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Motivation

= Motivation

* Microsales, Product Bundling, Realtime
Recommendations, ...

* Leveraging our stream processing research
in the HPC (with DOE) domain to construct
new methods for online web data processing

* From Over-Provisioning to Active Stream
Management

= Avoiding the Storage Tier

= Decentralized Operation for multiple stream
processing jobs, with ‘cross-stream’” interaction




Background - Scalable Stream
Processing for HPC Codes

From Over-provisioned ‘Staging’ to actively
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Web Data Processing

From over-provisioned log processing
using the storage tier: (with help from Amazon)
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Web Data Processing
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To Multi-Stream Execution
avoiding the Storage Tier
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SRT-Shared Reducer Tree

per job logical SRT mapped onto shared tree
nodes

Stream "Clothing" Stream "Beauty"

e shared node
job 1 's cbt

0O job2's cbt

1. All agents
subscribe(" Beauty")

~ONA
0~2732 <k1,vi>

3. Root synchronizes CBTs --> flush




Feedback and Coordination

Feedback | CouponExecutor:
Sensor
Controller sensor(jobld, key, value)
- /ffetch K-V pairs from root of SRT
| controller(jobld, handler)
liregister user-specified handler
User Handler acz?mo,ﬁob'd)
‘ /lgenerate coupons to nodes

Figure 5: Feedback abstraction for CouponExecutor.

uery ProductBundling:

JObZ  joh1 anycast(job2, hotlist)
Multicast _ /fjob1 query job2's hot items
hotlist job1.multicast(job1, hotlist)

i //multicast job2's hot items to members
l\% -bundi agent selfbundiing(hotitem)

/lagent decides by itself which to bundle

Figure 6: Coordination abstraction for ProductBundling.




Summary: Online Stream
Processing

= Upstream buffering to avoid the storage
tier: in CBTs (with CMU)

= Logical SRTs for each stream job, sharing
a single set of ‘tree nodes’

= Cross-SRT interactions, including
feedback-coordination and on-the-fly
function changes




Software Architecture - Summary
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Online Management:
Monitoring as a Prerequisite

Building Blocks: Stream Processing with:

= Distributed Processing Graphs (DPGs)
(with HP)
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Building Blocks:
To Determine Dynamic Interaction Graphs

User Request User
Internet
VM based Response
Cloud > Load Balancer
( \
Web Server Wel SErve Web Server
Switch Switch
Application Apithentica
Server Server

Database\Sejver Database

Issue: How to find DIGs? Can be easy (e.g., hypervisor monitoring for VM location)
Or hard (with ATT): dynamic call tracing using blackbox methods
Or approximate (with HP): statistical techniques




Building Blocks: Analytics

= Rich set of methods (many from scientific
domain, others from data mining and
machine learning)

= We typically ‘use’ rather than innovate,
driven by realistic use cases (e.g.,
troubleshooting) (with Amazon)
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“eclanaging at Scale

With HP, with VMware: |
( P)
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RM scalability achieved by two additional levels of automated load balancing




Retain High Performance
(inspired by ICE)

 Distributed Resource
Exchange (DRX) Framew:

* Platform Manager (PM)
— Cluster-wide policy enforc
— Allocate Resos
— Calculate Resource Price/V

— Distributes updated price
using ZeroMQ Library

* Ensemble Manager (EM)
— Distribute Resos for VMs
— Monitor VME performanc:
— Report to PM

— « Host Agent (HA)
Enable Distributed _ Contains IBMon

Coordinated Resource — Manages VMs Resources
Management using Resource — Deducts Resos for VMs
PI'ICII'lg per VME — Perform CPU Capping




Conclusions and Future Work

Fast Data:

=Should avoid the storage tier

* But what about NVM? Ongoing Work (with
Intel, HP, DOE)

"Operate in a decentralized fashion

=Efficiently use shared resources (staging,
SRTs, ...)
"Requires online management

* Monitoring and analytics

* Feedback and coordination

e Runtime change



