
1/10

Resolving Register Bank Conflicts for a Network Processor

Xiaotong Zhuang Santosh Pande
Georgia Institute of Technology, College of Computing

801 Atlantic Drive, Atlanta, GA, 30332-0280
{xt2000,santosh}@cc.gatech.edu

Abstract

This paper discusses a register bank assignment problem

for a popular network processor--Intel's IXP. Due to limited

data paths, the network processor has a restriction that the

source operands of most ALU instructions must be resident in

two different banks. This results in higher register pressure

and puts additional burden on the register allocator. The

current vendor-provided register allocator leaves the problem

to users, leading to poor compilation interface and low quality

code.

This paper presents three different approaches for

performing register allocation and bank assignment. Bank

assignment can be performed before register allocation, can

be performed after register allocation or it could be combined

with the register allocation. We propose a structure called

register conflict graph (RCG) to capture the dual-bank

constraints. To further improve the effectiveness of the

algorithm, we also propose some enabling transformations.

Our results show the phase ordering of first doing

register allocation and then assigning banks can reduce the

number of spills with affordable costs of additional

instructions.

1. Introduction

The dramatic growth in Internet applications has

motivated the need for a specialized category of embedded

processors called Network Processors (NPs). NPs have fast

processing speed and specialized hardware support for

network applications. As the speed of the underlying network

keeps increasing (Giga-bits per second etc), and the

application requirements put the burden of executing

complicated tasks on the network processors (such as the

intrusion detection, performance monitoring, routing in server

farms etc.), the architectural design and compiler optimization

for NPs become more challenging. Normally, simpler designs

are adopted for NPs to reduce the delay on the critical data

paths resulting in high clocking frequency. On the other hand,

the instruction set must provide enough functionality for the

applications to fulfill their tasks. Due to the simplicity of the

instruction set and architecture design, increased support from

compiler optimization is needed to bridge the gap and to yield

performance. The compiler optimization for network processor

has become an important research topic lately [1][2][3][4]. In

particular, register allocation issues are very important since

the latency of accessing off-chip DRAM is in tens of cycles

and normally results in a context switch to the other threads.

The IXP1200 Network Processor
In this paper, we target the dual-bank register assignment

problem for a popular network processor family-Intel’s IXP.

The IXP network processor [5] works with a very fast

processor core. IXP2800 (a recent member of IXP family) can

reach 1.4 GHZ clock rate and can process 28 million OC-192

packets per second over SONET. The RISC architecture

allows a very concise instruction set and all ALU instructions

(including plus, minus, shift, XOR, AND etc) take 1 cycle.

64 A-Bank

GPRs

64 B-Bank

GPRs

Thread 1

Thread 2

Thread 3

Thread 4

Figure 1 IXP1200 register file structure
Figure 1 shows the block diagram of the register file for

the IXP network processor. The register file is divided into

bank A and bank B. Four threads share the banked register

file. The general purpose registers (GPRs) are physically split

into two banks. The ALU unit inside the processor core has

two input ports. At any time, either bank A or bank B is

connected to one of the two input ports. On the other hand, the

output from the ALU unit is accessible from both the banks.

This design can potentially support a large number of GPRs

and can control the cirtical path delay due to the increased

register file connections.

To shorten the execution time for ALU instructions,

operands are fetched in parallel. Due to the above design of

the data paths coupled with the parallel fetch of operands

restrictions are imposed on operand register residency. Each

ALU instruction can have two register-resident source

operands which must come from the different register banks.

For instance, an instruction x=y+z requires register y and z to

be in separate banks. However, the destination register x can

be in either bank A or bank B.

Dual-bank Register Assignment Problem
The design of dual-bank register file raises the problem

of register allocation with consideration to the bank

assignments. Without such consideration, register allocation is

handicapped, and in some cases, even impossible.

Figure 2 gives two examples to illustrate the dual-bank

assignment problem. In these examples, we assume that the

total number of physical registers is four, two in each bank. In

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

2/10

Figure 2.a, without the above register bank restrictions, each

of the variables can be assigned one physical register.

However, the three instructions require variable a to be in the

opposite bank to variable b, c and d. Thus, if variable a is in

bank A, the other three variables must be in bank B, which is

not possible (since there are only two physical registers in

bank B). Figure 2.b shows variables a and b must be in

opposite banks. Similarly, variables a and c, variables b and c

must be in opposite banks too. This creates the problem that

even if physical registers are enough, we still cannot satisfy all

bank constraints, since the first two instructions require

variable b and c to be in the same bank, which contradicts with

the last instruction. Obviously, the first example shows that

the dual-bank constraints may cause imbalance of register

requirements to the two banks. The second example shows

that if the bank constraints form a cyclical conflict, then no

bank assignment is possible without resolving the conflict.

1. b=a+b

2. c=a+c

3. d=a+d

(a) (b)

1. a=a+b

2. c=a+c

3. d=b+c

a bank A

b bank B

c bank B

d bank B

a bank A

b bank B

c ?

Figure 2 Example of the Dual-bank assignment
problem.

The current implementation of the IXP assembler takes

passive approaches to the bank assignment problems. The first

problem will generate a “not enough registers” message to the

programmer, while the second problem will cause an error

messages prompting the programmer to fix the unresolvable

conflict. Obviously, it is difficult for the user to make the right

decisions. As we will illustrate later, there are non-obvious

trade-offs involved that can actually achieve low-overheads

for both register spill and code growth. These tradeoffs are not

easily perceivable by the users. With the development of high-

level language support for the IXP processor, it is no long

appropriate to ask users to resolve the conflicts (and also there

is no need to provide “user understandable code” at assembly

level), after the code has been transformed from the high-level

language. A compiler solution is desirable to automatically

assign both registers and banks.

The dual-bank register allocation problem is to

determine the physical register allocation together with the

bank assignment of that physical register for each virtual

register. It aims to reduce the overhead due to additional spill

code and other extra instructions which can degrade the

performance and cause code growth. Speeding up the

execution is the first priority; therefore reducing the number of

spills becomes most important due to the long memory latency.

Paper Outline
The remainder of the paper is organized as follows.

