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Abstract

This paper discusses a register bank assignment problem 

for a popular network processor--Intel's IXP. Due to limited 

data paths, the network processor has a restriction that the 

source operands of most ALU instructions must be resident in 

two different banks. This results in higher register pressure 

and puts additional burden on the register allocator. The 

current vendor-provided register allocator leaves the problem 

to users, leading to poor compilation interface and low quality 

code.

This paper presents three different approaches for 

performing register allocation and bank assignment. Bank 

assignment can be performed before register allocation, can 

be performed after register allocation or it could be combined 

with the register allocation. We propose a structure called 

register conflict graph (RCG) to capture the dual-bank 

constraints. To further improve the effectiveness of the 

algorithm, we also propose some enabling transformations. 

Our results show the phase ordering of first doing 

register allocation and then assigning banks can reduce the 

number of spills with affordable costs of additional 

instructions. 

1. Introduction 

The dramatic growth in Internet applications has 

motivated the need for a specialized category of embedded 

processors called Network Processors (NPs). NPs have fast 

processing speed and specialized hardware support for 

network applications. As the speed of the underlying network 

keeps increasing (Giga-bits per second etc), and the 

application requirements put the burden of executing 

complicated tasks on the network processors (such as the 

intrusion detection, performance monitoring, routing in server 

farms etc.), the architectural design and compiler optimization 

for NPs become more challenging. Normally, simpler designs 

are adopted for NPs to reduce the delay on the critical data 

paths resulting in high clocking frequency. On the other hand, 

the instruction set must provide enough functionality for the 

applications to fulfill their tasks. Due to the simplicity of the 

instruction set and architecture design, increased support from 

compiler optimization is needed to bridge the gap and to yield 

performance. The compiler optimization for network processor 

has become an important research topic lately [1][2][3][4]. In 

particular, register allocation issues are very important since 

the latency of accessing off-chip DRAM is in tens of cycles 

and normally results in a context switch to the other threads. 

The IXP1200 Network Processor
In this paper, we target the dual-bank register assignment 

problem for a popular network processor family-Intel’s IXP. 

The IXP network processor [5] works with a very fast 

processor core. IXP2800 (a recent member of IXP family)  can 

reach 1.4 GHZ clock rate and can process 28 million OC-192 

packets per second over SONET. The RISC architecture 

allows a very concise instruction set and all ALU instructions 

(including plus, minus, shift, XOR, AND etc) take 1 cycle. 

64 A-Bank 

GPRs 

64 B-Bank 

GPRs 

Thread 1

Thread 2 

Thread 3 

Thread 4 

Figure 1 IXP1200 register file structure 
Figure 1 shows the block diagram of the register file for 

the IXP network processor. The register file is divided into 

bank A and bank B.  Four threads share the banked register 

file. The general purpose registers (GPRs) are physically split 

into two banks. The ALU unit inside the processor core has 

two input ports. At any time, either bank A or bank B is 

connected to one of the two input ports. On the other hand, the 

output from the ALU unit is accessible from both the banks. 

This design can potentially support a large number of GPRs 

and can control the cirtical path delay due to the increased 

register file connections. 

To shorten the execution time for ALU instructions, 

operands are fetched in parallel. Due to the above design of 

the data paths coupled with the parallel fetch of operands 

restrictions are imposed on operand register residency. Each 

ALU instruction can have two register-resident source 

operands which must come from the different register banks. 

For instance, an instruction x=y+z requires register y and z to 

be in separate banks. However, the destination register x can 

be in either bank A or bank B. 

Dual-bank Register Assignment Problem
The design of dual-bank register file raises the problem 

of register allocation with consideration to the bank 

assignments. Without such consideration, register allocation is 

handicapped, and in some cases, even impossible. 

Figure 2 gives two examples to illustrate the dual-bank 

assignment problem. In these examples, we assume that the 

total number of physical registers is four,  two in each bank. In 
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Figure 2.a, without the above register bank restrictions, each 

of the variables can be assigned one physical register. 

However, the three instructions require variable a to be in the 

opposite bank to variable b, c and d. Thus, if variable a  is in 

bank A, the other three variables must be in bank B, which is 

not possible (since there are only two physical registers in 

bank B). Figure 2.b shows variables a and b must be in 

opposite banks. Similarly, variables a and c, variables b and c

must be in opposite banks too. This creates the problem that 

even if physical registers are enough, we still cannot satisfy all 

bank constraints, since the first two instructions require 

variable b and c to be in the same bank, which contradicts with 

the last instruction. Obviously, the first example shows that 

the dual-bank constraints may cause imbalance of register

requirements to the two banks. The second example shows 

that if the bank constraints form a cyclical conflict, then no 

bank assignment is possible without resolving the conflict. 

1. b=a+b 

2. c=a+c 

3. d=a+d 

(a) (b)

1. a=a+b 

2. c=a+c 

3. d=b+c 

a bank A 

b bank B 

c bank B 

d bank B 

a bank A 

b bank B 

c ?

Figure 2 Example of the Dual-bank assignment 
problem.

The current implementation of the IXP assembler takes 

passive approaches to the bank assignment problems. The first 

problem will generate a “not enough registers” message to the 

programmer, while the second problem will cause an error 

messages prompting the programmer to fix the unresolvable 

conflict. Obviously, it is difficult for the user to make the right 

decisions. As we will illustrate later, there are non-obvious 

trade-offs involved that can actually achieve low-overheads 

for both register spill and code growth. These tradeoffs are not 

easily perceivable by the users. With the development of high-

level language support for the IXP processor, it is no long 

appropriate to ask users to resolve the conflicts (and also there 

is no need to provide “user understandable code” at assembly 

level), after the code has been transformed from the high-level 

language. A compiler solution is desirable to automatically 

assign both registers and banks.

