
Running Interactive Perception Applications on
Open Cirrus

Qian Zhu
Accenture Technology Labs

qian.zhu@accenture.com

Nezih Yigitbasi
Delft University of Technology

M.N.Yigitbasi@tudelft.nl

Padmanabhan Pillai
Intel Labs Pittsburgh

padmanabhan.s.pillai@intel.com

Abstract—
Interactive perception applications, such as gesture

recognition and vision-based user interfaces, process high-
data rate streams with compute intensive computer vi-
sion and machine learning algorithms. Yet, they require
extremely low latencies to remain interactive and ensure
timely results to users. Cluster computing resources, such
as those provided by Open Cirrus deployments, can help
address the computation requirements, but significant chal-
lenges exist in practice. This paper highlights our efforts to
parallelize interactive perception applications, tune them
for best fidelity and latency, and place, schedule, and
execute them on a cluster platform. We also look at
remaining open problems and potential solutions.

I. INTRODUCTION

Multimedia recording and playback capability has
become commonplace with the availability of low-cost
digital cameras and recording hardware, but until re-
cently, media applications have largely been limited
to recording, compression, streaming, and playback for
human consumption. Now, applications that can directly
make use of video streams to sense the environment,
detect activities, or serve as a form of input from users,
are active areas of research and development [1], [2], [3],
[4]. In particular, a new class of interactive perception
applications that uses video and other high-data rate
sensing for interactive gaming, natural gesture-based in-
terfaces, and augmented reality is becoming increasingly
important.

Interactive perception applications pose some unique
challenges to their effective implementation in real sys-
tems. First, the data rates associated with video streams
are high, making it challenging to process, store, and
transmit the data without loss. Second, the state-of-the-
art computer vision and machine learning techniques
employed are often compute intensive. For example,
Scale Invariant Feature Transform (SIFT) feature extrac-
tion [5], commonly used to find distinguishing features
of an image, can take over a second to run for each frame
of a standard definition video on a modern processor,
over 30× too slow to keep up with the video stream.

Fig. 1. Interactive perception applications: (clockwise from top left)
gesture-based gaming system; natural pointing detection; object pose
detection; gesture-based TV control.

Furthermore, the computation load of these algorithms
is highly variable, and depends on scene content, back-
ground clutter, motion, etc. Finally, these applications
have tight response time requirements. To provide a
crisp, responsive user experience, interactive applications
may need to ensure that latency, from when sensor data
arrive to when outputs are generated, is limited to 100–
200 ms for each video frame.

Two broad approaches are being explored to achieve
the required speeds. The first attempts to parallelize
the execution of these applications on clusters of ma-
chines, e.g., as provided by Open Cirrus, by transforming
the applications into a data flow graph of connected
processing stages [6], [7], [8]. The effectiveness of
this approach depends greatly on the extent to which
particular steps are parallelized. The second approach
trades off result quality, or fidelity, with computation
cost [9]. The algorithms used in interactive perception
applications typically have many parameters that can
have a significant effect on both fidelity and latency,
e.g., tunable detection thresholds, maximum iterations,

1

Stage placement  
and configura1on 

Black box 
(system) data 

White box 
(stage) data 

Server Nodes 
Stage API 

Stage run1me 

Stage Server 

Data collec1on 

Application
Dataflow

Description

Configuration Server

auto
tuner

placement
manager

.xml
configuration
file

Fig. 2. Sprout architecture

or even a switch to select alternative algorithms. The
success of this approach depends on the parameters
available in the application. If dynamically adjustable,
both degree of parallelism and algorithmic parameters
provide an opportunity to control latency.

In addition to the proper configuration of the appli-
cation, parallel runtime overheads due to data transfer,
resource contention, and coordination can significantly
affect latency. Thus, successful execution of an interac-
tive perception application hinges on careful allocation
and scheduling of processing stages on different pro-
cessors such that the latency for the distributed data
flow to process each frame, including processing and
data transfer time, i.e., the makespan, is minimized.
However, given the variability in perception workloads,
it is difficult to determine a good placement of the
processing stages a priori, so an adaptive, incremental
placement solution is paramount.

In the rest of this paper, we will highlight some of
our efforts to address these concerns and execute inter-
active perception applications on Open Cirrus. We also
look at remaining unresolved issues and some potential
approaches to address them.