Section 2 describes register conflict subgraph and no-conflict

rule, section 3 talks about phase ordering, section 4 proposes

the pre-RA approach, section 5 discusses the post-RA

approach and section 6 deals with the combined approach.

Some enabling techniques are mentioned in section 7. Section

8 shows evaluation results; section 9 discusses related work.

2. Register Conflict subGraph and No-conflict

Rule

To represent the register constraints for the dual-bank

assignment problem, in this section, we introduce the concept

of Register Conflict subGraph (RCG).

We build upon the standard representation of

Interference Graph used in coloring based allocators.

Interference Graph (IG) represents each Live Range as a node

in the graph and an edge between two nodes means the two

live ranges interfere with each other or are co-live at some

program point. We call the edges in the interference graph as

Interference Edges. To distinguish the interference graph

before and after the register allocation, we define Virtual

Interference Graph (VIG) and Physical interference graph

(PIG). The live ranges (nodes) on VIG are Virtual Live

Ranges, which are associated with virtual registers. Similarly,

live ranges on the PIG are Physical Live Ranges, which

correspond to physical registers 1 . Some edges in the

interference graph are further distinguished as Conflict Edges,

which are defined as follows.

DEFINITION: Conflict Edge

If two live ranges interfere in the same ALU instruction as two

source operands, the interference edge connecting them is

called a conflict edge. They are said to conflict with each other.

Obviously, we have the following claim:

CLAIM: A conflict edge must be an interference edge.

DEFINITION: Register Conflict subGraph (RCG)

The register conflict graph is a subgraph of the interference

graph consisting only of conflict edges and all nodes.

Similarly, we have the definition of Virtual Register

Conflict subGraph (VRCG) and Physical Register Conflict

subGraph (PRCG) based on the underlying interference graph.

(a) (b)

a
c

d

b

a

c

b

Figure 3 Examples of the RCG.
Figure 3 shows two RCGs corresponding to the examples

in Figure 2. Figure 3.a is the RCG for Figure 2.a. Note that all

interference edges are conflict edges for this example. We can

observe that there are edges from a to b, c and d, which means,

{a} and {b,c,d} form two separate groups that should be put

into different banks. In Figure 3.b, the RCG forms an odd-

cycle, which means that the nodes cannot be separated into

1 We define the virtual live ranges to be maximal du-ud chain

(or a web) on the VIG, that can be separately allocated. For

PIG, physical live ranges correspond to the physical register

names, which can be the union of several virtual live ranges

that are assigned the same physical register.

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

3/10

two groups such that the nodes in the same group do not

conflict with each other.

Given a RCG, we can judge if the nodes (either virtual or

physical live ranges) in the graph can categorized into two

groups with each group being assigned to one of the register

banks. If this is possible, we say the RCG is bank conflict-free,

otherwise it leads to a bank conflict that should be resolved.

The bank conflict property is also applicable to the IG, i.e. we

say an IG has bank conflict if its RCG exhibits a bank conflict.

The problem of determining whether a RCG is conflict-free is

equivalent to determining if the RCG is bipartite. The

following No-conflict rule gives the necessary and sufficient

condition to judge whether a RCG has conflicts.

No-conflict rule:

The RCG is conflict-free if and only if it contains no odd-

length cycle.

Proof: This problem is equivalent to determining if the RCG

is a bipartite graph. According to the property of the bipartite

graph, no odd-length cycle should exist. This is also a

sufficient condition.

Thus, the example in Figure 2.b has a conflict, since its

RCG (shown in Figure 3.b) is a length-3 cycle, but the

example in Figure 2.a is conflict-free due to the absence of any

cycle.

Note that, the No-conflict rule applies to both VRCG and

PRCG; however, it gives no guarantee for balancing register

assignment in each bank group. From the perspective of

register allocation, the number of total physical registers

available for each bank is fixed. Typically, the number of

physical registers available to bank A equals that of bank B

which means register allocator should make an effort towards

balancing allocated registers equally between the two banks.

We define such a problem as Balanced Dual-bank Register

Assignment. Accordingly, the RCG with equal number of

nodes in each bank group and conflict-free is called Balanced

Conflict-free RCG. Therefore, the example in Figure 2.a

shows a conflict-free but not a balanced conflict-free RCG.

3. Phase ordering

Register bank assignment is closely related to the register

allocator that performs virtual to physical register mapping.

There are three approaches we can take to perform register

allocation together with the bank assignment.

The first method is to assign register banks before virtual

registers are mapped to the physical registers. We call it pre-

RA bank assignment approach. All conflicts are resolved on

the VRCG before the register allocator takes over.

The second approach is to do register allocation first and

then assign the banks to physical registers, at the same time

resolve conflicts on the PRCG. This is called post-RA bank

assignment.

Finally, a combined register allocation approach can

consider the register bank assignment at the same time as

register allocation.

4. Pre-RA Bank Assignment Approach

We can designate the bank assignment for each virtual

register before the register allocation (mapping of virtual to

physical registers) is done. According to the No-conflict rule,

if there are odd cycles of conflict edges in the VRCG, the

VRCG has conflicts. The following claim says that sometimes

the conflicts may continue to exist after the register allocation.

Claim: If the VRCG doesn’t meet the No-conflict rule, the

conflicts will persists after a Chaitin style register allocation

assuming no spill is generated.

In general, any graph coloring allocator coupled with

other phases meets the above claim. These include, for

example, Chaitin’s[10], Briggs[11], and Appel & George’s

[12] register allocators. The claim can be easily verified.

During the register allocation, the only possibility is to map

multiple virtual registers to the same physical register through

coalescence or coloring. If an odd cycle exists on the VRCG,

no edge on the cycle can be collapsed since the interfering

nodes cannot be coalesced during the register allocation.

The pre-RA bank assignment approach regards the

register allocation pass as a black box and assigns the banks to

the virtual registers first. After the bank assignment is done,

virtual registers are grouped according to their bank

assignments. The register allocation is then done separately in

for each bank.