The dual-bank register allocation problem is to 

determine the physical register allocation together with the 

bank assignment of that physical register for each virtual 

register. It aims to reduce the overhead due to additional spill 

code and other extra instructions which can degrade the 

performance and cause code growth. Speeding up the 

execution is the first priority; therefore reducing the number of 

spills becomes most important due to the long memory latency. 

Paper Outline
The remainder of the paper is organized as follows. 

Section 2 describes register conflict subgraph and no-conflict 

rule, section 3 talks about phase ordering, section 4 proposes 

the pre-RA approach, section 5 discusses the post-RA 

approach and section 6 deals with the combined approach. 

Some enabling techniques are mentioned in section 7. Section 

8 shows evaluation results; section 9 discusses related work. 

2. Register Conflict subGraph and No-conflict 

Rule

To represent the register constraints for the dual-bank 

assignment problem, in this section, we introduce the concept 

of Register Conflict subGraph (RCG).

We build upon the standard representation of 

Interference Graph used in coloring based allocators. 

Interference Graph (IG) represents each Live Range as a node 

in the graph and an edge between two nodes means the two 

live ranges interfere with each other or are co-live at some 

program point. We call the edges in the interference graph as 

Interference Edges. To distinguish the interference graph 

before and after the register allocation, we define Virtual

Interference Graph (VIG) and Physical interference graph 

(PIG). The live ranges (nodes) on VIG are Virtual Live 

Ranges, which are associated with virtual registers. Similarly, 

live ranges on the PIG are Physical Live Ranges, which 

correspond to physical registers 1 . Some edges in the 

interference graph are further distinguished as Conflict Edges,

which are defined as follows. 

DEFINITION: Conflict Edge

If two live ranges interfere in the same ALU instruction as two 

source operands, the interference edge connecting them is 

called a conflict edge. They are said to conflict with each other. 

Obviously, we have the following claim: 

CLAIM: A conflict edge must be an interference edge. 

DEFINITION: Register Conflict subGraph (RCG) 

The register conflict graph is a subgraph of the interference 

graph consisting only of conflict edges and all nodes. 

Similarly, we have the definition of Virtual Register 

Conflict subGraph (VRCG) and Physical Register Conflict 

subGraph (PRCG) based on the underlying interference graph. 

(a) (b)

a
c

d

b

a

c

b

Figure 3 Examples of the RCG. 
Figure 3 shows two RCGs corresponding to the examples 

in Figure 2. Figure 3.a is the RCG for Figure 2.a. Note that all 

interference edges are conflict edges for this example. We can 

observe that there are edges from a to b, c and d, which means, 

{a} and {b,c,d} form two separate groups that should be put 

into different banks. In Figure 3.b, the RCG forms an odd-

cycle, which means that the nodes cannot be separated into 

                                                            

1 We define the virtual live ranges to be maximal du-ud chain 

(or a web) on the VIG, that can be separately allocated. For 

PIG, physical live ranges correspond to the physical register 

names, which can be the union of several virtual live ranges 

that are assigned the same physical register. 
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two groups such that the nodes in the same group do not 

conflict with each other. 

Given a RCG, we can judge if the nodes (either virtual or 

physical live ranges) in the graph can categorized into two 

groups with each group being assigned to one of the register 

banks. If this is possible, we say the RCG is bank conflict-free,

otherwise it leads to a bank conflict that should be resolved. 

The bank conflict property is also applicable to the IG, i.e. we 

say an IG has bank conflict if its RCG exhibits a bank conflict. 

The problem of determining whether a RCG is conflict-free is 

equivalent to determining if the RCG is bipartite. The 

following No-conflict rule gives the necessary and sufficient 

condition to judge whether a RCG has conflicts. 

No-conflict rule:

The RCG is conflict-free if and only if it contains no odd-

length cycle. 

Proof: This problem is equivalent to determining if the RCG 

is a bipartite graph. According to the property of the bipartite 

graph, no odd-length cycle should exist. This is also a 

sufficient condition. 

Thus, the example in Figure 2.b has a conflict, since its 

RCG (shown in Figure 3.b) is a length-3 cycle, but the 

example in Figure 2.a is conflict-free due to the absence of any 

cycle. 

Note that, the No-conflict rule applies to both VRCG and 

PRCG; however, it gives no guarantee for balancing register 

assignment in each bank group. From the perspective of 

register allocation, the number of total physical registers 

available for each bank is fixed. Typically, the number of 

physical registers available to bank A equals that of bank B 

which means register allocator should make an effort towards 

balancing allocated registers equally between the two banks. 

We define such a problem as Balanced Dual-bank Register 

Assignment. Accordingly, the RCG with equal number of 

nodes in each bank group and conflict-free is called Balanced

Conflict-free RCG. Therefore, the example in Figure 2.a 

shows a conflict-free but not a balanced conflict-free RCG. 

3. Phase ordering 

Register bank assignment is closely related to the register 

allocator that performs virtual to physical register mapping. 

There are three approaches we can take to perform register 

allocation together with the bank assignment.  

The first method is to assign register banks before virtual 

registers are mapped to the physical registers. We call it pre-

RA bank assignment approach. All conflicts are resolved on 

the VRCG before the register allocator takes over. 

The second approach is to do register allocation first and 

then assign the banks to physical registers, at the same time 

resolve conflicts on the PRCG. This is called post-RA bank 

assignment.

Finally, a combined register allocation approach can 

consider the register bank assignment at the same time as 

register allocation.

4. Pre-RA Bank Assignment Approach 

We can designate the bank assignment for each virtual 

register before the register allocation (mapping of virtual to 

physical registers) is done. According to the No-conflict rule, 

if there are odd cycles of conflict edges in the VRCG, the 

VRCG has conflicts. The following claim says that sometimes 

the conflicts may continue to exist after the register allocation. 

Claim: If the VRCG doesn’t meet the No-conflict rule, the 

conflicts will persists after a Chaitin style register allocation 

assuming no spill is generated. 