II. WORK TO DATE

A. Programming framework for distributed interactive
applications

To run interactive perception applications in parallel
on Open Cirrus, we have developed a programming
framework and runtime system called Sprout [8] (Fig-
ure 2). In the Sprout programming model, perception ap-
plications are structured as data flow graphs (see example

Source

Display

Copy

Scaler

Tiler

Feature merger

Descaler

Copy

Classify

Pair generator

SIFT
SIFT

SIFT
SIFT

motionSIFT

Scaler

Tiler

Face merger

Descaler

SIFT
SIFT

SIFT
Face detect

Copy

TV control

Fig. 3. Data flow for gesture-based TV control.

in Figure 3). The vertices of the graph are coarse-grained
sequential processing steps called stages, and the edges
are connectors which reflect data dependencies between
stages. The goal of this model is to exploit structural
and data parallelism inherent in the applications, without
requiring fine-grained parallelization of algorithm im-
plementations. Stages interact only through connectors,
and share no state otherwise. Source stages provide the
input data to the application, for example as a stream
of video from a camera. This data flows through and
is transformed by multiple processing stages, which, for
example, may implement a computer vision algorithm to
detect when the user performs a particular gesture. These
stages may be replicated and run in parallel on subsets
of data to improve latency or throughput. Finally, the
processed data is consumed by sink stages, which then
control some actuator or display information to the user.

In the data flow model, concurrency is explicit –
stages within an application can execute in parallel,
constrained only by data dependencies and available
processors. The Sprout runtime system distributes and
executes application stages in parallel on a set of server
nodes. The system provides mechanisms to migrate
running stages, and to export and dynamically set tunable
parameters, including both algorithmic parameters and
controls for degree of parallelism (i.e., number of data-
parallel stages). Our system also monitors application
performance, and provides interfaces for extracting la-
tency data at the stage level.

We have demonstrated several applications running
on the Sprout framework. These include a gesture-
based gaming system, a natural pointing interface [3],

2

a gesture-based tv control application [10], object pose
detection [2], and video action recognition [1] (see Fig-
ure 1). Key takeaways from this work are that it is indeed
possible to run latency-sensitive interactive perception
applications on a cluster of machines, and that there is
sufficient coarse-grained parallelism in these applications
to make good use of 10s to 100s of processor cores.

B. Automatic modeling and tuning

A critical factor affecting latency of interactive percep-
tion applications is the appropriate setting of algorithmic
parameters and controls for degree of parallelism. Ini-
tially, such parameters were adjusted manually in Sprout.
To make a more effective system, we proposed a machine
learning approach that automates parameter adaptation
to yield the best combination of latency and fidelity,
given an application and a set of computing resources.
We first demonstrated how to model the effects of
application tuning parameters on performance, and how
to predict the latency of workloads using state-of-the-
art techniques for online convex programming [11]. We
then built a system that learns to predict the latency of
workloads and uses this to optimize the fidelity subject
to a latency bound [12]. The challenge in solving our
problem online is that neither the latency function nor
the fidelity function are typically known in advance.
To make the problem more tractable, we assumed the
fidelity function was known and focused on learning the
latency function. This problem was formulated as an
online constrained optimization problem [13] with un-
known latency constraints. We used greedy strategies to
explore the space of latency constraints, and showed that
an appropriate mixture of exploration and exploitation
leads to a practical system for solving our problem.

Specifically, our system approaches the automatic
tuning problem as follows. It first identifies a set of
critical stages, based on their contribution to end-to-
end latency. It then explores the parameter space and
learns a predictor as a function of the relevant tuning
parameters for each critical stage. We used SVM to
learn a linear regressor for each of the critical stages.
Non-critical stages are modeled with a moving average.
The application end-to-end latency is predicted using the
stage models by computing the critical path through the
data flow graph. A solver is then employed to search
for operating points that maximize fidelity for a given
latency constraint. We have demonstrated that accurate
performance models can be learned online, and that for
fixed latency constraints, operating points within 90% of
optimal fidelity can be achieved with our system.

Image tiler

Tile merger

Gaussian pyramid

Optical flow

Extrema, scaling, orientation

Compute descriptors

Feature extraction

Accumulate histogram

Event identification

Classification

...

Frame pairs

Sub-frame pairs

Sub-frame features

Frame features

Event ids

Fig. 4. Sprout application graph for video-based action recognition
system. Images are partitioned into overlapping tiles, and features
extracted in parallel in these tiles. In addition, the shaded components
can use multiple threads on a multicore node.

C. Incremental Placement

In addition to the parallelization and tuning of ap-
plication parameters, the placement and scheduling of
the application components has a significant influence
on the latency. In Sprout, we have devised a set of
algorithms to automatically and incrementally place and
schedule stages of an application on a set of processing
nodes to minimize latency (makespan) [14]. The problem
of initially placing an application graph onto a set of
servers ultimately reduces to an NP-hard multiprocessor
scheduling problem, requiring exponential time to solve
optimally. We therefore employ a modified version of
the Heterogeneous Earliest Finish Time (HEFT) [15]
scheduling heuristic to quickly place application stages
based on estimates of execution time and server perfor-
mance.