To avoid the conflicts, all odd-length cycles should be

removed to make the graph bipartite. A straightforward way to

remove odd-length cycles is to break the cycle at some node

point in the RCG by splitting the live range of the node.
a=3

…

…=a op b

…
if(…) br label1

…

…=a op c

…

label1:

…=a op d

…

a

b

c

d

a=3

…=a op b

…=a op c …=a op d

(a) (b) (c)

X

Y Z

a

b

c

d

a'

a

b

c

d

a'

(d) (e) (f)

a
b

c

d

a'

a”

Figure 4 Edge breaking through live range splitting on
RCG.

Figure 4 shows an example of breaking a cycle in the

RCG. Figure 4.a gives the code segment in which the live

range of variable a consists of 1 definition and 3 uses across a

conditional branch. Figure 4.b shows the RCG. Variable a

conflicts with b, c and d. Figure 4.c shows the live range using

the control flow graph (i.e. du/ud chain of variable a). In

Figure 4.b, if we want to break the cycles passing the edge

(a,c), (because (a,c) is a part of an odd cycle) we can simply

split the live range at point Y (Figure 4.c), which means after

point Y, the live range is renamed, for example to a’. Figure

4.d shows the RCG after splitting. At the split point, we need

to insert a move instruction a’=a, so the live range gets

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

4/10

separated. One instruction is added in the code and one extra

node is added on the RCG. If we want to break the cycles

spanning both edges (a,c) and (a,d), one choice is to split at

both points Y and Z, i.e. renaming the live range to a’ after

point Y and renaming the live range to a” after point Z

(Figure 4.e). This requires two move instructions and two

additional nodes on the RCG. However, we can split the live

range at point X, which leads to the RCG in Figure 4.f. We

rename the live range at point X to a’. In this case, the cost is

only one move insertion and one additional node on the RCG

but we cannot break the cycles that pass both (a, c) and (a,d).

The problem of making RCG bipartite (breaking all odd

cycles) with minimal cost is shown to be NP-complete (please

refer to Appendix A for details) by reducing a graph problem

called Maximal Bipartite Subgraph [7] to it. There has been

substantial work done on the Maximal Bipartite Subgraph

problem in graph theory [8][9]. Several approximation

algorithms have been proposed. For example, [8] gives an

algorithm with complexity of O(n
4
). However, these

approaches assume that the underlying graph does not have

length-3 cycles which are not true in our case. Besides, they

target the minimal number of edges removed to make the

graph bipartite, while we must consider live range splitting on

the nodes and the cost is not uniform for node splitting.

Finally, their analysis gives a rather loose lower bound with

regard to the quality of the solution. Actually the solution of

our algorithm is far beyond the lower bound calculated by

these papers. Specifically, our heuristic algorithm below takes

into consideration the special properties of RCG that can

greatly reduce the complexity of the algorithm while

maintaining quality of the solution.

Before presenting the heuristic algorithm, we briefly

discuss the detection of odd cycles in the RCG. Here, we

define that if two cycles have at least one edge that is different,

then the two cycles are said to be different. For any algorithm

that can resolve all the conflicts in the RCG, it needs to break

all the odd-length cycles in the graph. However, a simple

estimation tells us that finding all odd-length cycles will take

exponential time to finish. A brute-force algorithm must try up

to
−

=

+
2/)1(

1

12
n

k

k

nC possibilities to find out all odd cycles, where n is

the total number of nodes in the RCG. This sum has a

complexity of O(2
n
), since we know

=

=
n

k

nk

nC
0

2 , which is

almost twice of
−

=

+
2/)1(

1

12
n

k

k

nC .

a

c

d

b

e

Figure 5 Duplication in counting the odd cycles.
However, in real programs most of the odd cycles are

small (Please refer to section 8). Another observation is that

the brute force searching may include duplications. In Figure 5,

two odd cycles can be found i.e. abe and abcde. However, if

edge (a,b) is removed, both cycles are broken. If edge (b,e) is

removed, then cycle abcde still remains. This example shows

that if two cycles share edges, breaking one of them can cause

the other to disappear automatically.

Our heuristic algorithm starts with the shortest odd cycles,

after breaking shorter ones, we move on to find longer cycles

and break them, until all cycles are gone. As shown in Figure

5, the removal of shorter cycles may break longer cycles as

well. The main data structure for odd cycle detection is called

Breadth-First Hierarchy described below.

4.1 Breadth-First Hierarchy

Given a RCG, we build a breadth-first hierarchy from

one of the root nodes following the breadth-first searching

algorithm. The procedure is as follows:
Input: root r

Output: The breadth-first hierarchy

Level_num: number of levels in the hierarchy;

Node_level_set[]:array of sets;

Algorithm:

Function Build_Breadth_First_Hierarchy(node r)

Begin

 Node_level_set[1] {r}; mark r;

 Level_num=1;

 While Node_level_set[Level_num] not empty do

 For each node p in Node_level_set[Level_num] do

 Add all p’s directly connected neighbors that have not

 been marked to Node_level_set[Level_num+1];

 Mark all newly added nodes.

 od

 Level_num++

 Endw

 Return Level_num, Node_level_set[]

End

Figure 6 Building the breadth-first hierarchy.
 The root node r is the only first level node. After visiting

the root node, we visit and mark its directly connected

neighbors which are marked as the second level nodes. Next

we visit neighbors of second level nodes that are unmarked

and assign them level three and so on. It is easy to notice that

the level of a node is its minimal distance to the root plus one.

Besides, the time complexity to construct the breadth-first

hierarchy is O(n
2
). Next, we give two lemmas about the

breadth-first hierarchy.

Lemma 1:

If an edge e connects node p and node q on the RCG, then

|node_level(p)-node_level(q)|<=1, where node_level gives the

level of the node on the breadth first hierarchy.

Proof: Without loss of generality, assume node_level(p)

>node_level(q), if there is an edge from node q to node p, then

p should be on level node_level(q) +1, which proves the

Lemma.

Lemma 2:

The RCG is conflict-free, iff any edge (p,q) => |node_level(p)-

node_level(q)|=1.