In general, any graph coloring allocator coupled with 

other phases meets the above claim. These include, for 

example, Chaitin’s[10], Briggs[11], and Appel & George’s 

[12] register allocators. The claim can be easily verified. 

During the register allocation, the only possibility is to map 

multiple virtual registers to the same physical register through 

coalescence or coloring. If an odd cycle exists on the VRCG, 

no edge on the cycle can be collapsed since the interfering 

nodes cannot be coalesced during the register allocation. 

The pre-RA bank assignment approach regards the 

register allocation pass as a black box and assigns the banks to 

the virtual registers first. After the bank assignment is done, 

virtual registers are grouped according to their bank 

assignments. The register allocation is then done separately in 

for each bank.

To avoid the conflicts, all odd-length cycles should be 

removed to make the graph bipartite. A straightforward way to 

remove odd-length cycles is to break the cycle at some node 

point in the RCG by splitting the live range of the node. 
a=3 

…

…=a op b 

…
if(…) br label1 

…

…=a op c 

…

label1: 

…=a op d 

…
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…=a op c …=a op d
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Figure 4 Edge breaking through live range splitting on 
RCG.

Figure 4 shows an example of breaking a cycle in the 

RCG. Figure 4.a gives the code segment in which the live 

range of variable a consists of 1 definition and 3 uses across a 

conditional branch. Figure 4.b shows the RCG. Variable a

conflicts with b, c and d. Figure 4.c shows the live range using 

the control flow graph (i.e. du/ud chain of variable a). In 

Figure 4.b, if we want to break the cycles passing the edge 

(a,c), (because (a,c) is a part of an odd cycle) we can simply 

split the live range at point Y (Figure 4.c), which means after 

point Y, the live range is renamed, for example to a’. Figure 

4.d shows the RCG after splitting. At the split point, we need 

to insert a move instruction a’=a, so the live range gets 
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separated. One instruction is added in the code and one extra 

node is added on the RCG. If we want to break the cycles 

spanning both edges (a,c) and (a,d), one choice is to split at 

both points Y and Z, i.e. renaming the live range to a’ after 

point Y and renaming the live range to a” after point Z 

(Figure 4.e). This requires two move instructions and two 

additional nodes on the RCG. However, we can split the live 

range at point X, which leads to the RCG in Figure 4.f. We 

rename the live range at point X to a’. In this case, the cost is 

only one move insertion and one additional node on the RCG 

but we cannot break the cycles that pass both (a, c) and (a,d). 

The problem of making RCG bipartite (breaking all odd 

cycles) with minimal cost is shown to be NP-complete (please 

refer to Appendix A for details) by reducing a graph problem 

called Maximal Bipartite Subgraph [7] to it. There has been 

substantial work done on the Maximal Bipartite Subgraph 

problem in graph theory [8][9]. Several approximation 

algorithms have been proposed. For example, [8] gives an 

algorithm with complexity of O(n
4
). However, these 

approaches assume that the underlying graph does not have 

length-3 cycles which are not true in our case. Besides, they 

target the minimal number of edges removed to make the 

graph bipartite, while we must consider live range splitting on 

the nodes  and the cost is not uniform for node splitting. 

Finally, their analysis gives a rather loose lower bound with 

regard to the quality of the solution. Actually the solution of 

our algorithm is far beyond the lower bound calculated by 

these papers. Specifically, our heuristic algorithm below takes 

into consideration the special properties of RCG that can 

greatly reduce the complexity of the algorithm while 

maintaining quality of the solution. 

Before presenting the heuristic algorithm, we briefly 

discuss the detection of odd cycles in the RCG. Here, we 

define that if two cycles have at least one edge that is different, 

then the two cycles are said to be different. For any algorithm 

that can resolve all the conflicts in the RCG, it needs to break 

all the odd-length cycles in the graph. However, a simple 

estimation tells us that finding all odd-length cycles will take 

exponential time to finish. A brute-force algorithm must try up 
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Figure 5 Duplication in counting the odd cycles. 
However, in real programs most of the odd cycles are 

small (Please refer to section 8). Another observation is that 

the brute force searching may include duplications. In Figure 5, 

two odd cycles can be found i.e. abe and abcde. However, if 

edge (a,b) is removed, both cycles are broken. If edge (b,e) is 

removed, then cycle abcde still remains. This example shows 

that if two cycles share edges, breaking one of them can cause 

the other to disappear automatically. 

Our heuristic algorithm starts with the shortest odd cycles, 

after breaking shorter ones, we move on to find longer cycles 

and break them, until all cycles are gone. As shown in Figure 

5, the removal of shorter cycles may break longer cycles as 

well. The main data structure for odd cycle detection is called 

Breadth-First Hierarchy described below. 

4.1 Breadth-First Hierarchy 

Given a RCG, we build a breadth-first hierarchy from 

one of the root nodes following the breadth-first searching 

algorithm. The procedure is as follows: 
Input: root r 

Output: The breadth-first hierarchy 

Level_num: number of levels in the hierarchy; 

Node_level_set[]:array of sets; 

Algorithm: 

Function Build_Breadth_First_Hierarchy(node r) 

Begin 

    Node_level_set[1] {r}; mark r; 

    Level_num=1; 

    While Node_level_set[Level_num] not empty do 

        For each node p in Node_level_set[Level_num] do 

           Add all p’s directly connected neighbors that have not  

            been marked to Node_level_set[Level_num+1]; 

            Mark all newly added nodes.  

        od 

        Level_num++ 

    Endw 

    Return Level_num, Node_level_set[] 

End 

Figure 6 Building the breadth-first hierarchy. 
 The root node r is the only first level node. After visiting 

the root node, we visit and mark its directly connected 

neighbors which are marked as the second level nodes. Next 

we visit neighbors of second level nodes that are unmarked 

and assign them level three and so on. It is easy to notice that 

the level of a node is its minimal distance to the root plus one. 

Besides, the time complexity to construct the breadth-first 

hierarchy is O(n
2
). Next, we give two lemmas about the 

breadth-first hierarchy. 

