
Supporting Enterprise
Applications with Attached

Network Processors

Karsten Schwan, Ada Gavrilovska,
Greg Eisenhauer

GT Network Processors Group
• www.cercs.gatech.edu/projects/npg
• Compilers

– Santosh Pande (CoC), …
• Intrusion Detection

– Wenke Lee (CoC), David Schimmel (ECE), …
• Application-level Services

– Karsten Schwan, Ada Gavrilovska, …
– focus on high-performance scientific and

enterprise applications

http://www.cercs.gatech.edu/projects/npg
http://www.cercs.gatech.edu/projects/npg

Motivation
• Large-scale high-performance distributed

application need dynamic and customizable
services
– better resource utilization, quality of service,

runtime operating condition, changes in application
needs…

– extend core functionality and enable customizations
that deal with more than just network-level
information

– need ability to dynamically deploy application-specific
processing actions on data and modify data path
through distributed system

Service Requirements
• Some actions required are similar to network-centric

services, but access payload
– content based routing, filtering, replication, data transcoding,

notification…
– should be able to implement them efficiently on networking

devices

• Other services are resource intensive
– resources available at standard hosts needed to support them

– software, memory, computational resources…
– floating point arithmetic, matrix manipulation, DB access…

• Some service need to be executed as early as possible
– intrusion detection, filtering, ill-formed messages…

Current Approaches
• overlays are built to enable customized services and

data delivery
– customizations occur at user- (or kernel-) level
– cost of network stack traversal, computational and

memory/ I/O loads at hosts

• active networking approach to customize core
communication services
– too restrictive for the general case
– mostly suitable for network-centric services

• device-level research
– specific domain: storage, web services, custom

devices

Our Approach

• Use network processors (NPs) to enhance standard
hosts, as Attached Network Processors (ANPs)

• Core functionality – delivery of application-level
messages to destination in distributed system - on
ANP

• Map other services or service components across
host-ANP boundaries

• create host-ANP platforms and use joint resources,
offload hosts, and benefit from NP’s specialized
hardware for certain functionality

why programmable NP?
• optimized hardware with built in support for networking

functionality, efficient data movement, multiple parallel
processing context, headroom available…

• NP’s programmability demonstrated to be useful
– software routing, differentiated services, network

monitoring, intrusion detection

• specialized hardware has been used to enhance host’s
capabilities
– graphics cards, crypto units, NICs, FPGAs, I2O

devices…

Host-ANP pairs
• standard hosts and NPs attached

via the PCI interface

• Receive and Transmit stage on
ANP execute core functionality:
– compose application level data, move

data along its data path

• additional functionality is
implemented via handlers
accessing data on ANP and/or
host

kernel

application

IXP Mm

microEngines

PCI bus

ANP

host

Sample Applications

• scientific collaborations
– SmartPointer

• event notification systems
– stock ticker updates

• delivery of dynamic web content
– continuous queries

• operational information systems
– Delta AirLines, WorldSpan

Airplane
Data TrafficDelta AirLines:

An Operational Information System
Operational
Flight
Displays

Airport
LAN

Airport
LAN

Cluster Computing
Real Time

Information Processing

Cluster Computing
Real Time

Information Processing

Simulation Optimization

Crew and
Equipment
Status

FAA
Flight
Data

Gate
Readers

Wide-area
Transport

High Performance Computing
Real-time Decision Tools

Scalable Robust
Services

Storage

capture, display,
transport, filter,
transform

Real-Time Information Transport

Visualization

Airport
LAN

Airport
LAN

Equipment
Inspection

Passenger
paging and
response

Real-time
Situation

Assessment

Baggage
Displays Baggage Status

Recovery and Replay Security Systems

Services which can benefit from IXPs

• Adaptive mirroring
– enterprise cluster enhanced with IXP NPs

• Ill-formed messages
– IXPs on ingress path into the enterprise system

• Data customization
– IXPs on egress to perform destination/client-based

filtering/multicast…
• Interaction with external partners

– format translation from internal representation,
driven by legacy systems, to standards used by
external partners

– data translation to share with external partners only
necessary info

• Business rules execution & pre-processing

Representing application-level actions

• Stream Handlers are lightweight, composable,
parameterizable, computation units

• represent application-level processing that can be
embedded into data fast path and executed on ANPs.

• can be composed to implement a rich set of
application-level functionality

• executed on the fast path by the IXP’s microengines

• operate on both packets’ header and payload data

Accessing application-level data

• Assembling application-level data
– RUDP-like, efficient protocol for reassembly and

fragmentation of application-level data in IXPs
– next generation IXP NPs – support for standard

protocols

• Interpreting application-level data
– rely on data format descriptors to interpret and

correctly access data
– XML and internal data representation

Handling formats on the NP

• PBIO – provides interoperability in
heterogeneous environments
– used for internal data representation
– PBIO-to-XML transcoding at enterprise edges

• permits application evolution/upgrades
– involves execution of well-defined rules to

determine versions, etc.
• format/handler cache & registration

– controlled through general purpose hosts
– core?

