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GT Network Processors Group
• www.cercs.gatech.edu/projects/npg
• Compilers 

– Santosh Pande (CoC), …
• Intrusion Detection 

– Wenke Lee (CoC), David Schimmel (ECE), …
• Application-level Services

– Karsten Schwan, Ada Gavrilovska, … 
– focus on high-performance scientific and 

enterprise applications

http://www.cercs.gatech.edu/projects/npg
http://www.cercs.gatech.edu/projects/npg


Motivation
• Large-scale high-performance distributed 

application need dynamic and customizable 
services
– better resource utilization, quality of service, 

runtime operating condition, changes in application 
needs… 

– extend core functionality and enable customizations 
that deal with more than just network-level 
information

– need ability to dynamically deploy application-specific 
processing actions on data and modify data path 
through distributed system



Service Requirements
• Some actions required are similar to network-centric 

services, but access payload
– content based routing, filtering, replication, data transcoding, 

notification…
– should be able to implement them efficiently on networking 

devices

• Other services are resource intensive 
– resources available at standard hosts needed to support them 

– software, memory, computational resources… 
– floating point arithmetic, matrix manipulation, DB access…

• Some service need to be executed as early as possible
– intrusion detection, filtering, ill-formed messages…



Current Approaches
• overlays are built to enable customized services and 

data delivery 
– customizations occur at user- (or kernel-) level
– cost of network stack traversal, computational and 

memory/ I/O loads at hosts

• active networking approach to customize core 
communication services
– too restrictive for the general case
– mostly suitable for network-centric services

• device-level research
– specific domain: storage, web services, custom 

devices



Our Approach

• Use network processors (NPs) to enhance standard 
hosts, as Attached Network Processors (ANPs)

• Core functionality – delivery of application-level 
messages to destination in distributed system - on 
ANP

• Map other services or service components across 
host-ANP boundaries

• create host-ANP platforms and use joint resources, 
offload hosts, and benefit from NP’s specialized 
hardware for certain functionality



why programmable NP?
• optimized hardware with built in support for networking 

functionality, efficient data movement, multiple parallel 
processing context, headroom available… 

• NP’s programmability demonstrated to be useful
– software routing, differentiated services, network 

monitoring, intrusion detection

• specialized hardware has been used to enhance host’s 
capabilities
– graphics cards, crypto units, NICs, FPGAs, I2O 

devices…



Host-ANP pairs
• standard hosts and NPs attached 

via the PCI interface

• Receive and Transmit stage on 
ANP execute core functionality: 
– compose application level data, move 

data along its data path

• additional functionality is 
implemented via handlers
accessing data on ANP and/or 
host
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Sample Applications

• scientific collaborations
– SmartPointer

• event notification systems
– stock ticker updates

• delivery of dynamic web content
– continuous queries

• operational information systems
– Delta AirLines, WorldSpan
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Services which can benefit from IXPs

• Adaptive mirroring
– enterprise cluster enhanced with IXP NPs

• Ill-formed messages
– IXPs on ingress path into the enterprise system

• Data customization
– IXPs on egress to perform destination/client-based 

filtering/multicast…
• Interaction with external partners

– format translation from internal representation, 
driven by legacy systems, to standards used by 
external partners 

– data translation to share with external partners only 
necessary info

• Business rules execution & pre-processing



Representing application-level actions

• Stream Handlers are lightweight, composable, 
parameterizable, computation units

• represent application-level processing that can be 
embedded into data fast path and executed on ANPs.

• can be composed to implement a rich set of 
application-level functionality

• executed on the fast path by the IXP’s microengines

• operate on both packets’ header and payload data



Accessing application-level data

• Assembling application-level data
– RUDP-like, efficient protocol for reassembly and 

fragmentation of application-level data in IXPs
– next generation IXP NPs – support for standard 

protocols

• Interpreting application-level data
– rely on data format descriptors to interpret and 

correctly access data
– XML and internal data representation



Handling formats on the NP

• PBIO – provides interoperability in 
heterogeneous environments
– used for internal data representation
– PBIO-to-XML transcoding at enterprise edges

• permits application evolution/upgrades
– involves execution of well-defined rules to 

determine versions, etc.
• format/handler cache & registration

– controlled through general purpose hosts 
– core?

