corresponds to BDP � of � II.

The previous intuitive reasoning can be explained analyt-
ically using a result of [32]. Equation (32) of that reference
states that the average throughput of a TCP transfer in a con-
gested path with loss rate � and average RTT � is

3 .6* 1 � �'�(�)� *� ��� . � ��� 15� (9)

where * is the transfer’s maximum possible window (equiv-
alent to socket buffer size), and � . � ��� 1 is a function that de-
pends on TCP’s congestion avoidance algorithm. Equation
(9) shows that, in a congested path (� 
 0), a limited socket
buffer size * can only reduce the target transfer’s through-
put, never increase it. So, the optimal socket buffer size in a
congested path is V*  * � , where * � is a sufficiently large
value to make the transfer congestion-limited throughout its
lifetime, i.e., *	� 
 ���� 
�� . Also, the MFT in a congested
path is the Bulk Transfer Capacity ( V3  BTC) of the target
transfer. The BTC can be also predicted from the analytical
model of [32] (Equation 20), given the average RTT and loss
rate of the target transfer with each tight link buffer size.

The following paragraphs show simulation results for the
target transfer throughput

3 .6* 1 , as a function of the socket
buffer size, in a congested path for two different cross traffic
types. The simulation topology and parameters are as in � V,
with the difference that the cross traffic saturates the path
( C � � ), causing packet drops at the tight link, prior to the
target transfer. We do not show results for congestion unre-
sponsive traffic, because in that case

3 .0* 1 �#� independent
of the socket buffer size.

A. Congestion-limited persistent TCP transfers

Figure 6 shows the target transfer throughput
3 .6* 1 , for

three network buffering levels, as a function of the socket
buffer size. The congestion-limited persistent transfers are
generated from 20 TCP Reno sources. The average RTT of
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Fig. 7. Cross traffic: size-limited short TCP transfers.

the cross-traffic transfers is 100msec, and their maximum
window size is set to a sufficiently large value so that any
of them can make the path congested. Prior to the tar-
get transfer, the available bandwidth is C � � , while the
loss rate and average RTT after the target transfer starts is
0.08%-118ms ( �DS =313pkts), 0.05%-148ms ( �%S =625pkts),
and 0.03%-215ms ( � S =1250pkts).

Note the difference between the function
3 .0* 1 in Fig-

ures 4 and 6. In both cases the cross traffic is 20 persis-
tent TCP transfers. In the non-congested path (Figure 4), the
cross traffic transfers are buffer-limited, and the target trans-
fer optimizes its throughput with the maximum socket buffer
size that does not cause congestion. In that case, limiting the
socket buffer size to avoid packet losses increases the target
transfer throughput. In a congested path (Figure 6), the cross
traffic transfers are congestion-limited. The key observation
here is that the target transfer’s throughput is optimized when
the socket buffer size is sufficiently large to make the trans-
fer congestion-limited. This is the case in these simulation
results when the socket buffer size is larger than 100pkts.
The MFT is approximately 2.4Mbps, which corresponds to
the BTC of the target transfer for the previous values of the
RTT and the loss rate.

Note that when the target transfer is buffer limited ( * �
100pkts), its throughput is lower for higher values of � S .
This is because a larger �%S allows the cross traffic transfers to
introduce more backlog at the tight link, and thus to increase
the path’s RTT. So, since the target transfer is buffer-limited,
its throughput decreases as � S increases. This is the same
effect as in � V-B, but with the role of the buffer-limited cross
traffic played by the target transfer.

B. Size-limited short TCP transfers

Figure 7 shows the target transfer throughput
3 .0* 1 , for

three network buffering levels, as a function of the socket
buffer size. The mice are again generated from 2000 TCP
Reno sources that transfer 10-15 data packets, and then
‘sleep’ for a time interval

�
before starting a new TCP

connection.
�

varies uniformly between 2 to 2.75 sec-
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onds to saturate the tight link of the path ( C � 0). The
loss rate and average RTT after the target transfer starts
is 1.5%-122ms ( �DS =313pkts), 0.85%-148ms ( �%S =625pkts),
and 0.06%-193ms ( � S =1250pkts).