• middelware-level actions
– e.g., channel `derivation’ in publish-subscribe

SPLITS

Software architecture for Programmable
LIghtweighT Stream handling

• enables joint use of hosts and their ANPs

• deployment of stream handlers onto ANP

• permit application to dynamically reconfigure
– paths through host-ANP nodes (contexts traversed)
– services implemented along these paths (handlers

invoked)

SPLITS Components

Rx SH SH SH Tx

Control
Mgt

Data
Mgt

Control
Data

Data
Buffers

resource state
ANP-HOST

INTERFACE

HOST

ANP

Resource
Monitor

Constraint
Verifier

Application
h h

• ANP runtime
– designated tasks for

ANP contexts;
– free microengines

• 2 on ixp1200
• 5 on ixp2400

• Control Mgt
– interaction with host;

runtime configuration
• Data Mgt

– shared queues for
controlled access to
buffers of application-
level messages

System
Architecture

Ctrl Mrg

SPLITS Components
• Host-side components

– maintain information on available handlers
– API for application interaction with runtime

• Resource Monitor
– monitor resources along established paths

• Constraint Verifier
– determine validity of requests for path reconfiguration;
– uses handler profiles

• Control Manager
– issue control messages and execution of control protocols

Implementation details

• built on top of host-IXP PCI interface (Mackenzie et al.)
• dedicated ANP contexts for core functionality

Rx/Tx, data movement to/from host
default data path ANP-host-ANP
shared queues among stages

• well-defined activation points along path where
stream handler can be invoked
– runtime configuration in fast memory – checked at activation

points
• reserved memory for handler state and parameters

Stream Handlers in SPLITS
• associated with all or subsets of data along data path

• provided by programmer, multiple representations
suitable for different activation points

• have handler identifier, access to flow and system
state, configuration parameters

• at activation points handler id determines the right
offset in the Istore-resident jump table

Dynamic Reconfigurability

• Configure and deploy stream handlers compositions
split across multiple execution engines, while still
meeting underlying resources

• Dynamically select and deploy handlers and
parameters to tune the service implementation to
current application needs and network resources

• Enable deployment of new codes without service
interruption, by reserving some of the IXP
resources

Reconfiguration in SPLITS
• reconfigure both data path and processing applied

to the path
– handler selection
– parameter passing
– dynamic hot-swapping

• additional checks can be implemented efficiently
and service interruption unnoticeable (28-30us)

• assumption: reconfiguration is not high-frequency

Constraint Verifier

• resource monitor
– ‘headroom’ on each data path, number and type of memory

accesses, instruction count
– determine maximum amount of resources that can be

utilized at a stage
• handler off-line profiling

– compare with available resources at a stage and verify that
handler does not violate that

• admission control
– based on resource availability and handler requirements
– based on application-specific data and handler inter-

dependencies

Rules Engines

• perform event-action processing
– in intrusion detection systems

• e.g., firewalls…
– in pub/sub middleware,

• e.g., event notification systems delivering information
`where it’s needed, when it’s needed’

• performing rule processing is complex, but
experience with IXP1200 demonstrated that
microengines can handle that.

Rules Engines in Enterprise Applications

• in enterprise computing domain rules capture
business logic
– e.g., check-in policies, ticketing…

• tools for dynamic rule addition/removal
– rapidly adapt to new customer requirements,

business environments and regulatory changes
• require ability to efficiently assign event

flows to corresponding actions
– classification issue

• ability to automate ruleflow composition and
state management

IXP-based Rules Engine

• rule handlers == stream handlers
• use of binary format descriptors in classification
• build configuration mechanisms on top of SPLITS

model
• special consideration on state organization and

placement
– application-dependent

• understand constrains which need to be satisfied by
rules to minimize perturbation as a result of new
rule deployment

Rule execution is feasible on IXP2400

Ruleflows should be formed with consideration
of state access requirements

ruleflow A

ruleflow B

.

.

Conclustion

• Network Processors can enhance the
processing capabilities of standard systems
and deliver significant improvements for
application-level services

• Several classes of services can be targeted
in enterprise computing domain

• Additional functionality required
flexible classification, profiling tools and models,
faster host-NP interconnect…

Thank you.

	Supporting Enterprise Applications with Attached Network Processors
	GT Network Processors Group
	Motivation
	Service Requirements
	Current Approaches
	Our Approach
	why programmable NP?
	Host-ANP pairs
	Sample Applications
	Services which can benefit from IXPs
	Representing application-level actions
	Accessing application-level data
	Handling formats on the NP
	SPLITS
	SPLITS Components
	SPLITS Components
	Implementation details
	Stream Handlers in SPLITS
	Dynamic Reconfigurability
	Reconfiguration in SPLITS
	Constraint Verifier
	Rules Engines
	Rules Engines in Enterprise Applications
	IXP-based Rules Engine
	Rule execution is feasible on IXP2400
	Ruleflows should be formed with consideration of state access requirements
	Conclustion
	