Lemma 1: 

If an edge e connects node p and node q on the RCG, then 

|node_level(p)-node_level(q)|<=1, where node_level gives the 

level of the node on the breadth first hierarchy. 

Proof: Without loss of generality, assume node_level(p) 

>node_level(q), if there is an edge from node q to node p, then 

p should be on level node_level(q) +1, which proves the 

Lemma.  

Lemma 2: 

The RCG is conflict-free, iff any edge (p,q) => |node_level(p)-

node_level(q)|=1. 

Proof: From Lemma 1, we only need to show 

node_level(p)<>node_level(q). If this condition is not 

satisfied, (i.e. if node_level(p)=node_level(q)), we find a path 

from root r to p called path(r,p) and a path from r to q called 

path(r,q), each with node_level(p) nodes. Let s be the latest 

common node for the two paths, i.e. path(s, p) and path(s,q) 
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only share node s. We then have an odd cycle s->p->q->s.  On 

the contrary, we can separate the nodes into two groups; all 

nodes in odd level form one group, and all nodes in even level 

form another group. Then there are no edges within these two 

groups and thus,  the graph is bipartite and conflict-free. 

Lemma 1 shows that the edges on the RCG only appear 

between nodes from adjacent levels on the hierarchy. Lemma 

2 implies that no two nodes on the same level being connected 

is equivelant to the RCG being conflict-free. In other words, if 

a RCG is not conflict-free, there must be an edge that connects 

two nodes on the same level. We call such an edge Parallel 

Edge. Next, we present a lemma that will be used later in our 

heuristic algorithm to detect odd cycles with length k, where k 

is an odd number greater than 3. This lemma can help to build 

a fast algorithm to detect all such cycles. 

Lemma 3: 

The smallest odd cycle is of length k (k is an odd number), iff 

there is no parallel edge on any breadth-first hierarchy up to 

level (k-1)/2. 

Proof: Briefly, the proof is similar to that of lemma 2. If there 

is a parallel edge on level less than (k-1)/2, we will find an 

odd cycle that is less than k.  

Thus, to find all the odd cycles of length k (assuming 

non-existence of  shorter odd cycles) in the RCG, we build n 

breadth-first hierarchies with each of the n nodes as root nodes. 

All the hierarchies only need to be built up to (k-1)/2 level and 

checked for parallel edges. Since the algorithm runs faster 

when k is small and most odd cycles are actually small, we 

find this odd cycle detection algorithm finishes quickly in our 

implementation. 

4.2 Live Range Splitting Patterns 

Live range splitting patterns represent the possibilities a 

live range can be split.  For each live range, we can find out all 

splitting patterns. For example, in Figure 4, we observe 4 

possibilities to split the live range, i.e. X, Y, Z or (Y, Z). For 

each splitting pattern, we can calculate its cost. Although the 

number of splitting pattern may grow exponentially, in 

practice only a few live ranges contain a large number of uses 

as source operands. This is probably due to the nature of the 

applications running on the network processors. Also, the live 

range defined as connected du/ud chains can achieve value 

separation, which leads to smaller number of splitting patterns 

due to reduced number of uses associated with each live range. 

In implementation, we specify a limit of 1000 patterns for each 

live range, otherwise the live range is forced to be split as if it 

is involved in every cycle. In our evaluation, we show that this 

almost invariably happens.  

4.3 The Pre-Register Bank Assignment Heuristic 

Algorithm 

As mentioned before, our heuristic algorithm breaks odd 

cycles from the shortest, i.e. size three and goes to longer 

cycles as it proceeds. The algorithm is listed in Figure 7. It 

executes several iterations each one breaking all cycles of 

length m. m takes odd integers from 3 to n. During each round, 

two sets are built. The Cycle_set stores all cycles with length 

m. The Pattern_set stores all patterns. Then we examine each 

pattern to see how many cycles it can break in the Cycle_set,

the priority function for applying a pattern is calculated as the 

number of cycles it can break divided by the cost (the number 

of moves inserted). The pattern with highest priority is chosen. 

After a pattern is applied to CFG and VRCG, all broken cycles 

are removed from Cycle_set and the Pattern_set is also 

updated, since new live ranges are added and the old live 

ranges might be  altered. The algorithm picks the most 

favorable pattern and proceeds with that pattern. The 

following claim guarantees the algorithm will eventually 

remove all odd cycles. 

Claim: Assume k to be an odd number greater than 3, then 

after all length<k odd cycles are broken, the breaking of 

length-k cycles will not create shorter odd cycles. 

This is obvious, since during the whole process, nodes 

are not merged to form new cycles on RCG. The complexity 

of the algorithm in the main loops is roughly O(n*P*M), 

where n is the number of nodes on the original graph, P is the 

maximal number of patterns in the Pattern_set and M is the 

maximal number of the Cycle_set size. Since most odd-cycles 

are short and breaking shorter cycles may break longer ones as 

well, the outer-most for loop in Figure 7 normally finishes 

early. From Figure 7, we notice that the update of Cycle_set

and Pattern_set can be done with marginal computation. 
Input: VRCG, CFG

Output: VRCG (no conflict),CFG, set of split live ranges

Algorithm: 

Function Pre_RA_Bank_Assignment 

Begin 

    Construct patterns (calculate costs) for all live ranges, store to Pattern_set

    For m=3 to n, step 2 

        Detect all odd cycles with cycle length m, store to Cycle_set;

        while (Cycle_set <> empty) do 

            For each pattern p in Pattern_set do 

                w=cost of using p 

                bn=number of cycle p can break in Cycle_set                 

                The priority of pattern p is bn/w 

            od 

            The pattern with highest priority is applied on VRCG, CFG 

            Remove broken cycles from Cycle_set

            Update Pattern_set if necessary 

        Od 

    Endfor 

    Return VRCG, CFG and the set of split live ranges 

End

Figure 7 Pre-RA bank assignment heuristics. 
The drawback of this approach is the difficulty to control 

the register pressure in each group, which may lead to 

imbalanced pressure between the two banks during the register 

allocation. For example, assume that the virtual registers are 

grouped equally when they are passed to the register allocator. 

