

An Infrastructure for Automating Large-scale Performance Studies (Elba under-the-hood)

Calton Pu

Professor and J.P. Imlay Chair in Software CERCS, Georgia Institute of Technology Many PhD, MS, Undergrad students Many company collaborators and support from several companies, particularly from Fujitsu and Intel.

Importance of Predictable College of Performance

- Extra delay of just 100ms could result in roughly 1% loss in sales.
- Additional delay of just 500ms could reduce revenues by 20%. Google
- IDC reported performance to be top 3 user considerations for Clouds.
 Security

Cloud Computing & Performance

- Cloud is a *black-box* for many users.
- Application providers face non-trivial performance challenges.
- One of the most effective ways to understand a cloud is to measure it:
 - Run measurement studies and collect data
 - Maybe it's the only way

Large-scale Experimental Measurements

- **Goal**: Use large-scale experimental data as "real" (predictive) models for performance and scalability constraints;
- Challenges:
 - Deployment complexity due to configuration dependencies
 - Large state space: Many configuration options
 - Huge amount of data: >1GB/experiment, semistructured data

Automating Large-scale Experiments

– Create

 Prepare the platform, deploy and configure application.

– Manage

• Start application, execute workload, data collection.

– Analyze

 Data analysis (visualization) and building hypothesis.

Performance Measurement Workflow

Georgia Tech College of Computing

Expertus – Code Generator

- Idea: Generate scripts to automatically create, manage and analyze the experiments from userfriendly specification files.
- Key Challenges:
 - From abstract mapping to concrete scripts
 - Heterogeneity of hardware and software components
 - Flexible customization needed in experiments
- Solution platform: XML + XSLT + AOP

Georgia College of Tech Computing

Code Generation Pipeline

Template Types

- Base Templates
 - To generate OS, cloud, and user independent resources.
 - A template for each possible action (e.g., deploy-tomcat) and resource (e.g., httpd.conf).
 - Created by identifying output variances (each of which becomes an aspect).
- Aspect Templates
 - Customize to meet application, cloud, and user needs.
 - Can contain one or more advices.
 - Nested pointcuts an advice can add zero or more pointcuts.

Expertract - Automated Data Extractor

- Performance logs from various monitors, semi-structured
 - Potentially, a custom data parser for each experiment
- Log file format with many variations
 - Monitoring tools (e.g., dstat, sar, o-profiler ...) and parameter settings
- ETL (Extract, Transform, Load) tools insufficient by themselves
 - Need to figure out the actual log layout

Most Common File Formats

- One header
- Multiple headers with sequentially corresponding data
- Multiple headers with non-sequential corresponding data
- Multiple headers appear randomly in the file and data is entirely non-sequential

00:32:12	CPU	%user	%nice	%system	%iowait	%steal	%idle		
00:32:13	all 0	1.52	0.00	1.01	0.00	0.00	97.98 95.96		
00:32:13	1	0.00	0.00	1.01	0.00	0.00	98.99		
00:32:12	proc/s	cswch/s	_						
00:32:13	2.00	629.00							
00:32:12	pswpin/s	pswpout/s	_						
00:32:13	0.00	0.00							
00:32:12	pgpgin/s	pgpgout/s	fault/s	majflt/s	pgfree/s	pgscank/s	pgscand/s	pgsteal/s	%vmeff
00:32:13	0.00	0.00	621.00	0.00	301.00	0.00	0.00	0.00	0.00
00:32:12	tps	rtps	wtps	bread/s	bwrtn/s				
00:32:13	0.00	0.00	0.00	0.00	0.00				
00:32:12	frmpa/s	bufpa/s	campg/s						
00:32:13	29.00	0.00	3.00	•					
00:32:12	kbmemfree	kbmemused	%memused	kbbuffers	kbcached	kbcommit	%commit	kbactive	kbinact
00:32:13	14954568	965384	6.06	44328	439760	662416	3.90	420808	321588
00:32:12	DEV	tos	rd_sec/s	wr_sec/s	avoro-sz	avoqu-sz	await	syctm	%util
00:32:13	dev8-0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
00:32:12	TEACE	rxnck/s	txnck/s	rxkB/s	txkB/s	rxcmp/s	txcmp/s	rxmcst/s	
00:32:13	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
00:32:13	eth1	871.00	498.00	843.03	48.88	0.00	0.00	0.00	
00:32:13	eth0	1.00	0.00	0.06	0.00	0.00	0.00	0.00	

Experstore - A Flexible Data Warehouse

- Tables are created *on-the-fly* based on the data.
- Why not static tables? (global schema too big)
 - Several monitoring programs
 - Many different parameter settings: e.g., 2 core vs. 4 cores
- Why not column based tables?
 - Would be too many tables (over 20000 tables per experiment).
 - (# Workload) * (# Nodes) * (# Resources).
- Our solution A hybrid approach:
 - Create small tables to store related data, for example a table to store CPU data that consists of user, sys, idle etc...