• middelware-level actions
– e.g., channel `derivation’ in publish-subscribe



SPLITS

Software architecture for Programmable 
LIghtweighT Stream handling

• enables joint use of hosts and their ANPs

• deployment of stream handlers onto ANP

• permit application to dynamically reconfigure
– paths through host-ANP nodes (contexts traversed)
– services implemented along these paths (handlers 

invoked)
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SPLITS Components
• Host-side components

– maintain information on available handlers
– API for application interaction with runtime

• Resource Monitor
– monitor resources along established paths

• Constraint Verifier
– determine validity of requests for path reconfiguration; 
– uses handler profiles

• Control Manager
– issue control messages and execution of control protocols



Implementation details

• built on top of host-IXP PCI interface (Mackenzie et al.)
• dedicated ANP contexts for core functionality

Rx/Tx, data movement to/from host
default data path ANP-host-ANP
shared queues among stages

• well-defined activation points along path where 
stream handler can be invoked
– runtime configuration in fast memory – checked at activation 

points
• reserved memory for handler state and parameters



Stream Handlers in SPLITS
• associated with all or subsets of data along data path

• provided by programmer, multiple representations 
suitable for different activation points

• have handler identifier, access to flow and system 
state, configuration parameters

• at activation points handler id determines the right 
offset in the Istore-resident jump table



Dynamic Reconfigurability

• Configure and deploy stream handlers compositions 
split across multiple execution engines, while still 
meeting underlying resources

• Dynamically select and deploy handlers and 
parameters to tune the service implementation to 
current application needs and network resources

• Enable deployment of new codes without service 
interruption, by reserving some of the IXP 
resources



Reconfiguration in SPLITS
• reconfigure both data path and processing applied 

to the path
– handler selection
– parameter passing
– dynamic hot-swapping

• additional checks can be implemented efficiently 
and service interruption unnoticeable (28-30us)

• assumption: reconfiguration is not high-frequency



Constraint Verifier

• resource monitor
– ‘headroom’ on each data path, number and type of memory 

accesses, instruction count
– determine maximum amount of resources that can be 

utilized at a stage
• handler off-line profiling

– compare with available resources at a stage and verify that 
handler does not violate that

• admission control
– based on resource availability and handler requirements
– based on application-specific data and handler inter-

dependencies



Rules Engines

• perform event-action processing
– in intrusion detection systems

• e.g., firewalls…
– in pub/sub middleware, 

• e.g., event notification systems delivering information 
`where it’s needed, when it’s needed’

• performing rule processing is complex, but 
experience with IXP1200 demonstrated that 
microengines can handle that.



Rules Engines in Enterprise Applications

• in enterprise computing domain rules capture 
business logic
– e.g., check-in policies, ticketing…

• tools for dynamic rule addition/removal
– rapidly adapt to new customer requirements, 

business environments and regulatory changes
• require ability to efficiently assign event 

flows to corresponding actions 
– classification issue

• ability to automate ruleflow composition and 
state management



IXP-based Rules Engine

• rule handlers == stream handlers
• use of binary format descriptors in classification
• build configuration mechanisms on top of SPLITS 

model
• special consideration on state organization and 

placement 
– application-dependent

• understand constrains which need to be satisfied by 
rules to minimize perturbation as a result of new 
rule deployment



Rule execution is feasible on IXP2400



Ruleflows should be formed with consideration 
of state access requirements

ruleflow A

ruleflow B
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Conclustion

• Network Processors can enhance the 
processing capabilities of standard systems 
and deliver significant improvements for 
application-level services

• Several classes of services can be targeted 
in enterprise computing domain 

• Additional functionality required 
flexible classification, profiling tools and models, 
faster host-NP interconnect…



Thank you.
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