However, it then turns out that one of the groups needs more 

physical registers to avoid  spilling, while the other group has 

free registers. As it is hard to judge the physical register and 

spill code that will be generated before the register allocation, 

the pre-register allocation approach may result in imbalanced 

spill. In other words, it may increase the overall spill cost. 

However, after the RCG becomes conflict-free, this problem 

can be alleviated by making the RCG near-balanced before 

passing it to the register allocator. 
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4.4 Near-Balancing the RCG 

After the live range splitting, it is quite likely that the 

RCG is no longer a connected graph. By identifying the 

connected components of the RCG, we can near-balance the 

number of nodes in the two banks through separate bank 

assignment to each connected components of the RCG. 

Suppose the RCG has m connected subgraphs: G1 G2..Gm,

each with a subset of the nodes and edges of the RCG. Since 

the m subgraphs are all conflict-free, i.e. bipartite, we can 

separate each Gi into GAi and GBi, such that no conflict edge 

is inside GAi and GBi (This can be done to construct a 

breadth-first hierarchy and separate odd level and even level 

nodes). Let Ai=| GAi |, Bi=| GBi| and the number of total nodes 

is
ii BAn += . We want to minimize 

iC
n −
2

, where 

Ci=Ai or Bi. In our implementation, we apply exhaustive 

search, which takes O(2
p
), since p is typically less than 10. For 

larger p, a fully polynomial time algorithm can be derived 

from the subset sum algorithm [6], which closely 

approximates the optimum in polynomial time. 

5. Post-RA Bank Assignment 

Although the pre-RA bank assignment can avoid 

conflicts during the register allocation, it creates imbalanced 

register requirements (higher chromatic number for one of the 

register banks). On the contrary, post-RA bank assignment 

approach allocates register with well-known register allocation 

algorithms to minimize the spills in the first place. Our bank 

assignment algorithm is invoked to resolve bank conflicts and 

balance physical register distribution across banks. The post-

RA bank assignment algorithm will not increase spill code. 

Although some physical live ranges are split after moves are 

inserted, the cost is much lower than spills. 

As we know, the register allocator can map different 

virtual registers to the same physical register. Therefore, 

physical live ranges are typically larger than virtual ones. The 

post-RA bank assignment problem shares many properties 

with the pre-RA bank assignment problem. Therefore, some of 

the techniques can be borrowed. However, there are clear 

differences between these two approaches. Firstly, we cannot 

simply rename a live range, because each physical live range 

is allocated a physical register. If a live range is split, we must 

find an available physical register to hold the new live range. 

Secondly, the PRCG must be balanced and conflicts removed. 

5.1 Cost for Splitting Patterns 

The cost of splitting patterns for physical live ranges are 

calculated differently. Especially the cost to split at a certain 

point is not just equal to the inserted move instruction. In 

building the Pattern_set for the heuristic algorithm, we 

categorize the cost for a pattern into 3 types: 

1. If the register pressure in the renamed program 

segment (for example, in Figure 4.c, from point Y to 

instruction a op c) is less than the number of available 

physical registers, then splitting cost is set to be the 

move insertion cost. 

2. If condition in (1) is not true, we look around near the 

splitting point to find the chance of rematerialization,

and calculate the cost accordingly. 

3. Finally, we count the cost of doing in-place bank 

exchange.

5.1.1 Rematerialization 

Rematerialization has been used by [11] to free a register 

through recomputing the value in-place before it is needed to 

avoid carrying the value in the register. We check for 

rematerialization before we analyze the splitting patterns; thus 

the register pressure in some region of the program can be 

reduced.

5.1.2 In-place Bank Exchange 

After all the above endeavors fail, we have the last resort 

to solve the bank conflicts using this technique. In-place bank 

exchange requires no additional registers, however it requires 

4 ALU instructions to remove one conflict edge on the RCG. 

Although it can be expensive in terms of space in contrast to a 

register spill, in-place bank exchange saves runtime cycles and 

most importantly, guarantees the odd cycles can be broken in 

the worst case without incurring spills.
1. … 

2. … 

3. …=a op b 

4. … 

5. … 

(a)

1. a  =a ⊕ X 

2. X = a ⊕ X    

3. …=X op b //X=aorig, a=aorig⊕Xorig

4. X = a ⊕ X  //X=Xorig, a=aorig⊕Xorig

5. a  = a ⊕ X  //X=Xorig, a=aorig

1. … 

2. … 

3. a  =a op b 

4. … 

5. … 

(b)

1. b  =b ⊕ X 

2. X = b ⊕ X    

3. …=a op X //X=borig, b=borig⊕Xorig

4. X = b ⊕ X  //X=Xorig, b=borig⊕Xorig

5. b  = b ⊕ X  //X=Xorig, b=borig

Figure 8 In-place bank exchange. 
Figure 8 illustrates two cases to break a conflict edge 

between live range a and b. In Figure 8.a, we assume that the 

destination operand of instruction (3) is not a. We insert two 

XOR instructions before and two XOR instructions after the 

ALU instruction in line 3. The register X is an occupied 

physical register that is in the opposite bank to variable a, thus 

it is also in the opposite bank to variable b. The first two 

exchanges put the variable a in X and then the instruction in 

line 3 is conflict-free. The last two XOR instructions restore 

the values of a and X. The conflict edge between a and b can 

be removed, because the two variables can be assigned 

physical registers in the same bank now. Figure 8.b shows the 

case when a is the destination operand. We can exchange b

and X to remove the conflict. In-place bank exchanges are 

special splitting patterns that are provided for all edges. 

Therefore all odd cycles can be broken in the worst case with 

these patterns.