Our system then continuously monitors performance
of the running application stages, and, as conditions
change, adjusts the placement by migrating stages be-
tween processing nodes. Due to the cost of moving
running stages and the potential disruption to the appli-
cation, we would like to change the existing placement
as little as possible while improving application latency.
To this end, we have developed four heuristics that per-
form incremental placement to minimize latency while
bounding migration cost. Our heuristics all build on top
of our modified HEFT scheduler, and target different
points in the tradeoff between algorithm runtime and
latency improvement. We have shown through simulation
and experiments with real applications that our heuristics
can improve median latency by up to 36% for interactive
perception applications.

3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

Tiles

90th percentile
Median

Fig. 5. Latency vs. number of tiles (cores) using non-threaded feature
extraction.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

P
ro

ba
bi

lit
y

Time (ms)

Nonthreaded, Untiled
Threaded

12-way Tiled
Threaded+Tiled

Fig. 6. Cumulative distribution of latency using threading and
tiling. Threading decreases latency by 2.6×, tiling by 7×, and the
combination by 12×.

III. EVALUATION

We have had reasonable success in improving through-
put and latency of interactive perception applications
using our Sprout framework on top of Open Cirrus.
Here, we show some results (full details in [1]) using
an activity recognition application (Figure 4) on 15 8-
core nodes in the Intel Open Cirrus cluster. For this
application, the feature extraction stage is the compu-
ational bottleneck, requiring on the order of 3 seconds
to execute on a single core for each pair of consecutive
video frames. We parallelize execution in two ways: a)
by threading key components to make use of multiple
processing cores; and b) by splitting the source frames
into overlapping tiles, and processing the tiles in parallel.
The parallelization methods and degree to which they are
applied greatly affects the resulting performance.

Figure 5 shows how the tiling strategy (alone) scales
as the number of tiles (i.e., cores dedicated to feature
extraction) increases. We see an initial sharp drop in
latency, but shows diminishing returns after 20 tiles. This
is partly due to tile overlap (so the total number of pixels
processed increases), and due to overheads of high fan-in
and queuing delays at the downstream merging stage.

Figure 6 shows the effects of threading and tiling

Fig. 7. Scaling up throughput by pipelining multiple instances of
threaded and tiled configurations.

on latency. For the threaded configurations, we dedicate
a whole 8-core node for each instance of the feature
detector. Threading does improve latency, but because
not all parts of the algorithm can make good use of
all of the cores, only a factor of 2.6 improvement is
achieved. 12-way tiling alone results in 450 ms latencies,
while threading and tiling together can reduce latency to
around 250 ms.

In addition to minimizing latency, we would also like
to ensure sufficient throughput, i.e., number of frames
per second. Figure 7 shows how throughput varies with
the number of 8-core nodes used. We invoke multiple
instances of the threaded or tiled feature detector, and
pipeline execution by sending frames to the instances in
round-robin order. Throughput is significantly better for
the non-threaded configurations as they more efficiently
use the available cores. So for this application and set of
resources, the 14-way tiled configuration provides good
throughput (>25 fps) and reasonable latency (<450 ms).

IV. REMAINING CHALLENGES

The work to date has been quite successful in running
latency-sensitive interactive perception applications on
server clusters provided by Open Cirrus. However, many
challenges remain, some due to simplifying assumptions
in the work so far, while others are due to the shared
nature of Open Cirrus.

One issue is that to make the tuning and place-
ment problems tractable, these challenging problems
were considered separately. In particular, the auto tuner
currently does not consider placement and scheduling
issues, and cannot, for example, account for latency due
to multiple stages sharing a processor core. Similarly,
the placement system takes the application configuration
as a given, and does not consider adjusting parameters
or degree of parallelization in its scheduling decisions.
Attempting to treat this as a joint placement and tuning
problem will likely be intractable.

4

A potential solution we plan to explore is to keep
the core tuning and placement algorithms separate, but
modify the system so that they call on each other to
better use the available information. The auto-tuning
system currently estimates the latency of a particular
application configuration by checking the longest path
through the application graph. We can modify this to
instead ask the placement manager to best fit the hy-
pothesized configuration to the available resources and
provide a more accurate latency estimate that considers
scheduling and resource sharing. Thus, the autotuner will
incorporate the more accurate latency information as it
searches the configuration space.

A second issue is that in a shared environment like
Open Cirrus, it would be very useful to adjust the re-
sources consumed by long-lived perception applications
as demand changes. When spare nodes are available, we
would like our system to check whether it can make
effective use of them (i.e., improve application fidelity
or latency), and only request as many nodes as it can
use well. Likewise, when the cluster is oversubscribed,
given the scalable nature of the interactive perception
applications, our system should be able to relinquish
some nodes. Selecting which and how many nodes to
minimize impact on the application remains an open
research problem.