Proof: From Lemma 1, we only need to show

node_level(p)<>node_level(q). If this condition is not

satisfied, (i.e. if node_level(p)=node_level(q)), we find a path

from root r to p called path(r,p) and a path from r to q called

path(r,q), each with node_level(p) nodes. Let s be the latest

common node for the two paths, i.e. path(s, p) and path(s,q)

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

5/10

only share node s. We then have an odd cycle s->p->q->s. On

the contrary, we can separate the nodes into two groups; all

nodes in odd level form one group, and all nodes in even level

form another group. Then there are no edges within these two

groups and thus, the graph is bipartite and conflict-free.

Lemma 1 shows that the edges on the RCG only appear

between nodes from adjacent levels on the hierarchy. Lemma

2 implies that no two nodes on the same level being connected

is equivelant to the RCG being conflict-free. In other words, if

a RCG is not conflict-free, there must be an edge that connects

two nodes on the same level. We call such an edge Parallel

Edge. Next, we present a lemma that will be used later in our

heuristic algorithm to detect odd cycles with length k, where k

is an odd number greater than 3. This lemma can help to build

a fast algorithm to detect all such cycles.

Lemma 3:

The smallest odd cycle is of length k (k is an odd number), iff

there is no parallel edge on any breadth-first hierarchy up to

level (k-1)/2.

Proof: Briefly, the proof is similar to that of lemma 2. If there

is a parallel edge on level less than (k-1)/2, we will find an

odd cycle that is less than k.

Thus, to find all the odd cycles of length k (assuming

non-existence of shorter odd cycles) in the RCG, we build n

breadth-first hierarchies with each of the n nodes as root nodes.

All the hierarchies only need to be built up to (k-1)/2 level and

checked for parallel edges. Since the algorithm runs faster

when k is small and most odd cycles are actually small, we

find this odd cycle detection algorithm finishes quickly in our

implementation.

4.2 Live Range Splitting Patterns

Live range splitting patterns represent the possibilities a

live range can be split. For each live range, we can find out all

splitting patterns. For example, in Figure 4, we observe 4

possibilities to split the live range, i.e. X, Y, Z or (Y, Z). For

each splitting pattern, we can calculate its cost. Although the

number of splitting pattern may grow exponentially, in

practice only a few live ranges contain a large number of uses

as source operands. This is probably due to the nature of the

applications running on the network processors. Also, the live

range defined as connected du/ud chains can achieve value

separation, which leads to smaller number of splitting patterns

due to reduced number of uses associated with each live range.

In implementation, we specify a limit of 1000 patterns for each

live range, otherwise the live range is forced to be split as if it

is involved in every cycle. In our evaluation, we show that this

almost invariably happens.

4.3 The Pre-Register Bank Assignment Heuristic

Algorithm

As mentioned before, our heuristic algorithm breaks odd

cycles from the shortest, i.e. size three and goes to longer

cycles as it proceeds. The algorithm is listed in Figure 7. It

executes several iterations each one breaking all cycles of

length m. m takes odd integers from 3 to n. During each round,

two sets are built. The Cycle_set stores all cycles with length

m. The Pattern_set stores all patterns. Then we examine each

pattern to see how many cycles it can break in the Cycle_set,

the priority function for applying a pattern is calculated as the

number of cycles it can break divided by the cost (the number

of moves inserted). The pattern with highest priority is chosen.

After a pattern is applied to CFG and VRCG, all broken cycles

are removed from Cycle_set and the Pattern_set is also

updated, since new live ranges are added and the old live

ranges might be altered. The algorithm picks the most

favorable pattern and proceeds with that pattern. The

following claim guarantees the algorithm will eventually

remove all odd cycles.

Claim: Assume k to be an odd number greater than 3, then

after all length<k odd cycles are broken, the breaking of

length-k cycles will not create shorter odd cycles.

This is obvious, since during the whole process, nodes

are not merged to form new cycles on RCG. The complexity

of the algorithm in the main loops is roughly O(n*P*M),

where n is the number of nodes on the original graph, P is the

maximal number of patterns in the Pattern_set and M is the

maximal number of the Cycle_set size. Since most odd-cycles

are short and breaking shorter cycles may break longer ones as

well, the outer-most for loop in Figure 7 normally finishes

early. From Figure 7, we notice that the update of Cycle_set

and Pattern_set can be done with marginal computation.
Input: VRCG, CFG

Output: VRCG (no conflict),CFG, set of split live ranges

Algorithm:

Function Pre_RA_Bank_Assignment

Begin

 Construct patterns (calculate costs) for all live ranges, store to Pattern_set

 For m=3 to n, step 2

 Detect all odd cycles with cycle length m, store to Cycle_set;

 while (Cycle_set <> empty) do

 For each pattern p in Pattern_set do

 w=cost of using p

 bn=number of cycle p can break in Cycle_set

 The priority of pattern p is bn/w

 od

 The pattern with highest priority is applied on VRCG, CFG

 Remove broken cycles from Cycle_set

 Update Pattern_set if necessary

 Od

 Endfor

 Return VRCG, CFG and the set of split live ranges

End

Figure 7 Pre-RA bank assignment heuristics.
The drawback of this approach is the difficulty to control

the register pressure in each group, which may lead to

imbalanced pressure between the two banks during the register

allocation. For example, assume that the virtual registers are

grouped equally when they are passed to the register allocator.

However, it then turns out that one of the groups needs more

physical registers to avoid spilling, while the other group has

free registers. As it is hard to judge the physical register and

spill code that will be generated before the register allocation,

the pre-register allocation approach may result in imbalanced

spill. In other words, it may increase the overall spill cost.

However, after the RCG becomes conflict-free, this problem

can be alleviated by making the RCG near-balanced before

passing it to the register allocator.

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

6/10

4.4 Near-Balancing the RCG

After the live range splitting, it is quite likely that the

RCG is no longer a connected graph. By identifying the

connected components of the RCG, we can near-balance the

number of nodes in the two banks through separate bank

assignment to each connected components of the RCG.