As in the case of congested-limited persistent TCP trans-
fers, the target transfer optimizes its throughput when it is
congested-limited. This is the case in these simulation re-
sults for practically any socket buffer size. An interesting
difference with Figure 6, however, is that the MFT here is
quite lower. The reason is that the aggregation of many
short transfers causes a significantly higher loss rate than a
few persistent transfers. This is another illustration of the
fact that TCP mice are much less congestion responsive than
TCP elephants.

VII. SOCKET BUFFER AUTO-SIZING (SOBAS)

In this section we describe SOBAS, an application-layer
mechanism that automatically adjusts the socket buffer size
of a TCP transfer. SOBAS’ objective is to obtain a
throughput that is close to the transfer’s Maximum Feasi-
ble Throughput. There are two key points about SOBAS.
First, it does not require changes at the TCP protocol or its
implementation, and so, in principle at least, it can be inte-
grated with any TCP-based bulk transfer application. Sec-
ond, it does not require prior knowledge of the structural
or dynamic network path characteristics (such as capacity,
available bandwidth, or BTC).

We next state SOBAS’ scope and some important underly-
ing assumptions. First, SOBAS is appropriate for persistent
(bulk) TCP transfers. Its use would probably not improve
the throughput of short transfers that terminate before leav-
ing slow-start. Second, we assume that the TCP implementa-
tion at both end-hosts supports window scaling, as specified
in [33]. This is the case with most operating systems today
[15]. Third, we assume that an application can dynamically
change its send and receive socket buffer size during the cor-
responding TCP transfer, increasing or decreasing it6. This
is the case in FreeBSD, NetBSD, and Solaris, while Linux
2.4 uses a non-standardized receive-socket buffer tuning al-
gorithm that does not grant the application requests [5]. We
are not aware of how other operating systems react to dy-
namic changes of the socket buffer size. Fourth, we assume
that the maximum socket buffer size at both the sender and
receiver, normally configured by the system administrator
based on the available system memory, is set to a sufficiently
large value so that it never limits a connection’s through-
put. Even though this is not always the case, it is relatively
simple to change this parameter in most operating systems
[15]. Finally, we assume that the network links use Drop-

�

If an application requests a send-socket buffer decrease, the TCP sender
should stop receiving data from the application until its send-window has
been decreased to the requested size, rather than dropping data that are al-
ready in the send-socket (see [34] � 4.2.2.16). Similarly, in the case of a
decrease of the receive-socket buffer size, no data should be dropped.
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Fig. 8. Receive-throughput using SOBAS for two tight link buffer sizes.

Tail buffers, rather than RED-like active queues. This is also
widely the case.

A. Description of SOBAS

The SOBAS receiving-end sends an ‘out-of-band’ peri-
odic stream of UDP packets to the sending-end. These pack-
ets are ACKed by the sender, also with UDP packets. The
out-of-band packets, referred to as periodic probes, serve
two purposes. First, they allow the SOBAS receiver to main-
tain a running-average of the path’s RTT. Second, the re-
ceiver can infer whether the forward path is congested, mea-
suring the loss rate of the periodic probes in the forward path.
In the current prototype, the size of the periodic probes is
100 bytes, and they are sent with a period of 20ms (overhead
rate: 40kbps).

In the case of a non-congested path (see � V), the target
transfer reaches its Maximum Feasible Throughput with the
largest socket buffer that does not cause packet losses. To de-
tect that point, SOBAS needs to also monitor the goodput at
the receiving-end. Specifically, SOBAS measures the trans-
fer’s receive-throughput

3 � at the application-layer, count-
ing the amount of bytes received in every second. SOBAS
also knows the initial socket buffer size * at both the sender
and the receiver, as well as the running average of the RTT
I� , and so it can check whether the receive-throughput

3 � is
limited by the socket buffer size (i.e.,

3 � � * � I� ), or by the
congestion window (i.e.,

3 � � *�� I� ).
Upon connection establishment, SOBAS sets the send and

receive socket buffers to their maximum possible value. So,
initially the connection should be congestion-limited, unless
if one of the end-hosts does not have enough memory, or if
the maximum socket buffer size is too low.