Finally, many shared cluster infrastructures like Open
Cirrus use virtual machines to dynamically allocate
custom environments for different users or applications.
This makes it easy to deploy our Sprout system on many
nodes quickly, but introduces its own set of issues. One
problem with virtualization is that it incurs some amount
of processing overhead. Given that our processing model
is quite scalable, these overheads can be offset with a
larger number of nodes. More significant, however, is
that the variation in performance increases significantly
under virtualization. For parallel fork-join structures in
the application graph, the execution time is gated by
the slowest instance, so an increase in execution time
variance greatly limits performance improvements due to
parallelization. One possible way around this is to avoid
virtualization and allocate physical machines directly.
There have been some efforts to provide this service in
some Open Cirrus deployments.

V. CONCLUSION

We have demonstrated that it is possible to parallelize
interactive perception applications and execute them on
a server cluster. We have also made great headway in
solving the challenges that such applications pose, in par-
ticular on dynamically tuning application configuration
and incrementally placing and scheduling application

graphs to ensure low latency. In addition, we have
identified several remaining open issues. Despite these
remaining challenges, we believe that the class of inter-
active perception applications is growing in importance,
and should be a research priority to the Open Cirrus
community.

REFERENCES

[1] M.-y. Chen, L. Mummert, P. Pillai, A. Hauptmann, and R. Suk-
thankar, “Exploiting multi-level parallelism for low-latency activ-
ity recognition in streaming video,” in ACM Multimedia Systems
Conference, 2010.

[2] A. Collet, D. Berenson, S. Srinivasa, and D. Ferguson, “Object
Recognition and Full Pose Registration from a Single Image
for Robotic Manipulation,” in IEEE International Conference on
Robotics and Automation, pp. 3534–3541, 2009.

[3] P. Matikainen, P. Pillai, L. Mummert, R. Sukthankar, and
M. Hebert, “Prop-Free Pointing Detection in Dynamic Cluttered
Environments,” in IEEE Conference on Automatic Face and
Gesture Recognition, 2011.

[4] A. Sridhar and A. Sowmya, “Multiple camera, multiple person
tracking with pointing gesture recognition in immersive environ-
ments,” in Advances in Visual Computing, vol. 5358 of Lecture
Notes in Computer Science, pp. 508–519, 2008.

[5] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[6] U. Ramachandran, R. Nikhil, J. M. Rehg, Y. Angelov, A. Paul,
S. Adhikari, K. Mackenzie, N. Harel, and K. Knobe, “Stampede:
a cluster programming middleware for interactive stream-oriented
applications,” IEEE Transactions on Parallel and Distributed
Systems, vol. 14, no. 11, pp. 1140 – 1154, 2003.

[7] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin,
B. Raffin, and S. Robert, “FlowVR: a Middleware for Large Scale
Virtual Reality Applications,” in Proceedings of Euro-Par, 2004.

[8] P. Pillai, L. Mummert, S. Schlosser, R. Sukthankar, and C. Hel-
frich, “SLIPStream: Scalable Low-latency Interactive Perception
on Streaming Data,” in ACM International Workshop on Network
and Operating Systems Support for Digital Audio and Video,
pp. 43–48, 2009.

[9] M. Satyanarayanan and D. Narayanan, “Multi-fidelity algorithms
for interactive mobile applications,” Wireless Networks, vol. 7,
no. 6, pp. 601–607, 2001.

[10] M.-Y. Chen, L. Mummert, P. Pillai, A. Hauptmann, and R. Suk-
thankar, “Controlling Your TV with Gestures,” in ACM Interna-
tional Conference on Multimedia Information Retrieval, pp. 405–
408, 2010.

[11] M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in Proceedings of the 20th Inter-
national Conference on Machine Learning, 2003.

[12] Q. Zhu, B. Kveton, L. Mummert, and P. Pillai, “Automatic
tuning of interactive perception applications,” in Conference on
Uncertainty in Artificial Intelligence, pp. 743–751, 2010.

[13] S. Mannor and J. Tsitsiklis, “Online learning with constraints,”
in Proceedings of 19th Annual Conference on Learning Theory,
pp. 529–543, 2006.

[14] N. Yigitbasi, L. Mummert, P. Pillai, and D. Epema, “Incremental
placement of interactive perception applications,” in International
Symposium on High Performance Distributed Computing, 2011.

[15] H. Topcuouglu, S. Hariri, and M.-y. Wu, “Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous Com-
puting,” IEEE Transactions on Parallel and Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

5