Suppose the RCG has m connected subgraphs: G1 G2..Gm,

each with a subset of the nodes and edges of the RCG. Since

the m subgraphs are all conflict-free, i.e. bipartite, we can

separate each Gi into GAi and GBi, such that no conflict edge

is inside GAi and GBi (This can be done to construct a

breadth-first hierarchy and separate odd level and even level

nodes). Let Ai=| GAi |, Bi=| GBi| and the number of total nodes

is
ii BAn += . We want to minimize

iC
n −
2

, where

Ci=Ai or Bi. In our implementation, we apply exhaustive

search, which takes O(2
p
), since p is typically less than 10. For

larger p, a fully polynomial time algorithm can be derived

from the subset sum algorithm [6], which closely

approximates the optimum in polynomial time.

5. Post-RA Bank Assignment

Although the pre-RA bank assignment can avoid

conflicts during the register allocation, it creates imbalanced

register requirements (higher chromatic number for one of the

register banks). On the contrary, post-RA bank assignment

approach allocates register with well-known register allocation

algorithms to minimize the spills in the first place. Our bank

assignment algorithm is invoked to resolve bank conflicts and

balance physical register distribution across banks. The post-

RA bank assignment algorithm will not increase spill code.

Although some physical live ranges are split after moves are

inserted, the cost is much lower than spills.

As we know, the register allocator can map different

virtual registers to the same physical register. Therefore,

physical live ranges are typically larger than virtual ones. The

post-RA bank assignment problem shares many properties

with the pre-RA bank assignment problem. Therefore, some of

the techniques can be borrowed. However, there are clear

differences between these two approaches. Firstly, we cannot

simply rename a live range, because each physical live range

is allocated a physical register. If a live range is split, we must

find an available physical register to hold the new live range.

Secondly, the PRCG must be balanced and conflicts removed.

5.1 Cost for Splitting Patterns

The cost of splitting patterns for physical live ranges are

calculated differently. Especially the cost to split at a certain

point is not just equal to the inserted move instruction. In

building the Pattern_set for the heuristic algorithm, we

categorize the cost for a pattern into 3 types:

1. If the register pressure in the renamed program

segment (for example, in Figure 4.c, from point Y to

instruction a op c) is less than the number of available

physical registers, then splitting cost is set to be the

move insertion cost.

2. If condition in (1) is not true, we look around near the

splitting point to find the chance of rematerialization,

and calculate the cost accordingly.

3. Finally, we count the cost of doing in-place bank

exchange.

5.1.1 Rematerialization

Rematerialization has been used by [11] to free a register

through recomputing the value in-place before it is needed to

avoid carrying the value in the register. We check for

rematerialization before we analyze the splitting patterns; thus

the register pressure in some region of the program can be

reduced.

5.1.2 In-place Bank Exchange

After all the above endeavors fail, we have the last resort

to solve the bank conflicts using this technique. In-place bank

exchange requires no additional registers, however it requires

4 ALU instructions to remove one conflict edge on the RCG.

Although it can be expensive in terms of space in contrast to a

register spill, in-place bank exchange saves runtime cycles and

most importantly, guarantees the odd cycles can be broken in

the worst case without incurring spills.
1. …

2. …

3. …=a op b

4. …

5. …

(a)

1. a =a ⊕ X

2. X = a ⊕ X

3. …=X op b //X=aorig, a=aorig⊕Xorig

4. X = a ⊕ X //X=Xorig, a=aorig⊕Xorig

5. a = a ⊕ X //X=Xorig, a=aorig

1. …

2. …

3. a =a op b

4. …

5. …

(b)

1. b =b ⊕ X

2. X = b ⊕ X

3. …=a op X //X=borig, b=borig⊕Xorig

4. X = b ⊕ X //X=Xorig, b=borig⊕Xorig

5. b = b ⊕ X //X=Xorig, b=borig

Figure 8 In-place bank exchange.
Figure 8 illustrates two cases to break a conflict edge

between live range a and b. In Figure 8.a, we assume that the

destination operand of instruction (3) is not a. We insert two

XOR instructions before and two XOR instructions after the

ALU instruction in line 3. The register X is an occupied

physical register that is in the opposite bank to variable a, thus

it is also in the opposite bank to variable b. The first two

exchanges put the variable a in X and then the instruction in

line 3 is conflict-free. The last two XOR instructions restore

the values of a and X. The conflict edge between a and b can

be removed, because the two variables can be assigned

physical registers in the same bank now. Figure 8.b shows the

case when a is the destination operand. We can exchange b

and X to remove the conflict. In-place bank exchanges are

special splitting patterns that are provided for all edges.

Therefore all odd cycles can be broken in the worst case with

these patterns.

5.2 Balancing Register Numbers in Two Banks

In this section, we discuss the balancing of registers in

the two banks. After the removal of all odd cycles, we can

apply the same bank assignment approach as the pre-RA

algorithm to obtain a near-balanced RCG. After that, we have

to reassign some of the live ranges to the opposite bank, which

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

7/10

could induce conflicts. The induced conflicts have to be

resolved at the cost of inserted instructions.

Suppose the live ranges on the RCG have been grouped

into two groups, BankA and BankB. Also assume,

|BankA|>|BankB|. We attempt to pick one of the nodes in

BankA and move it to BankB and estimate the cost of

resolving the conflicts due to this move by again using the

minimal cost splitting pattern. This procedure is repeated until

the number of nodes in the two banks are equal. If the

difference between |BankA| and |BankB| is small (as it usually

is), we can attempt all combinations of moves for (|BankA|-

|BankB|)/2 nodes from BankA to BankB, which gives better

solution than moving nodes one by one from BankA to BankB,

but takes slightly longer time to finish.

Input: PRCG, CFG

Output: PRCG (balanced and conflictless), CFG

Algorithm:
Function Post_RA_Bank_Assignment

Begin

 Register_allocation

 Construct patterns for all live ranges, including in-place exchange

 patterns, store to Pattern_set

 Foreach pattern p in Pattern_set do

 Calculate the cost for p (with available register, rematerialization or

 In-place exchange)

 od

 Break all odd cycles //the same as in Pre_RA_Bank_Assignment

 Near-balancing the two bank groups

 If |BankA|<>|BankB| then

 Balance the bank by moving nodes between them.

 Endif

 Return PRCG, CFG

End

Figure 9. Post-RA bank assignment heuristics.

