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Programmable Edge Routers

• Focus on Attached Network Processors (ANPs):
– Real-time collaboration, delivering camera- or sensor-

captured data, enterprise services (e.g., OIS)
– Application-specific stream customization occurs at nodes in 

overlay networks mapped to suitable host/NP (ANP) pairs

• Host/ANP services address dynamically changing 
application needs and platform resources with 
application-specific stream customization:
– Data mirroring, selection, downsampling
– Selectively lossy data exchange and stream scheduling
– Scalable, client-specific functionality
– New services: 

• Intrusion detection
• Remote graphics
• `XML’ support



Why`Push’ Application Services into 
Network Infrastructure?

Cost/Performance
– NPs have optimized hardware:

• Efficient access to and movement of network packets
– Services can be implemented on packets’ fast path, 

using available headroom
• existing work provides network-centric services: routing, 

network monitoring, intrusion detection, differentiated 
services, …

• our research focuses on application-specific functionality 

This talk: New Services:
– Remote graphics, `XML’



Technical Approach
Stream Handlers

Use Stream Handlers – computational units which 
implement application-level services on NPs

Split execution
Split execution of application-level services across 

stream handlers on ANPs and host kernel- or host 
user-level based resource needs

Dynamic configuration
Dynamically create, configure, and deploy stream 

handlers



`Split’ Architecture
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assemble application-level messages and execute 
application-specific functions

• Additional functionality is implemented via data accesses 
at IXP or host level



IXP-level Stream Handlers
• Lightweight, composable, parameterizable, 

computational units, executed by the NPs; can 
access information ‘beyond’ packet headers, i.e., 
message headers and payloads

• Implementation utilizes:
– Efficient protocol to assemble application-level data 

(RUDP) - Future: utilize NP-resident UDP/TCP stacks
– Self-describing portable data formats (PBIO) that 

define payload structure

• Stream handler execution can be linked with 
host-based kernel or user actions



`Split’ Operation

• IXP-side:
– At protocol receive- or 

transmit-side, or in IXP 
memory

– Using limited IXP resources
• Host-side:

– At kernel- or user-level
– Necessary to support 

functionality of arbitrary 
complexity under varying 
conditions

• Compositions of handlers 
can implement more 
complex services
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Experimental Evaluation

Viability:
– Low overheads of stream handler implementation 

in terms of latency and bandwidth - previous work
New services:

– Efficient implementations of services such as 
client-customized multicast

Performance benefits:
– Performance benefits include offloading the host 

CPUs, and load reduction on the underlying 
network and memory infrastructure



• IXP-based 
forwarding improves 
end-to-end latency:

• Comparable to host-
level performance for
smaller messages

• Improvements more 
profound as message 
sizes increase (i.e., 
consider remote 
visualization)

Performance Benefits/Viability:
Improved Message Latencies

8.4ms15.4ms100kB
4.2ms6.8ms50kB
840us896us10kB
131us132us1.5kB
82us83us1kB
28us32us100B

IXP-sideHost-sidedata 
size, u



Performance Effects: Application-
level Services

mirroring multicast customized
based on destination

Mirroring & destination-specific multicast more 
efficient on ANP, as part of the Rx/Tx code



Need for ‘Split’ Handlers: 
Complex Handlers and ‘Headroom’

intensive computation

• Complexity of ‘format’ increases with data size, available 
headroom is exceeded, and performance degrades

• Need for intermediate threads/processing



New Services:
Client-specific OpenGL Image Cropping on 

the IXP

• Can perform 
computationally 
intensive tasks like
image cropping 
efficiently

• Performance 
Benefits: CPU load 
when performed at 
host: 99.95%



`Split’ Handlers and Additional 
Resources: NIDS System Design

A Layered and pipelined 
architecture: 
– Maximize performance by assigning 

tasks to the most appropriate device:
• StrongArm/Xscale: configuration, 

control, I/O
• Microengines: sequential, repetitive 

packet processing
• FPGA: massively concurrent 

processing

–Prototype system developed for 1 Gbps 
networks using IXP1200 and Xilinx Virtex 
FPGA

–Moving to IXP2400 and Virtex2 to 
support faster networks



Conclusions
• `Split’ Architecture: 

– Use headroom to implement middleware- and 
application-level services on fast path through NPs

– Benefit from network-near execution of stream 
handlers and flexible mapping across host-ANP

• Deliver new functionality and performance 
gains to applications while meeting network 
performance requirements

• Issue: `Vertical’ system programming



Ongoing and Future Work
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Research Overview

• `Split’ Services: K. Mackenzie, K. 
Schwan, S. Yalamanchili

• NIDS System: D.Contis, D. Schimmel, 
W. Lee

• Efficient Host/ANP Intrusion 
Detection - W. Lee

• Automatic Register Allocation for 
Micro-engine Code - S. Pande



Support Tools: GT IXP Driver
kenmac@cc, austen@cc, ganev@cc

• User interfaces: 2 so far (host 
side)
– faux “ethernet” interface (in-kernel)
– DEC “CLF” message system (user)

• “Hacker’s Driver” (host side)
– exposes all ENP2505 card resources 

to host kernel and/or user
• Msg-over-PCI protocol (host & 

uEngine)
• Extensible NI (uEngine)

• IXP2400 operational soon

ENP2505

host



IXP Driver - Some Detail
• Currently supports:

– IXP1200 boards (Radisys ENP-2505)
– IXP2400 boards (Radisys ENP-2611)

• Exports hardware resources to host kernel/user 
space code:
– PCI bridge config/status registers
– IXP chip config/status registers
– IXP SDRAM

• Provides physically contiguous host SDRAM to 
user/kernel space code

• Integrates Intel’s pciDg driver on top
– Completed for IXP1200 boards
– In progress for IXP2400 boards



Related Work

• Extensible network architectures
– SPINE, VCM, WUGS/DHP, ANTS, CANEs…
– IXP1200: Princeton Vera, Columbia Netbind, 

microACE, IXP as NIC…
• Composable computation

– microprotocols, CANs, Protocol Boosters…
• Stream customization

– publish/subscribe (Echo/Jecho, Gryphon…) and 
peer-to-peer (Chord, Pastry…)



Dual-bank Register Constraint

?Dual-bank Constraint
? Only for ALU instructions
? Two source operands must 

come from different banks
? Why—fetch them in parallel to 

achieve 1 cycle latency for all 
ALU instructions

ALU[dest_op,source_op_a,+,source_op_b]

source_op_a source_op_b Bank A, Bank B 
source_op_a source_op_b Bank B, Bank A 

OR
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Our Approaches

Two observations
Breaking smaller cycles may break bigger cycles as well.
Most odd-cycles are small.

Problem modeling
Build Register Conflict subGraph (RCG), then detect and break 
all odd-cycles on the RCG.

Algorithm Complexity
Brute-force algorithm takes exponential time. Based on our 
algorithm, in most cases, it is  polynomial-time solvable.

Combine with Register Allocation
We propose 3 algorithms: Pre-RA, Post-RA, Combined, depending 
on the phase-ordering of our algorithm and the register 
allocation. Current results show Post-RA is best, but more 
potential improvements are possible for the Combined approach.


