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Importance of Predictable 
Performance 

• Extra delay of just 100ms could result in roughly 1% loss in 
sales. 

• Additional delay of just 500ms could reduce revenues by 
20%. 

• IDC reported performance to be top 3 user considerations 
for Clouds. 
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Cloud Computing & Performance  

• Cloud is a black-box for many users. 

• Application providers face non-trivial 
performance challenges.  

• One of the most effective ways to understand 
a cloud is to measure it: 

– Run measurement studies and collect data 

– Maybe it’s the only way 

 



Large-scale Experimental Measurements 

• Goal: Use large-scale experimental data as “real” 
(predictive) models for performance and scalability 
constraints; 

• Challenges: 

– Deployment complexity due to configuration 
dependencies 

– Large state space: Many configuration options 

– Huge amount of data: >1GB/experiment, semi-
structured data 

 

 

 



Automating Large-scale Experiments 

– Create  

• Prepare the platform, deploy 
and configure application. 

– Manage  

• Start application, execute 
workload, data collection. 

– Analyze  

• Data analysis (visualization) 
and building hypothesis. 
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Expertus – Code Generator 

• Idea: Generate scripts to automatically create, 
manage and analyze the experiments from user-
friendly specification files.  

• Key Challenges: 

– From abstract mapping to concrete scripts 

– Heterogeneity of hardware and software components 

– Flexible customization needed in experiments 

• Solution platform: XML + XSLT + AOP 

 



Code Generation Pipeline 



Template Types 

• Base Templates 
– To generate OS, cloud, and user independent resources.  

– A template for each possible action (e.g., deploy-tomcat) 
and resource (e.g., httpd.conf). 

– Created by identifying output variances (each of which 
becomes an aspect). 

• Aspect Templates 
– Customize to meet application, cloud, and user needs. 

– Can contain one or more advices.  

– Nested pointcuts – an advice can add zero or more 
pointcuts. 



Expertract - Automated Data Extractor 

• Performance logs from various monitors, 
semi-structured 
– Potentially, a custom data parser for each experiment 

• Log file format  with many variations 
– Monitoring tools (e.g., dstat, sar, o-profiler …) and parameter 

settings 

• ETL (Extract, Transform, Load) tools 
insufficient by themselves 
– Need to figure out the actual log layout 



Most Common File Formats 
• One header 
• Multiple headers with sequentially corresponding data 
• Multiple headers with non-sequential corresponding 

data 
• Multiple headers appear randomly in the file and data 

is entirely non-sequential 



Experstore - A Flexible Data Warehouse 

• Tables are created on-the-fly based on the data. 

• Why not static tables? (global schema too big) 
– Several monitoring programs  

– Many different parameter settings: e.g., 2 core vs. 4 cores 

• Why not column based tables? 
– Would be too many tables (over 20000 tables per 

experiment). 

– (# Workload) * (# Nodes) * (# Resources). 

• Our solution – A hybrid approach: 
– Create small tables to store related data, for example a 

table to store CPU data that consists of user, sys, idle etc… 



Static and Dynamic Tables 
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Data to Schema Mapping 

• Mapping performance data to a table (to-be-created) in the 
data warehouse. 
– Which columns (row) to read ?. 
– How to format (e.g., datetime) ?. 
– What to include/exclude ?. 
– Which parser to use ?. 

• Specifying resources for a given node. 
– e.g., CPU1, CPU2,  network, IO etc … 

• Mapping result directories to workloads. 
– e.g., “2009-11-29@11-25-40” 1000-RO 

• Mapping log files to a node/resources.  
– e.g., mod_jk.log  request processing time at Apache. 



Data Analysis - Web Portal  

• Aid the analysis of large amount of data. 

• Identify patterns, trends and relations. 

• Control the way in which data is represented.  

• Data from seemingly unrelated sources could 
be easily compared against each other. 
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Web Portal-3D 



Support for R Framework 
Generated Script Generated Graph 

drv <- JDBC("com.mysql.jdbc.Driver", 
       "C:/mysql/mysql-connector-java-5.1.7-

bin.jar", 
       identifier.quote="`") 
 
conn <- dbConnect(drv,  
       

"jdbc:mysql://elbafs.cc.gatech.edu:3313/elba
", 

       "elba", "elba") 
 
d   = dbGetQuery(conn, "select user from  
      TAB133397700575200219B_CPU0 
      where dictionaryid='334'") 
 
hist(d$user, breaks=20, col="white",  
     xlab="CPU Utilization",  
     main="Histogram for CPU (user)") 



Wide Applicability  

• Over 500 different hardware configurations. 

• Over 10,000 software configurations. 

• Over 100,000 nodes.  

• Many clouds (e.g., Emulab, EC2, OpenCirrus, Georgia 
Tech cluster, and Wipro). 

• Many representative applications (e.g., RUBBoS, 
RUBiS, CloudStone, and over 10 OLTP benchmarks). 

 



High-Level Summary 

Type Emulab EC2 OpenCirrus Elba Wipro 

Experiments 9215 1436 480 3567 120 

Nodes 102687 25848 4987 9865 430 

Configurations 392 86 28 163 8 



Specification Changes vs.  
Changes in Generated Code 
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Number of Nodes vs. Generated Code 
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Ongoing Work 

• Extending the data parser to support 
additional data formats. 

• Extending the data warehouse to use No-SQL 
databases. 

• Extending the visualization tool to support 
more customizable graphing capabilities. 



Conclusions 

• Help researchers efficiently creating, storing 
and analyzing performance measurement 
data. 

• Open new opportunities and enable large-
scale experiments above and beyond manual 
application testing. 

 