Suppose now that the path is non-congested. The receive-
throughput will keep increasing, as the congestion window
increases, until it reaches the Maximum Feasible Through-
put. We refer to that point as rate saturation. At rate sat-
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Fig. 9. Multi-hop simulation topology.

uration the receive-throughput ‘flattens out’, and any fur-
ther congestion window increases cause queueing at the
tight link buffers. The duration of the queue-building pe-
riod depends on the tight link buffer size, and on whether
the TCP sender increases the congestion window multiplica-
tively (slow-start) or additively (congestion avoidance). If
the congestion window is allowed to increase past rate sat-
uration, the tight link buffers will overflow, causing con-
gestion, window reductions, and possibly throughput reduc-
tions. SOBAS attempts to avoid exactly that, by limiting the
receive-socket buffer size when it detects rate saturation.

The procedure for detecting and reacting to rate saturation
is as follows. SOBAS calculates the slope of the last five
receive-throughput measurements. A ‘rate saturation’ event
is detected when that slope is approximately zero. Suppose
that the receive-throughput at that point is

3 � � and the corre-
sponding RTT is �	� � . SOBAS limits then the receive-socket
buffer size to * � �  3 � � � � � � . The send-socket buffer size
can remain at its previous (maximum possible) value, as it is
the smaller of the two socket buffers that limits the transfer’s
throughput.

In the case of a congested path (see � VI), the target trans-
fer maximizes its throughput when it is congestion-limited,
and so * should be large enough to not limit the transfer’s
send-window. SOBAS checks whether the path is congested
only when it has detected rate saturation. At that point, it
examines whether any of the last 1000 periodic probes have
been lost in the forward path. When that is the case, SOBAS
infers that the path is congested, and it does not reduce the
socket buffer size.

During slow-start, bursty packet losses can occur because
the congestion window increases too fast. Such losses are
often followed by one or more timeouts. Also, successive
losses can cause a significant reduction of the ssthresh pa-
rameter, slowing down the subsequent increase of the con-
gestion window. This effect has been studied before (see [8],
[10] and references therein), and various TCP modifications
have been proposed to avoid it.

SOBAS attempts to avoid the massive losses that can oc-
cur in slow-start, imposing an initial limit on the receive-
socket buffer size. To do so, SOBAS sends five packet trains
at the forward path during the first few round-trips of the

transfer. The dispersion of those packet trains is measured at
the receiver, and an estimate T� of the forward path capacity
is quickly made7. SOBAS limits the initial socket buffer size
to T*  T���UT� , where T� is the corresponding RTT estimate
at that phase of the transfer. If SOBAS detects that the trans-
fer’s window has reached T* , based on the measured RTT
and receive-throughput, the socket buffer size is further in-
creased linearly, by two maximum segments per round-trip,
until the detection of rate saturation.

Figure 8 shows simulation results for the receive-
throughput of a 1-gigabyte SOBAS transfer at an over-
buffered and at an under-buffered path. In the top graph,
SOBAS manages to avoid the slow-start losses through the
initial socket buffer size limit T* . Later, SOBAS detects rate
saturation when the receive-throughput reaches 24Mbps, and
it stops increasing the socket buffer size. In the bottom
graph of Figure 8, on the other hand, the tight link is under-
buffered and SOBAS fails to avoid the slow-start losses. Af-
ter the recovery of those losses, TCP increases the conges-
tion window linearly. When the receive-throughput reaches
17.5Mbps, SOBAS detects rate saturation and it sets the
socket buffer size to the corresponding send-window. In both
cases, SOBAS manages to avoid losses after it has detected
rate saturation.

In the current prototype, SOBAS does not attempt to read-
just the socket buffer size after it has already done so once at
a previous rate saturation event. This approach is justified as-
suming that the network path’s structural and dynamic char-
acteristics are stationary during the TCP transfer. For very
long transfers, or when the underlying path tends to change
often, it would be possible to modify SOBAS so that it dy-
namically adjusts the socket buffer size during the transfer;
we plan to pursue this approach in future work.