5.2 Balancing Register Numbers in Two Banks  

In this section, we discuss the balancing of registers in 

the two banks. After the removal of all odd cycles, we can 

apply the same bank assignment approach as the pre-RA 

algorithm to obtain a near-balanced RCG. After that, we have 

to reassign some of the live ranges to the opposite bank, which 
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could induce conflicts. The induced conflicts have to be 

resolved at the cost of inserted instructions. 

Suppose the live ranges on the RCG have been grouped 

into two groups, BankA and BankB. Also assume, 

|BankA|>|BankB|. We attempt to pick one of the nodes in 

BankA and move it to BankB and estimate the cost of 

resolving the conflicts due to this move by again using the 

minimal cost splitting pattern. This procedure is repeated until 

the number of nodes in the two banks are equal. If the 

difference between |BankA| and |BankB| is small (as it usually 

is), we can attempt all combinations of moves for (|BankA|-

|BankB|)/2 nodes from BankA to BankB, which gives better 

solution than moving nodes one by one from BankA to BankB,

but takes slightly longer time to finish. 

Input: PRCG, CFG

Output: PRCG (balanced and conflictless), CFG

Algorithm: 
Function Post_RA_Bank_Assignment 

Begin 

    Register_allocation 

    Construct patterns for all live ranges, including in-place exchange 

        patterns, store to Pattern_set

    Foreach pattern p in Pattern_set do 

        Calculate the cost for p (with available register, rematerialization or 

            In-place exchange) 

    od 

     

    Break all odd cycles //the same as in Pre_RA_Bank_Assignment 

     

    Near-balancing the two bank groups 

    If |BankA|<>|BankB| then 

        Balance the bank by moving nodes between them. 

    Endif 

    Return PRCG, CFG 

End

Figure 9. Post-RA bank assignment heuristics. 

5.3 Heuristic Algorithm for Post-RA Bank 

Assignment

We discuss the algorithm for post-RA bank assignment 

algorithm in this section. In Figure 9, the procedure 

Post_RA_Bank_Assignment consists of 4 parts: register 

allocation, constructing and calculating the cost for pattern, 

breaking odd cycles and balancing the two bank groups. After 

register allocation is done (assuming a monolithic register file), 

the Pattern_set is constructed. Cost calculation is more 

complicated than the pre-RA bank assignment. Next, odd 

cycles are broken as in the previous section. Bank balancing 

has two steps. The near-balancing algorithm in the previous 

section is applied first, because it incurs no cost. Then, the 

approach described in section 5.2 is applied to achieve a 

perfect balance. 

6. Combined Register Allocation Approach 

As mentioned before, it is possible to combine register 

allocation with register bank assignment. However, as many 

register allocation algorithms have been proposed in literature, 

we do not want to delve into all the possibilities. In this 

section, we briefly introduce our combined algorithm with 

Briggs-style register allocation algorithm [11]. In contrast to 

the original algorithm, we have several modifications.  

The allocator takes nodes from the interference graph and 

pushes them to one of the stacks. 

1. Two stacks are maintained for the two banks.  

2. During “coalesce”, coalescence is performed only when 

the two nodes do not interfere with each other. In addition, 

coalescence should not create new odd cycles. 

3. In the “simplify” stage, we push each node on the IG to 

one of the stacks. Nodes can be marked as "spill" or 

"conflict". Nodes are pushed in the following order. 

a) We pick a node and push it to a stack that causes no 

conflict (with nodes still on the IG) and no spilling 

(with neighbor number less than the number of 

registers in one bank). 

b) If a) fails, find a node that does not need spilling (but 

has bank conflicts) and with minimal cost to resolve 

the conflict, push it to one of the stacks. 

c) If both a) and b) fail, find a node that must be spilled 

but with minimal spill cost as calculated by Brigg’s 

algorithm and push it to one of the stacks. 

4. During “select”, we pop nodes from the two stacks one by 

one in the order they are pushed to the stacks.  

a. Give the node a color (the color must belong to the 

bank of that node) that is different from all colored 

neighbors on the IG, and that has no conflict with 

the nodes already on the IG. 

b. If the color is available, but there is conflict, we 

resolve the conflict as in the previous section. 

c. If both a) and b) fail, the node must be spilled. 

One difficulty in the combined approach is that we do 

not know the bank assignments of the remaining nodes on the 

IG during “simplify”. In the worst case, we have to assume all 

neighbors will be in the same bank, so only half of the 

registers are available for coloring. This causes a lot of nodes 

to be marked as “spill”. Possible improvements to this problem 

are being investigated.

7. Some Enabling Techniques 

This section discusses two types of optimizations that can 

help with the aforementioned approaches. As shown later, 

these approaches do not require additional virtual or physical 

register but can help to reduce the number of odd cycles on the 

RCG. 

7.1 Removal of Length-3 Odd Cycle Conflicts 

Figure 10 shows an example on how to remove conflicts 

involving odd cycles of length three. Recall that we attempt to 

break odd cycles in the order of increasing lengths (refer to 

Figure 7 and Figure 9) and thus, applying this transformation 

could break cycles of higher order as well. Figure 10.a is a 

code segment where three operands s1, s2, s3 form an odd 

cycle of length 3 on the RCG. Note that, all the three operands 

are live in but not live out, while the 3 destination registers are 

the only live-outs. Figure 10.a shows the code transformation 

that removes the conflict edge <s1,s3>. Also notice that the 

instruction in line 3 is supported by the IXP, which does a left 

shift before minus. Figure 10.c gives a general form of the 

code segment and the rule for this transformation to be legal. 

f1 and f2 must be supported instructions. “plus”, “minus” are 
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most commonly seen operators that find this transformation 

useful. This optimization is applicable to pre-RA and post-RA 

bank assignment. But for post-RA bank assignment, it merges 

live ranges, which may result in new odd cycles. In our 

implementation we have a simple check it before the code 

transformation is applied in post-RA setting. 
Live in: s1, s2, s3 

1. t1=s1+s2 

2. t2=s2+s3 
3. t3=s1+s3 

Live out: t1,t2,t3 

(a) (b)

1. s1=s1+s2 

2. s3=s2+s3 

3. s2=s1-2*s2 

4. s2=s2+s3 
mapping: 

t1—s1 

t2—s3 

t3—s2 

1. t1=s1 op1 s2 

2. t2=s2 op2 s3 

3. t3=s1 op3 s3 

Application rule: 
t3=f2(f1(s2, t1), t2)  

or

t3= f2(f1(s2, t2), t1) 

f1 and f2 are ALU instrs

(c)

Figure 10. Example for removal of conflict involving 
triangle cycles.