5.3 Heuristic Algorithm for Post-RA Bank

Assignment

We discuss the algorithm for post-RA bank assignment

algorithm in this section. In Figure 9, the procedure

Post_RA_Bank_Assignment consists of 4 parts: register

allocation, constructing and calculating the cost for pattern,

breaking odd cycles and balancing the two bank groups. After

register allocation is done (assuming a monolithic register file),

the Pattern_set is constructed. Cost calculation is more

complicated than the pre-RA bank assignment. Next, odd

cycles are broken as in the previous section. Bank balancing

has two steps. The near-balancing algorithm in the previous

section is applied first, because it incurs no cost. Then, the

approach described in section 5.2 is applied to achieve a

perfect balance.

6. Combined Register Allocation Approach

As mentioned before, it is possible to combine register

allocation with register bank assignment. However, as many

register allocation algorithms have been proposed in literature,

we do not want to delve into all the possibilities. In this

section, we briefly introduce our combined algorithm with

Briggs-style register allocation algorithm [11]. In contrast to

the original algorithm, we have several modifications.

The allocator takes nodes from the interference graph and

pushes them to one of the stacks.

1. Two stacks are maintained for the two banks.

2. During “coalesce”, coalescence is performed only when

the two nodes do not interfere with each other. In addition,

coalescence should not create new odd cycles.

3. In the “simplify” stage, we push each node on the IG to

one of the stacks. Nodes can be marked as "spill" or

"conflict". Nodes are pushed in the following order.

a) We pick a node and push it to a stack that causes no

conflict (with nodes still on the IG) and no spilling

(with neighbor number less than the number of

registers in one bank).

b) If a) fails, find a node that does not need spilling (but

has bank conflicts) and with minimal cost to resolve

the conflict, push it to one of the stacks.

c) If both a) and b) fail, find a node that must be spilled

but with minimal spill cost as calculated by Brigg’s

algorithm and push it to one of the stacks.

4. During “select”, we pop nodes from the two stacks one by

one in the order they are pushed to the stacks.

a. Give the node a color (the color must belong to the

bank of that node) that is different from all colored

neighbors on the IG, and that has no conflict with

the nodes already on the IG.

b. If the color is available, but there is conflict, we

resolve the conflict as in the previous section.

c. If both a) and b) fail, the node must be spilled.

One difficulty in the combined approach is that we do

not know the bank assignments of the remaining nodes on the

IG during “simplify”. In the worst case, we have to assume all

neighbors will be in the same bank, so only half of the

registers are available for coloring. This causes a lot of nodes

to be marked as “spill”. Possible improvements to this problem

are being investigated.

7. Some Enabling Techniques

This section discusses two types of optimizations that can

help with the aforementioned approaches. As shown later,

these approaches do not require additional virtual or physical

register but can help to reduce the number of odd cycles on the

RCG.

7.1 Removal of Length-3 Odd Cycle Conflicts

Figure 10 shows an example on how to remove conflicts

involving odd cycles of length three. Recall that we attempt to

break odd cycles in the order of increasing lengths (refer to

Figure 7 and Figure 9) and thus, applying this transformation

could break cycles of higher order as well. Figure 10.a is a

code segment where three operands s1, s2, s3 form an odd

cycle of length 3 on the RCG. Note that, all the three operands

are live in but not live out, while the 3 destination registers are

the only live-outs. Figure 10.a shows the code transformation

that removes the conflict edge <s1,s3>. Also notice that the

instruction in line 3 is supported by the IXP, which does a left

shift before minus. Figure 10.c gives a general form of the

code segment and the rule for this transformation to be legal.

f1 and f2 must be supported instructions. “plus”, “minus” are

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

8/10

most commonly seen operators that find this transformation

useful. This optimization is applicable to pre-RA and post-RA

bank assignment. But for post-RA bank assignment, it merges

live ranges, which may result in new odd cycles. In our

implementation we have a simple check it before the code

transformation is applied in post-RA setting.
Live in: s1, s2, s3

1. t1=s1+s2

2. t2=s2+s3
3. t3=s1+s3

Live out: t1,t2,t3

(a) (b)

1. s1=s1+s2

2. s3=s2+s3

3. s2=s1-2*s2

4. s2=s2+s3
mapping:

t1—s1

t2—s3

t3—s2

1. t1=s1 op1 s2

2. t2=s2 op2 s3

3. t3=s1 op3 s3

Application rule:
t3=f2(f1(s2, t1), t2)

or

t3= f2(f1(s2, t2), t1)

f1 and f2 are ALU instrs

(c)

Figure 10. Example for removal of conflict involving
triangle cycles.

7.2 Application of Algebraic Laws

Algebraic laws such as associativity, distributivity can be

applied to change the edge connectivities on the RCG, so as to

reduce conflicts on the graph. These optimizations can be

invoked on the RCG to break some of the cycles.

Calculate a+b+c

1. d=a+b

2. e=d+c

(a) (b) (c)

a b

cd

Calculate a+b+c

1. d=a+c

2. e=d+b

a b

cd

Calculate a+b+c

1. d=b+c

2. e=d+a

a b

cd

Figure 11. Example for application of algebraic laws.
In Figure 11, three cases are shown to calculate a+b+c.

With associativity, we can calculate a+b first or a+c first or

b+c first. Therefore, on the RCG, 3 kinds of connectivities are

possible, given that all ALU instruction can have at most two

register operands. The choice largely depends on the number

of odd cycles each one would create. In our implementation,

we focus on the number of triangles that can go through these

edges. It can be easily counted using breadth-first hierarchy

based on the first two levels of nodes. The calculation order

with the least number of length-3 odd cycles is chosen. More

generally, most 2-operand ALU instructions satisfy

associativity can be transformed with this law.

8. Experimental Results

We evaluate the algorithms with the Intel-provided

IXP1200 Developer Workbench 2.01. The IXP1200

workbench supports cycle-accurate simulation for IXP

microengines and other peripherals with high fidelity. It

provides both assembler and a C compiler supporting a subset

of ANSI C.