Static and Dynamic Tables

Data to Schema Mapping

- Mapping performance data to a table (to-be-created) in the data warehouse.
 - Which columns (row) to read ?.
 - How to format (e.g., datetime) ?.
 - What to include/exclude ?.
 - Which parser to use ?.
- Specifying resources for a given node.
 - e.g., CPU1, CPU2, network, IO etc ...
- Mapping result directories to workloads.
 e.g., "2009-11-29@11-25-40" → 1000-RO
- Mapping log files to a node/resources.
 - e.g., mod_jk.log \rightarrow request processing time at Apache.

Data Analysis - Web Portal

- Aid the analysis of large amount of data.
- Identify patterns, trends and relations.
- Control the way in which data is represented.
- Data from seemingly unrelated sources could be easily compared against each other.

Web Portal-2D

Reset Page

Web Portal-3D

Please Select Graph Data

belear orapit.	Graph - 4	\$	Z: 1:1
Experiment Name	: rubbos-1-2-	: (*)	Y: 1:1
Iteration:	(1	\$	X: 1:1
Node Name:	Tomcat2	\$	
Resource:	(CPU0	\$	
Serles:	user	\$	
Range:	1 to 1	271	
Step Size:	step		
Type of Graph:	Line	\$	
Advanced Graph:	3-D Graph	\$	
Graph Title:	Title		
X-Avis Label	X-Label		
A AAIS LUDCI			
Y-Axis Label:	Y-Label		
Y-Axis Label: Z-Axis Label:	Y-Label Z-Label		

3D graph for 'Graph - 4' Z: 1:1

Support for **R** Framework

Generated Script

```
drv <- JDBC("com.mysql.jdbc.Driver",
    "C:/mysql/mysql-connector-java-5.1.7-
    bin.jar",
    identifier.quote="`")</pre>
```

```
conn <- dbConnect(drv,</pre>
```

```
"jdbc:mysql://elbafs.cc.gatech.edu:3313/elba
",
"elba", "elba")
```

```
d = dbGetQuery(conn, "select user from
TAB133397700575200219B_CPU0
where dictionaryid='334'")
```

```
hist(d$user, breaks=20, col="white",
xlab="CPU Utilization",
main="Histogram for CPU (user)")
```

Generated Graph

Histogram for CPU (user)

Georgia

Tech

College of Computing

Wide Applicability

- Over 500 different hardware configurations.
- Over 10,000 software configurations.
- Over 100,000 nodes.
- Many clouds (e.g., Emulab, EC2, OpenCirrus, Georgia Tech cluster, and Wipro).
- Many representative applications (e.g., RUBBoS, RUBiS, CloudStone, and over 10 OLTP benchmarks).

High-Level Summary

Туре	Emulab	EC2	OpenCirrus	Elba	Wipro
Experiments	9215	1436	480	3567	120
Nodes	102687	25848	4987	9865	430
Configurations	392	86	28	163	8

Specification Changes vs. Changes in Generated Code

Lines Changed – Specification Lines Changed – Generated Code

Number of Nodes vs. Generated Code

Georgia Tech

College of Computing

2013 Elba Publications

- **Q. Wang, Y. Kanemasa, et al**, Impact of DVFS on n-Tier Application Performance. In *TRIOS 2013*
- **D. Jayasinghe, et al**. An Infrastructure for Automating Large-scale Performance Studies and Data Processing. In IEEE BigData 2013
- **Q. Wang, Y. Kanemasa, et al.** "Detecting Transient Bottlenecks in n-Tier Applications through Fine-Grained Analysis", In *ICDCS 2013*.
- **Q. Wang, Y. Kanemasa, et al.** "An Experimental Study of Rapidly Alternating Bottlenecks in n-Tier Applications", In *IEEE Cloud 2013*
- **D. Jayasinghe, Fabio Oliveira, et al.** "AESON: A Model-Driven and Fault Tolerant Composite Deployment Runtime for Clouds", In *SCC 2013*
- Junhee Park, Y. Kanemasa, et al. "Variations in Performance Measurements of Multi-Core Processors: A Study ", In SCC 2013
- Jack Li, et al. "Performance Overhead Among Three Hypervisors: An Experimental Study ", In IEEE BigData Congress 2013
- **Y. Kanemasa, Q. Wang, et al.** "Revisiting Performance Interference among Consolidated n-Tier Applications", In *SCC 2013*

Ongoing Work

- Extending the data parser to support additional data formats.
- Extending the data warehouse to use No-SQL databases.
- Extending the visualization tool to support more customizable graphing capabilities.

Conclusions

- Help researchers efficiently creating, storing and analyzing performance measurement data.
- Open new opportunities and enable largescale experiments above and beyond manual application testing.