7.2 Application of Algebraic Laws 

Algebraic laws such as associativity, distributivity can be 

applied to change the edge connectivities on the RCG, so as to 

reduce conflicts on the graph. These optimizations can be 

invoked on the RCG to break some of the cycles. 

Calculate a+b+c 

1. d=a+b 

2. e=d+c 

(a) (b) (c)

a b

cd

Calculate a+b+c 

1. d=a+c 

2. e=d+b 

a b

cd

Calculate a+b+c

1. d=b+c 

2. e=d+a 

a b

cd

Figure 11. Example for application of algebraic laws. 
In Figure 11, three cases are shown to calculate a+b+c. 

With associativity, we can calculate a+b first or a+c first or 

b+c first. Therefore, on the RCG, 3 kinds of connectivities are 

possible, given that all ALU instruction can have at most two 

register operands. The choice largely depends on the number 

of odd cycles each one would create. In our implementation, 

we focus on the number of triangles that can go through these 

edges. It can be easily counted using breadth-first hierarchy 

based on the first two levels of nodes. The calculation order 

with the least number of length-3 odd cycles is chosen. More 

generally, most 2-operand ALU instructions satisfy 

associativity can be transformed with this law. 

8. Experimental Results 

We evaluate the algorithms with the Intel-provided 

IXP1200 Developer Workbench 2.01. The IXP1200 

workbench supports cycle-accurate simulation for IXP 

microengines and other peripherals with high fidelity. It 

provides both assembler and a C compiler supporting a subset 

of ANSI C. 

We experiment with 8 benchmark programs to see the 

effectiveness of the three approaches. These benchmarks are 

collected from Commbench[16], Netbench[17], and a packet 

scheduling algorithm from [18]. The benchmark programs are 

rewritten in IXP C code and a few of them are directly written 

in assembly (micro-code). For the assembly code generated by 

the C compiler, we restore the virtual registers. Figure 12 

shows the flowchart of the compilation process. The register 

allocation and bank assignment pass have three modules, i.e. 

Post-RA, Pre-RA and combined-RA. The general register 

alloator is the one proposed by Briggs et.al. [13]. Our pass 

builds the CFG, IG and RCG from the assembly code, after 

simple translation of the assembly directives. The IXP 

assembly consists of only 40 RISC instructions, which makes 

the translation easy. For one thread, the number of total 

physical registers is 32 (the benchmarks are assumed to be run 

on only one thread). Therefore, 16 registers are available in 

each bank. 

Intel C compiler

IXP C code 

IXP assembler and linker 

IXP assembly code 

Restore Virtual Reg

Machine code 

Reg. Alloc.

Post-RA Bank 

Assign.

Post-RA Bank 

Assign. 

Reg. Alloc. 

Combined 

Reg. Alloc and 

Bank Assign. 

Figure 12 Compilation flowchart. 
Table 1 shows the properties of the benchmark programs. 

The code size is the number of instructions after code 

generation. The number of live ranges and interference edges 

are listed in 3
rd

 and 4
th
 column. On average, the degree of the 

live ranges on the interference graph is about 9. The last 

column shows the number of conflict edges. Conflict edges are 

much less than interference edges. Only a small fraction of 

instructions become conflict edges, because only ALU 

instructions with two source GPR operands establish conflict 

edges in the RCG. Among these instructions, some conflict 

edges are identical. 

Table 2 shows the cycle length distribution. We separate 

columns into two categories. Column 2 to 4 show the 

distribution of cycle length before the two enabling techniques 

in section 7 are applied. Column 5 to 7 are the distribution 

after these techniques are used. We apply the enabling 

techniques before register allocation and bank assignment. 

From Table 2, we find most cycles are of length 3. Cycles with 

length greater than or equal to 7 are rare. The techniques in 

section 7 seem to have limited effects, especially for larger 

benchmarks. 

Table 3 gives the number of instructions inserted to apply 

the patterns (we do not included instructions for spills, this 

will be counted in the next table) to break odd cycles and 

balance the banks. They include “move insertion” and “in-

place exchange” etc. for post-RA bank assignments. The 

results signify that post-RA adds more instructions than the 

other two. This is due to the more ambitious conflict breaking 

attempted by this stage adding many instructions. Since virtual 

registers have been allocated physical registers, more odd 

cycles may result. Nodes on the physical RCG are more costly 

to split, because they represent several nodes for virtual live 

ranges. A combined-RA approach tends to generate fewer 

additional instructions, however, as we will see later, more 

spills are created. 
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Table 4 gives the number of spills generated by each 

approach. The combined-RA is worst, since the graph coloring 

works poorly when two stacks are assumed. Many nodes are 

marked as spill when pushing to the stack because the number 

of neighbors they have on the graph is larger than the number 

of physical registers in one register bank, but actually their 

neighbors on the graph may finally go to the opposite bank, 

which is not known at the time they are pushed onto the stack. 

Post-RA is the best in reducing number of spills (since it 

assumes one bank when doing RA), which compensates the 

increased number of additional instructions due to the high 

cost of spills. 

Table 5 compares 4 of the 8 benchmarks for runtime 

performance. In summary, pre-RA and Combined-RA are very 

close, while post-RA is about 7% (ranging from 6% to 9%) 

better than Combined-RA. 