We experiment with 8 benchmark programs to see the

effectiveness of the three approaches. These benchmarks are

collected from Commbench[16], Netbench[17], and a packet

scheduling algorithm from [18]. The benchmark programs are

rewritten in IXP C code and a few of them are directly written

in assembly (micro-code). For the assembly code generated by

the C compiler, we restore the virtual registers. Figure 12

shows the flowchart of the compilation process. The register

allocation and bank assignment pass have three modules, i.e.

Post-RA, Pre-RA and combined-RA. The general register

alloator is the one proposed by Briggs et.al. [13]. Our pass

builds the CFG, IG and RCG from the assembly code, after

simple translation of the assembly directives. The IXP

assembly consists of only 40 RISC instructions, which makes

the translation easy. For one thread, the number of total

physical registers is 32 (the benchmarks are assumed to be run

on only one thread). Therefore, 16 registers are available in

each bank.

Intel C compiler

IXP C code

IXP assembler and linker

IXP assembly code

Restore Virtual Reg

Machine code

Reg. Alloc.

Post-RA Bank

Assign.

Post-RA Bank

Assign.

Reg. Alloc.

Combined

Reg. Alloc and

Bank Assign.

Figure 12 Compilation flowchart.
Table 1 shows the properties of the benchmark programs.

The code size is the number of instructions after code

generation. The number of live ranges and interference edges

are listed in 3
rd

 and 4
th
 column. On average, the degree of the

live ranges on the interference graph is about 9. The last

column shows the number of conflict edges. Conflict edges are

much less than interference edges. Only a small fraction of

instructions become conflict edges, because only ALU

instructions with two source GPR operands establish conflict

edges in the RCG. Among these instructions, some conflict

edges are identical.

Table 2 shows the cycle length distribution. We separate

columns into two categories. Column 2 to 4 show the

distribution of cycle length before the two enabling techniques

in section 7 are applied. Column 5 to 7 are the distribution

after these techniques are used. We apply the enabling

techniques before register allocation and bank assignment.

From Table 2, we find most cycles are of length 3. Cycles with

length greater than or equal to 7 are rare. The techniques in

section 7 seem to have limited effects, especially for larger

benchmarks.

Table 3 gives the number of instructions inserted to apply

the patterns (we do not included instructions for spills, this

will be counted in the next table) to break odd cycles and

balance the banks. They include “move insertion” and “in-

place exchange” etc. for post-RA bank assignments. The

results signify that post-RA adds more instructions than the

other two. This is due to the more ambitious conflict breaking

attempted by this stage adding many instructions. Since virtual

registers have been allocated physical registers, more odd

cycles may result. Nodes on the physical RCG are more costly

to split, because they represent several nodes for virtual live

ranges. A combined-RA approach tends to generate fewer

additional instructions, however, as we will see later, more

spills are created.

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

9/10

Table 4 gives the number of spills generated by each

approach. The combined-RA is worst, since the graph coloring

works poorly when two stacks are assumed. Many nodes are

marked as spill when pushing to the stack because the number

of neighbors they have on the graph is larger than the number

of physical registers in one register bank, but actually their

neighbors on the graph may finally go to the opposite bank,

which is not known at the time they are pushed onto the stack.

Post-RA is the best in reducing number of spills (since it

assumes one bank when doing RA), which compensates the

increased number of additional instructions due to the high

cost of spills.

Table 5 compares 4 of the 8 benchmarks for runtime

performance. In summary, pre-RA and Combined-RA are very

close, while post-RA is about 7% (ranging from 6% to 9%)

better than Combined-RA.

The compilation time for all benchmarks is within 1

second on a Pentium 4 machine. Obviously, the combined-RA

approach is polynomial time algorithm. For pre-RA and post-

RA algorithm, the majority of the compilation time is spent on

cycle breaking. As mentioned in section 4.3, the complexity of

the cycle breaking is O(n*P*M). If the outmost loop can finish

early, the complexity is close to O(PM). Since we have set the

bound for M, the complexity is further controlled by

O(P)*Max(M). Finally, P is the maximum among the numbers

of different odd-length cycles. Normally, this is the number of

length-3 cycles on the RCG, which should be in O(n
3
).

 In conclusion, our Post-RA bank assignment is

successful in breaking odd cycles and bank balancing without

increasing spills. The extra instructions cannot offset the

benefits of spill reduction. Pre-RA generates more spills than

Post-RA but less than the current version of the combined-RA.

Table 1 Benchmark applications.
 Code Size #live ranges #interference edges #conflict edges

Drr 108 11 55 25

Fir2dim 447 36 120 71

Frag 271 26 133 65

Kmp 123 13 53 27

Lzw 126 18 105 36

Md5 913 142 630 246

Wraps (receive) 875 145 643 236

Wraps (send) 921 135 464 193

Table 2. Cycle length distribution.
 Without algebraic law & triangle conflict removal With algebraic law & triangle conflict removal

 Length-3 Length-5 Length 7 Length-3 Length-5 Length 7

Drr 7 1 0 7 1 0
Fir2dim 48 2 0 48 2 0

Frag 51 3 1 49 3 1
Kmp 8 0 0 8 0 0
Lzw 49 4 0 44 4 0
Md5 836 13 2 827 12 1

Wraps (receive) 1132 19 3 1101 17 3

Wraps (send) 842 10 0 840 10 0

Table 3. Comparison for number of inserted
instructions.

 Pre-RA Post-RA Combined-RA
Drr 3 5 5

Fir2dim 10 18 11
Frag 8 20 8
Kmp 3 8 4
Lzw 4 10 3
Md5 38 59 19

Wraps (receive) 35 62 23
Wraps (send) 29 55 21

Table 4. Comparison for number of spills.
 Pre-RA Post-RA Combined-RA

Drr 2 0 4
Fir2dim 5 0 7

Frag 3 0 8
Kmp 2 0 2
Lzw 2 0 5
Md5 30 23 35

Wraps (receive) 45 38 56
Wraps (send) 52 38 57

Table 5. Comparison for runtime cycles.
 Pre-RA Post-RA Combined-RA

Drr 205391 188910 198910

Fir2dim 147149 134982 142812
Frag 26760 25281 26351
Kmp 146909 137829 143618

9. Related Works

Although this paper studies optimizations for a special

network processor architecture with dual-bank register file,

partitioned register file has long been adopted by many

commercial DSPs such as Texas Instruments’ VLIW chips.

