
Application-level Communication
Services in Edge Routers

Ada Gavrilovska, Karsten Schwan,
Hailemelekot Seifu, Ola Nordstrom

www.cercs.gatech.edu/projects
W. Lee, K. Mackenzie, S. Pande, D.

Schimmel and many other GT researchers

CERCS, Georgia Tech
Intel IXA Meeting, Sept. 2003

IHPCL
Clusters

TeraStream Server
Cluster Machine

Simulation
Access Grid Nodes

Engineering
Clients

Planned
GT 10GB
backbone

Application
Services

Storage

capture, transport,
filter, transform,
intrusion detection, …

Context: Interactive
Information Grids:
GT Teragrid

Real-time
Visualization

Mobile
Sensors

Wireless Clients:
ipaqs, 802.11a/b/g

Science
Clients

Real-time
Visualization

ETF

Remote
Collaborators

Access Grid Nodes

Access Grid Nodes

National
Lightrail

Data staging, caching, …

Graphics/Visualization
and Sensor Services

Edge Routers for Terastream
Services - Cluster Machines

TeraStream Server
Cluster Machine

Terastream Engine

X

M

P P

Infiniba
nd

gigE

IXP

Runtime
Layer

Extension
Layer

Stream Management
Stream Manipulation

Examples:
•Stream scheduling for real-time response
•Data mirroring for 24/7 operation

Attached Network Processors

Edge Routers for Terastream
Services - Wireless Clients

Display
Engines

Wireless Clients:
ipaqs, 802.11a/b/g

Display
EnginesDisplay

Engines

Future wired-wireless
edge routers - 4xx:
•data reduction
•scalable client-specific operation
•personalization

IXA Edge Routers

Graphics/Visualization
and Sensor Services

Programmable Edge Routers

• Focus on Attached Network Processors (ANPs):
– Real-time collaboration, delivering camera- or sensor-

captured data, enterprise services (e.g., OIS)
– Application-specific stream customization occurs at nodes in

overlay networks mapped to suitable host/NP (ANP) pairs

• Host/ANP services address dynamically changing
application needs and platform resources with
application-specific stream customization:
– Data mirroring, selection, downsampling
– Selectively lossy data exchange and stream scheduling
– Scalable, client-specific functionality
– New services:

• Intrusion detection
• Remote graphics
• `XML’ support

Why`Push’ Application Services into
Network Infrastructure?

Cost/Performance
– NPs have optimized hardware:

• Efficient access to and movement of network packets
– Services can be implemented on packets’ fast path,

using available headroom
• existing work provides network-centric services: routing,

network monitoring, intrusion detection, differentiated
services, …

• our research focuses on application-specific functionality

This talk: New Services:
– Remote graphics, `XML’

Technical Approach
Stream Handlers

Use Stream Handlers – computational units which
implement application-level services on NPs

Split execution
Split execution of application-level services across

stream handlers on ANPs and host kernel- or host
user-level based resource needs

Dynamic configuration
Dynamically create, configure, and deploy stream

handlers

`Split’ Architecture

Receive Transmit

Access user

kernel

protocol plane

host

ANP

from network to network

• IXP-level receive- and transmit- blocks fragment/re-
assemble application-level messages and execute
application-specific functions

• Additional functionality is implemented via data accesses
at IXP or host level

IXP-level Stream Handlers
• Lightweight, composable, parameterizable,

computational units, executed by the NPs; can
access information ‘beyond’ packet headers, i.e.,
message headers and payloads

• Implementation utilizes:
– Efficient protocol to assemble application-level data

(RUDP) - Future: utilize NP-resident UDP/TCP stacks
– Self-describing portable data formats (PBIO) that

define payload structure

• Stream handler execution can be linked with
host-based kernel or user actions

`Split’ Operation

• IXP-side:
– At protocol receive- or

transmit-side, or in IXP
memory

– Using limited IXP resources
• Host-side:

– At kernel- or user-level
– Necessary to support

functionality of arbitrary
complexity under varying
conditions

• Compositions of handlers
can implement more
complex services

kernel

application

? Engines
IXP Mm

data path
possible locations for
stream handler
execution

from
network

to network

Experimental Evaluation

Viability:
– Low overheads of stream handler implementation

in terms of latency and bandwidth - previous work
New services:

– Efficient implementations of services such as
client-customized multicast

Performance benefits:
– Performance benefits include offloading the host

CPUs, and load reduction on the underlying
network and memory infrastructure

• IXP-based
forwarding improves
end-to-end latency:

• Comparable to host-
level performance for
smaller messages

• Improvements more
profound as message
sizes increase (i.e.,
consider remote
visualization)

Performance Benefits/Viability:
Improved Message Latencies

8.4ms15.4ms100kB
4.2ms6.8ms50kB
840us896us10kB
131us132us1.5kB
82us83us1kB
28us32us100B