B. Simulation results

We evaluated SOBAS comparing its throughput with the
MFT, as well as with the throughput of the six static socket
buffer sizing schemes of � II. These comparisons are only
meaningful if the underlying network conditions stay the

�

Even though the dispersion of packet trains cannot be used to accurately
estimate the capacity or the available bandwidth of a path [35], it does pro-
vides a rough estimate of a path’s bandwidth.
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same across transfers with different socket buffer sizes. This
is only possible with simulations.

Figure 9 shows the multi-hop simulation topology. The
target transfer is 1-gigabyte long, and it shares the path with
different types of cross traffic. Using the same sources as in� V, the cross traffic mix at the tight link, prior to the target
transfer, consists of 60% persistent TCP, 30% mice TCP, and
10% Pareto traffic (in bytes). Table I shows the throughput of
the target transfer for the six static socket buffer sizes of � II
and for SOBAS, at three different utilizations, and with three
tight link buffer sizes � S . The MFT of the target transfer is
also shown.

The first important observation is that the throughput us-
ing SOBAS is close to the Maximum Feasible Throughput,
typically within 5-10%. The deviation of SOBAS from
the MFT can be larger however (up to 15-20%) in under-
buffered paths (see �%S  � � �Q; � �

). Under-buffered paths
create three problems: first, SOBAS is often unable to avoid
the massive losses at the end of slow-start, despite the origi-
nal limit T* of the socket buffer size. Second, under-buffered
paths can cause sporadic losses even in moderate loads, es-
pecially with bursty traffic. Third, in under-buffered paths,
SOBAS is sometimes unable to detect rate saturation before
the target transfer experiences packet losses.

A second observation from Table I is that SOBAS pro-
vides a higher throughput than the six static socket buffer siz-
ing schemes of � II when the path is non-congested (except in
one case). In congested paths, the throughput difference be-
tween these schemes, including SOBAS, is minor. The key
point, however, is not the actual difference between SOBAS
and the sizing schemes of � II. What is more important is that
those schemes require prior knowledge about the capacity,
available bandwidth, BTC, or maximum congestion window
in the path, while SOBAS determines an appropriate socket
buffer size while the transfer is in progress, without any prior
information about the path. Finally, note that the most ‘com-
petitive’ static socket buffer sizing schemes are the ��� �);
(BDP � ), � � � M (BDP � ), and * 
 ���� 
 � (BDP � ).

C. Experimental results

We have implemented SOBAS as a simple TCP-based
bulk transfer application, and experimented with it at sev-
eral Internet paths in US and Europe. The dynamic char-
acteristics of an Internet path change over time, and so we
are not able to compare SOBAS with other socket buffer siz-
ing schemes, or to measure the MFT, under the same net-
work conditions. Instead, we used our prototype implemen-
tation to fine-tune SOBAS, test it in different paths, and see
whether it performs robustly ‘in the field’.

In Figure 10, we show the goodput of three successive
800MB transfers in a path from host

�
to host � . The ca-

pacity of the path is 100Mbps (layer-2), the exogenous RTT
is 37ms, and BDP � is 436KB. The top graph of Figure 10
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Fig. 10. Throughput of an 800MB transfer from � to � with SOBAS, and
with two static socket buffer sizes.

shows the goodput of the transfer using SOBAS. SOBAS de-
tects rate saturation five seconds after the start of the transfer,
and limits the receive-socket buffer size to 559KB. Its aver-
age goodput (application layer) is 92.9Mbps.

The second graph of Figure 10 shows the goodput of the
transfer when the socket buffer size is statically set to ap-
proximately BDP � (450KB). With this socket buffer size
the transfer also manages to avoid losses, even though its
throughput is slightly less than SOBAS (91.3Mbps). An im-
portant point is that this socket buffer selection was based on
previous knowledge about the capacity and the RTT of the
path. SOBAS, on the other hand, did not need this informa-
tion.