The IXP network processor’s register file differs from theirs

in that 1) only one function unit; 2) the parallel access to the

register file is restricted to the two source operands.

A recent architecture paper [13] studies multi-banked

architecture and shows performance advantage. [14] talks

about the register allocation for VLIW machines. However,

none of these papers deal with the issue of dual bank

constraints discussed by us. [15] studies the register allocation

problem for a dual-bank register file. Register access requires

both register number and a bank specifier, which are

determined by a control register. Since their architecture does

not require source operands to be in different banks, the

approaches used are different from us.

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

10/10

[4] models the register constraints on IXP as an integer

linear programming problem, which leads to excessive

compilation time (compilation time of several seconds is

reported in their paper for relatively small benchmarks which

makes it unacceptable as a standard compilation pass). In

addition, we believe our solution being light-weight in terms

of compilation time is scalable towards the future generation

of IXP processors with code store size at least quadrupled

(IXP2400 vs IXP 1200). Secondly, the ILP formulation only

guarantees optimality in stage one, however, the overall

solution is still sub-optimal. Specifically, in the presence of

spills, the solution generated by their method may not be

optimal. Finally, their paper does not include transformations

such as in-place exchange, which trades code size for less

number of spills (sometimes solely reduces the number of

spills) which enhance overall quality of solution over what

exhaustive methods can discover in a non-transformed space .

REFERENCES

[1] J. Wagner and R. Leupers, "C Compiler Design for an

Industrial Network Processor", LCTES, June 2001.

[2] J. Kim, S. Jung, Y. Park, “Experience with a Retargetable

Compiler for a Commercial Network Processor”,

CASES’02, 2002.

[3] J. Liu, T. Kong, and F. Chow, “Effective compilation

support for variable instruction set architecture”, In Proc.

PACT’02, Sep. 2002.

[4] Lal George, Matthias Blume, “Taming the IXP Network

Processor”, PLDI’03, pp.26-37,2003.

[5] “IXP 1200 Network Processor: Programmer’s Reference

Manual”, Part No. 278304-010. Dec. 2001.

[6] T.H.Cormen, C.E.Leiserson, R.L.Rivest, Introduction to

Algorithms, MIT Press, 1989.

[7] C. H. Papadimitriou and M. Yannakakis. "Optimization,

Approximation and Complexity Classes", Journal of

Computer and System Sciences,Vol.43,pp.425-440,1991.

[8] S. Poljak and Z. Tuza, “Bipartite subgraphs of triangle-

free graphs”, SIAM J. Discrete Math. Vol. 7, pp.307-313,

1994.

[9] J.A.Bondy, S.C.Locke, “Largest bipartite subgraphs in

triangle-free graphs with maximum degree three”,

Journal of Graph Theory, Vol.10, pp.477-504, 1986.

[10] G.J. Chaitin, “Register allocation and spilling via graph

coloring”, In Proc. of the SIGPLAN Symposium on

Compiler Construction, pp. 98-105, 1982.

[11] P.Briggs, K.Cooper, L. Torczon, “Improvements to

Graph Coloring Register Allocation”, ACM TOPLAS,

16(3), May 1994, pp. 428-455.

[12] L. George and A. Appel. “Iterated Register Coalescing”,

ACM Trans. on Prog. Lang. and Systems, 18(3), pp.300-

324, May 1996.

[13] J. Cruz, A. Gonzalez, M.Valero, N.P. Topham, “Multi-

plebanked register file architectures”, ISCA, Jun. 2000.

[14] S. Jang, S.Carr, P.Sweany, D.Kuras, “A Code Generation

Framework for VLIW Architectures with Partitioned

Register Files”, In Proc. of the 3
rd

 Int’l Conference on

Massively Parallel Computing Systems, 1998.

[15] J.Park, J.Lee, S.Moon, “Register Allocation for Banked

Register File”, LCTES 2001, Jun. 2001.

[16] T. Wolf and M. Franklin, “CommBench – A

Telecommunication Benchmark for Network

Processors”, ISPASS, 2000.

[17] Memik, G., W.H. Mangione-Smith, and W. Hu.,

“NetBench: A Benchmarking Suite for Network

Processors”, ICCAD, pp. 39-42, Nov. 2001.

[18] Xiaotong Zhuang, Jian Liu, “WRAPS Scheduling and Its

Efficient Implementation on Network Processors”, HiPC

2002, pp. 252-263, 2002.

Appendix A

The problem of making RCG bipartite (break all odd cycles)

with minimal cost is NP-complete.

Proof: Firstly, it is trivial to show the problem is polynomial-

time verifiable. Next, we reduce the maximal bipartite

subgraph problem to it. The maximal bipartite subgraph

problem is to find the minimal number of edges to be deleted

to make a given graph bipartite. Suppose, we are given an

instance of this problem—an undirected graph G(V,E). We

construct a program code with two-level CFG. The first level

basic blocks (BBs) represent nodes on G called node BBs.

The second level BBs represent edges on G called edge BBs.

Each edge BB is connected to the two node BBs on the edge.

In each node BB, there is one instruction that makes an

assignment to a variable. In each edge BB, the two variables

from its node BBs conflict as source operands. Now, the

constructed graph has a RCG equivalent to G. Breaking an

edge on G is equivalent to splitting the live range in the

corresponding edge BB by inserting a move instruction before

the ALU instruction. Therefore, we have reduced the maximal

bipartite subgraph problem to the problem of making RCG

bipartite with minimal cost. The following shows an example.

Node BBs

a

V1=… V2=… Vn=…

…=V1 op V2 …=Vi op Vj …=V1 op V2Edge BBs

Exit

b

d c

a=… b=… c=… d=…

…=a+b …=a+c …=a+d …=b+c

Exit

Proceedings of the 12th International Conference on Parallel Architectures and Compilation Techniques (PACT’03)

1089-795X/03 $17.00 © 2003 IEEE