IXP-sideHost-sidedata
size, u

Performance Effects: Application-
level Services

mirroring multicast customized
based on destination

Mirroring & destination-specific multicast more
efficient on ANP, as part of the Rx/Tx code

Need for ‘Split’ Handlers:
Complex Handlers and ‘Headroom’

intensive computation

• Complexity of ‘format’ increases with data size, available
headroom is exceeded, and performance degrades

• Need for intermediate threads/processing

New Services:
Client-specific OpenGL Image Cropping on

the IXP

• Can perform
computationally
intensive tasks like
image cropping
efficiently

• Performance
Benefits: CPU load
when performed at
host: 99.95%

`Split’ Handlers and Additional
Resources: NIDS System Design

A Layered and pipelined
architecture:
– Maximize performance by assigning

tasks to the most appropriate device:
• StrongArm/Xscale: configuration,

control, I/O
• Microengines: sequential, repetitive

packet processing
• FPGA: massively concurrent

processing

–Prototype system developed for 1 Gbps
networks using IXP1200 and Xilinx Virtex
FPGA

–Moving to IXP2400 and Virtex2 to
support faster networks

Conclusions
• `Split’ Architecture:

– Use headroom to implement middleware- and
application-level services on fast path through NPs

– Benefit from network-near execution of stream
handlers and flexible mapping across host-ANP

• Deliver new functionality and performance
gains to applications while meeting network
performance requirements

• Issue: `Vertical’ system programming

Ongoing and Future Work

Rx SH SH SH Tx

Control
Mgt

Data
Mgt

Control
Data

Data
Buffers

resource state
ANP-HOST

INTERFACE

HOST

ANP

Resource
Monitor

Admission
Control

Application/Middleware
h h• Dynamic deployment

of complex services
across ANP-host
boundaries.

• Focus on Enterprise
Applications: dynamic
XML-format
interpretation and
code generation.

• Admission control
• Request: host/NP

proximity: beyond
PCI

System
Architecture

Research Overview

• `Split’ Services: K. Mackenzie, K.
Schwan, S. Yalamanchili

• NIDS System: D.Contis, D. Schimmel,
W. Lee

• Efficient Host/ANP Intrusion
Detection - W. Lee

• Automatic Register Allocation for
Micro-engine Code - S. Pande

Support Tools: GT IXP Driver
kenmac@cc, austen@cc, ganev@cc

• User interfaces: 2 so far (host
side)
– faux “ethernet” interface (in-kernel)
– DEC “CLF” message system (user)

• “Hacker’s Driver” (host side)
– exposes all ENP2505 card resources

to host kernel and/or user
• Msg-over-PCI protocol (host &

uEngine)
• Extensible NI (uEngine)

• IXP2400 operational soon

ENP2505

host

IXP Driver - Some Detail
• Currently supports:

– IXP1200 boards (Radisys ENP-2505)
– IXP2400 boards (Radisys ENP-2611)

• Exports hardware resources to host kernel/user
space code:
– PCI bridge config/status registers
– IXP chip config/status registers
– IXP SDRAM

• Provides physically contiguous host SDRAM to
user/kernel space code

• Integrates Intel’s pciDg driver on top
– Completed for IXP1200 boards
– In progress for IXP2400 boards

Related Work

• Extensible network architectures
– SPINE, VCM, WUGS/DHP, ANTS, CANEs…
– IXP1200: Princeton Vera, Columbia Netbind,

microACE, IXP as NIC…
• Composable computation

– microprotocols, CANs, Protocol Boosters…
• Stream customization

– publish/subscribe (Echo/Jecho, Gryphon…) and
peer-to-peer (Chord, Pastry…)

Dual-bank Register Constraint

?Dual-bank Constraint
? Only for ALU instructions
? Two source operands must

come from different banks
? Why—fetch them in parallel to

achieve 1 cycle latency for all
ALU instructions

ALU[dest_op,source_op_a,+,source_op_b]

source_op_a source_op_b Bank A, Bank B
source_op_a source_op_b Bank B, Bank A

OR

64 A-Bank
GPRs

64 B-Bank
GPRs

Thread
1 Thread

2 Thread
3 Thread

4

Our Approaches

Two observations
Breaking smaller cycles may break bigger cycles as well.
Most odd-cycles are small.

Problem modeling
Build Register Conflict subGraph (RCG), then detect and break
all odd-cycles on the RCG.

Algorithm Complexity
Brute-force algorithm takes exponential time. Based on our
algorithm, in most cases, it is polynomial-time solvable.

Combine with Register Allocation
We propose 3 algorithms: Pre-RA, Post-RA, Combined, depending
on the phase-ordering of our algorithm and the register
allocation. Current results show Post-RA is best, but more
potential improvements are possible for the Combined approach.