Finally, the third graph of Figure 10 shows the goodput
of the transfer when the socket buffer size is statically set to
its maximum allowed value at the receiving host (950KB).
This choice represents the popular belief in socket buffer
sizing that ‘larger is better’. Obviously this is not the case!
The transfer experiences several bursty losses, resulting in a
fairly low average throughput (59.8Mbps).

VIII. CONCLUSIONS

This paper considered the problem of TCP socket buffer
sizing. We introduced the concept of Maximum Feasible
Throughput, as the maximum value of the throughput ver-
sus socket buffer size function, and showed that the MFT
depends on the amount of network buffering, on the cross
traffic type, and on the path’s congestion status. We showed
that common practices, such as setting the socket buffer
size based on a certain definition of the bandwidth-delay
product, or simply setting it to a ‘big enough’ value, of-
ten leads to sub-optimal throughput. Finally, we developed
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� � �	; � � �!M C � �	; C � �!M BTC � � � * 
 ���� 
�� SOBAS MFT

Tight link utilization: A S =30% (non-congested path)
� S  � � � ; � �

37.6 37.7 29.6 28.9 26.6 29.5 32.9 38.2
�DS  � � �	; 37.6 37.7 29.6 28.9 34.0 31.6 39.1 40.2
�DS  � �� � �	; 37.6 37.7 29.6 28.8 37.7 37.1 39.1 41.7

Tight link utilization: A S =70% (non-congested path)
� S  � � � ; � �

15.5 16.3 12.6 12.6 13.5 14.8 17.7 21.5
�DS  � � �	; 24.7 23.7 12.6 12.6 19.0 19.8 25.1 25.6
�DS  � �� � �	; 25.7 25.9 12.6 12.6 24.6 25.9 27.1 29.8

Tight link utilization: ABS =100% (congested path)
� S  � � � ; � �

2.2 2.2 NA NA 0.9 2.1 1.9 2.1
�DS  � � �	; 2.3 2.3 NA NA 1.1 2.3 2.1 2.3
�DS  � �� � �	; 2.8 2.7 NA NA 1.5 2.7 2.2 2.7

TABLE I

an application-layer mechanism (SOBAS) that can automat-
ically set the socket buffer size close to its optimal value,
without prior knowledge of any path characteristics. SOBAS
can be integrated with TCP-based bulk transfer applications.
It will be more effective, however, if it is integrated with the
TCP stack. In that case, the RTT will be known from the
corresponding TCP estimates, without requiring UDP-based
measurements, and the receive-throughput will be more ac-
curately measurable. Even though SOBAS can avoid caus-
ing congestion-related losses, it cannot protect a TCP trans-
fer from random losses. The effect of such losses can be
decreased with a limited number of parallel TCP connec-
tions. In future work, we plan to integrate SOBAS with the
appropriate use of parallel connections.
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APPENDIX I: PROOF OF (4) AND (5)

We consider the model of � II, but without any cross traffic
in the path. Also, we ignore the initial slow-start phase of
the target transfer, and focus on its steady state throughput.
We assume that all packet losses are single and due to con-
gestion, and that they are recovered through fast-retransmit.
The following derivations are similar to those of [32], with
the difference that, when * 
 � �!; 	 �DS , we derive the RTT
variations as a function of the transfer’s window.
1. * # � � ;
Since *�� � ; # � , the transfer cannot saturate the path.
Thus, after the initial slow-start, the throughput stays at3 .0* 1  *�� �	; .
2. � � ; � * # � � ;
	 � S
Since *�� � ; 
�� , the transfer overloads the tight link and
causes a backlog

�  * G � �!; . Because
� # �%S there are

no losses, and the transfer is buffer-limited. The transfer’s
RTT is ���  � ; 	 � � � , and the throughput is

3 .6* 1 
*�� ���  � .
3. * 
 � �	; 	 �DS
In this case, the transfer has a sufficiently large window
to cause packet losses at the tight link. So, the transfer
is congestion-limited, and its send-window is equal to the
congestion window 
 � . Simplifying TCP’s congestion-
avoidance algorithm, we assume that 
-� is incremented by
one segment when the first packet of the previously trans-
mitted window is ACKed. So, we can split the transfer’s
duration into successive ‘rounds’, where each round lasts for
the round-trip time of the first packet in the previous win-
dow. If 
��,.N8 1 is the congestion window (in segments) at the
8 ’th round,


