Cloud and DataCenter Systems:
"Fast Data’ ->
Online Management

Karsten Schwan, Greg Eisenhauer,
Ada Gavrilovska, Hrishikesh Amur,
Liting Hu, Chengwei Wang, Junwei Lj,

Georgia [Library and
Tech [Informatiomn Center

Motivation

= Motivation

* Microsales, Product Bundling, Realtime
Recommendations, ...

* Leveraging our stream processing research
in the HPC (with DOE) domain to construct
new methods for online web data processing

* From Over-Provisioning to Active Stream
Management

= Avoiding the Storage Tier

= Decentralized Operation for multiple stream
processing jobs, with ‘cross-stream’” interaction

Background - Scalable Stream
Processing for HPC Codes

From Over-provisioned ‘Staging’ to actively

‘Managed Runtimes’
<10MB - SERINE

Meszggzrsing A\ —
with ORNL+Sandia — !
Local Local Local
anager

220MB

Web Data Processing

From over-provisioned log processing
using the storage tier: (with help from Amazon)

[Flume Master] [HMaster | [Namenodes] | Master
..
> Agent - PagelD Data DEIE Slave
. \ P_age Region (9# Node |~ Blocks TaskTrac/ker
Collector i . View Server |ww v, L S o
N lews ~
LA pgent s= > WAL =2 pata D v
R TaskTracker
Agent 2@32 u ~ Dat
gen ata
~ ’,*? . \\ Node'"~__ Slave/
- \'/
;ollyector p . N Moo > TaskTracker
ata
= Agent Region .A Node
Server Slave/
N Data TaskTracker
Agent N, _> WAL _> Node _ - 7
. L, - - - - -
Collector= Mem T Data | T Skl_:la_ve/k
o et e Node askTracker

Web Data Processing

[Namenode] [Master]

m m
/ : . : " ' ¥
) i | DestancComias |] ;
. -.. Data € o= == Slave/
Eve nts Wi I I be Node : TaskTraker
delayed or lost bata |
0 Node ‘§~* Slave/
: ! TaskTraker
o Data
Node [
Seul Slave/
: | TaskTraker | |
i Data : _ :
in Node \\ -
: LN I
| N Slave/ :
Data - " ‘ TaskTraker
Node « :
| Slave/
3 ::’:, s} = " TaskTraker
l ‘ . : R —— ' R —]

Stroam Data Proceccine HRace HDES ManRaedhiico

To Multi-Stream Execution
avoiding the Storage Tier

Worker

Job1's Master

Input receiver persireans

Task
Job builder 1 ask parser

Paos execution [] EB || |

SRT proxy
: ;| ' Agent 2
|K-Verror| k|

Job tracker [Fault | Worker
Job feedback | Straggler | FAN .
- DN Input receiver par sireams
Jobs coordinator T Y
e — Agent 1] Task parser
Sob7's Masicr { Paos execution [l
...... Agent 95 SRT proxy
’7\\ e ——— Agent 3
Job3's Master F
...... Agent 32 ‘:~,~\: Worker
S Agent 252
q| Worker
------ Agent 1070

SRT-Shared Reducer Tree

per job logical SRT mapped onto shared tree
nodes

Stream "Clothing" Stream "Beauty"

e shared node
job 1 's cbt

0O job2's cbt

1. All agents
subscribe(" Beauty")

~ONA
0~2732 <k1,vi>

3. Root synchronizes CBTs --> flush

Feedback and Coordination

Feedback | CouponExecutor:
Sensor
Controller sensor(jobld, key, value)
- /ffetch K-V pairs from root of SRT
| controller(jobld, handler)
liregister user-specified handler
User Handler acz?mo,ﬁob'd)
‘ /lgenerate coupons to nodes

Figure 5: Feedback abstraction for CouponExecutor.

uery ProductBundling:

JObZ joh1 anycast(job2, hotlist)
Multicast _ /fjob1 query job2's hot items
hotlist job1.multicast(job1, hotlist)

i //multicast job2's hot items to members
l\% -bundi agent selfbundiing(hotitem)

/lagent decides by itself which to bundle

Figure 6: Coordination abstraction for ProductBundling.

Summary: Online Stream
Processing

= Upstream buffering to avoid the storage
tier: in CBTs (with CMU)

= Logical SRTs for each stream job, sharing
a single set of ‘tree nodes’

= Cross-SRT interactions, including
feedback-coordination and on-the-fly
function changes

Software Architecture - Summary

/\

(% & : Stage 3
ProductBundling

CouponExecutor

Stage 2

PostScoreReducer

Data Shuffling ,\/ \,\

Stage 1

PreScoreReducer
A
Filter$Gen

A
DefaultJsonExtractor

Online Management:
Monitoring as a Prerequisite

Building Blocks: Stream Processing with:

= Distributed Processing Graphs (DPGs)
(with HP)

Global
Results

‘\ M-Broker
Look-Back
@ | | J'?I\?ind:v‘\:l

/
v %
>
\‘o Q"// SRCLEN .‘\ oo/
S L R AL
Ooze" 4 §\Q"o°°/
W/t Flexible 4 NN
... Topology . :
local s pology " \\
notifications k . M|
M-Broker ¥ — — == — — — 3 M-Broker
Aggregate
Monitoring
L[] Data HEEN

DC

-

Building Blocks:
To Determine Dynamic Interaction Graphs

User Request User
Internet
VM based Response
Cloud > Load Balancer
(\
Web Server Wel SErve Web Server
Switch Switch
Application Apithentica
Server Server

Database\Sejver Database

Issue: How to find DIGs? Can be easy (e.g., hypervisor monitoring for VM location)
Or hard (with ATT): dynamic call tracing using blackbox methods
Or approximate (with HP): statistical techniques

Building Blocks: Analytics

= Rich set of methods (many from scientific
domain, others from data mining and
machine learning)

= We typically ‘use’ rather than innovate,
driven by realistic use cases (e.g.,
troubleshooting) (with Amazon)

4du

“eclanaging at Scale

With HP, with VMware: |
(P)
CC | CC | CC
CC RM Auto CC RM Auto CC RM Auto

RM scalability achieved by two additional levels of automated load balancing

Retain High Performance
(inspired by ICE)

 Distributed Resource
Exchange (DRX) Framew:

* Platform Manager (PM)
— Cluster-wide policy enforc
— Allocate Resos
— Calculate Resource Price/V

— Distributes updated price
using ZeroMQ Library

* Ensemble Manager (EM)
— Distribute Resos for VMs
— Monitor VME performanc:
— Report to PM

— « Host Agent (HA)
Enable Distributed _ Contains IBMon

Coordinated Resource — Manages VMs Resources
Management using Resource — Deducts Resos for VMs
PI'ICII'lg per VME — Perform CPU Capping

Conclusions and Future Work

Fast Data:

=Should avoid the storage tier

* But what about NVM? Ongoing Work (with
Intel, HP, DOE)

"Operate in a decentralized fashion

=Efficiently use shared resources (staging,
SRTs, ...)
"Requires online management

* Monitoring and analytics

* Feedback and coordination

e Runtime change