The compilation time for all benchmarks is within 1 

second on a Pentium 4 machine. Obviously, the combined-RA 

approach is polynomial time algorithm. For pre-RA and post-

RA algorithm, the majority of the compilation time is spent on 

cycle breaking. As mentioned in section 4.3, the complexity of 

the cycle breaking is O(n*P*M). If the outmost loop can finish 

early, the complexity is close to O(PM). Since we have set the 

bound for M, the complexity is further controlled by 

O(P)*Max(M). Finally, P is the maximum among the numbers 

of different odd-length cycles. Normally, this is the number of 

length-3 cycles on the RCG, which should be in O(n
3
).

 In conclusion, our Post-RA bank assignment is 

successful in breaking odd cycles and bank balancing without 

increasing spills. The extra instructions cannot offset the 

benefits of spill reduction. Pre-RA generates more spills than 

Post-RA but less than the current version of the combined-RA. 

Table 1 Benchmark applications. 
 Code Size #live ranges #interference edges #conflict edges 

Drr 108 11 55 25 

Fir2dim 447 36 120 71 

Frag 271 26 133 65 

Kmp 123 13 53 27 

Lzw 126 18 105 36 

Md5 913 142 630 246 

Wraps (receive) 875 145 643 236 

Wraps (send) 921 135 464 193 

Table 2. Cycle length distribution. 
 Without algebraic law & triangle conflict removal With algebraic law & triangle conflict removal

 Length-3 Length-5 Length  7 Length-3 Length-5 Length  7

Drr 7 1 0 7 1 0
Fir2dim 48 2 0 48 2 0

Frag 51 3 1 49 3 1
Kmp 8 0 0 8 0 0
Lzw 49 4 0 44 4 0
Md5 836 13 2 827 12 1

Wraps (receive) 1132 19 3 1101 17 3

Wraps (send) 842 10 0 840 10 0

Table 3. Comparison for number of inserted 
instructions.

 Pre-RA Post-RA Combined-RA 
Drr 3 5 5 

Fir2dim 10 18 11 
Frag 8 20 8 
Kmp 3 8 4 
Lzw 4 10 3 
Md5 38 59 19 

Wraps (receive) 35 62 23 
Wraps (send) 29 55 21 

Table 4. Comparison for number of spills. 
 Pre-RA Post-RA Combined-RA 

Drr 2 0 4 
Fir2dim 5 0 7 

Frag 3 0 8 
Kmp 2 0 2 
Lzw 2 0 5 
Md5 30 23 35 

Wraps (receive) 45 38 56 
Wraps (send) 52 38 57 

Table 5. Comparison for runtime cycles. 
 Pre-RA Post-RA Combined-RA 

Drr 205391 188910 198910 

Fir2dim 147149 134982 142812 
Frag 26760 25281 26351 
Kmp 146909 137829 143618 

9. Related Works  

Although this paper studies optimizations for a special 

network processor architecture with dual-bank register file, 

partitioned register file has long been adopted by many 

commercial DSPs such as Texas Instruments’ VLIW chips. 

The IXP network processor’s register file differs from theirs 

in that 1) only one function unit; 2) the parallel access to the 

register file is restricted to the two source operands.

A recent architecture paper [13] studies multi-banked 

architecture and shows performance advantage. [14] talks 

about the register allocation for VLIW machines. However, 

none of these papers deal with the issue of dual bank 

constraints discussed by us. [15] studies the register allocation 

problem for a dual-bank register file. Register access requires 

both register number and a bank specifier, which are 

determined by a control register. Since their architecture does 

not require source operands to be in different banks, the 

approaches used are different from us.  
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[4] models the register constraints on IXP as an integer 

linear programming problem, which leads to excessive 

compilation time (compilation time of several seconds is 

reported in their paper for relatively small benchmarks which 

makes it unacceptable as a standard compilation pass). In 

addition, we believe our solution being light-weight in terms 

of compilation time is scalable towards the future generation 

of IXP processors with code store size at least quadrupled 

(IXP2400 vs IXP 1200). Secondly, the ILP formulation only 

guarantees optimality in stage one, however, the overall 

solution is still sub-optimal. Specifically, in the presence of 

spills, the solution generated by their method may not be 

optimal. Finally, their paper does not include transformations 

such as in-place exchange, which trades code size for less 

number of spills (sometimes solely reduces the number of 

spills) which enhance overall quality of solution over what 

exhaustive methods can discover in a non-transformed space . 
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Appendix A 

The problem of making RCG bipartite (break all odd cycles) 

with minimal cost is NP-complete. 

Proof: Firstly, it is trivial to show the problem is polynomial-

time verifiable. Next, we reduce the maximal bipartite 

subgraph problem to it. The maximal bipartite subgraph 

problem is to find the minimal number of edges to be deleted 

to make a given graph bipartite. Suppose, we are given an 

instance of this problem—an undirected graph G(V,E). We 

construct a program code with two-level CFG. The first level 

basic blocks (BBs) represent nodes on G called node BBs. 

The second level BBs represent edges on G called edge BBs. 

Each edge BB is connected to the two node BBs on the edge. 

In each node BB, there is one instruction that makes an 

assignment to a variable. In each edge BB, the two variables 

from its node BBs conflict as source operands. Now, the 

constructed graph has a RCG equivalent to G. Breaking an 

edge on G is equivalent to splitting the live range in the 

corresponding edge BB by inserting a move instruction before 

the ALU instruction. Therefore, we have reduced the maximal 

bipartite subgraph problem to the problem of making RCG 

bipartite with minimal cost. The following shows an example. 

Node BBs

a

V1=… V2=… Vn=…

…=V1 op V2 …=Vi op Vj …=V1 op V2Edge BBs

Exit 

b

d c

a=… b=… c=… d=…

…=a+b …=a+c …=a+d …=b+c

Exit 
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