 � .N8 	 E 1 
�� � 
 � .N8 1 	 E if no loss at round 8


���.N8 1 � �
if (single) loss at round 8

(10)
Let �/.?8 1 be the RTT for the first packet of round 8 (duration
of round 8 ), and

� .N8 1 be the backlog at the tight link at the

start of round 8 . The backlog at the start of round 8 	 E
is determined by the window at the previous round:

� .N8 	
E 1  
��,.N8 1 G 3 .?8 1 �	; , where

3 .N8 1 is the transfer’s receive-
throughput at round 8 .

Suppose that the first packet of round � is dropped, i.e.,� .�� 1� �HS . Since the tight link was backlogged in the pre-
vious round, we have that

3 .���G E 1  � and so


��,.�� 1  � �	; 	 �HS 	 E and 
���.�� 	 E 1  
��,.�� 1 � �

(11)
If the next packet loss occurs in round � 	�� , we similarly
have that

� .�� 	�� 1  �DS , 
��,.�� 	�� 1  � �	; 	 �DS 	 E 

��,.�� 	 E 1 	 . � G�E 1 and so

�  � � ; 	 � S G E� � � � ;
	 � S
� (12)

The approximation is justified when we consider paths with
relatively large BDP and/or buffering ( � �!; 	 �HS�� E ).

The number of packets sent in the time period � between
the two losses, from round � 	 E to round � 		� , is

��
 
;�
9� �

 � .�� 	 8 1 ���� . � � ; 	 � S 1 � (13)

Thus, the loss rate � that the transfer causes in its path is

�  E
� 
 

� � �. � �	; 	 �DS 1 � (14)

To calculate the transfer’s throughput, we need to consider
the RTT variations with the window size. Specifically, the
RTT at round 8 is �!9  �	; 	 � .N8 1 � � . The duration of the
period � is

� 
 
;�
9� �
� .�� 	 8 1  ;�

9� �
� �	; 	 � .�� 	 8 1

� � (15)

3-a. Over-buffered path: � S J � � ;
In this case, the minimum window size 
 � .�� 	 E 1 is larger
than the path’s BDP, because . � �); 	 �HS 	 E 1 � �


 � �	; .
So, the tight link remains backlogged even after the loss, and
the backlog will be

� .�� 	 8 1  
 � .�� 	 8 G E 1 G � � ; for
8  E ������� � . Thus, the duration ��
 is

� 
- � �	; 	 ;�
9� �

� 
���.�� 	 8�G E 1� G �	; �  �� � . � �	; 	 �DS 1 �
(16)

We see that
3  ���� �  � , which verifies that, in the over-

buffered case, the transfer saturates the path.
3.b Under-buffered path: � S � � � ;
In this case, the tight link will not be backlogged for � rounds
after the loss. � 	 E rounds after the loss, the backlog will
become

� .�� 	 � 	 E 1  E , and 
 ��.�� 	 � 	 E 1  E 	 � �Q; 

 � .�� 	 E 1 	 � . Thus, �  � � � � � � � �� � � � � � � �� .
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The RTT �	9 is equal to �	; at rounds � 	 E ������� � 	 � , and
equal to �	; 	 � .N8 1 � � at rounds � 	 � 	 E ������� � 	 � . Thus,
the duration � 
 is

� 
- � �	; 	 . � G � 1 �	; 	 ;�
9� � � �

� 
��,.�� 	 8)G�E 1� G �Q; � 

. � � ; 1 � 	 � � ; .?� S�	 � 1 	 � S .?� S�	 � 1
� � �

. � �	; 1 � 	 � �	;D�DS 	 � �S� �
So, the transfer’s average throughput will be

3  � 
� 
  � �� . � �	; 	 �DS 1 �
. � � ; 	 � S 1 � G � � ; � S � � � (17)


