

Systems Software for Rich Client
Services via Persistent Memory

Sudarsun Kannan,

Ada Gavrilovska, Karsten Schwan
Georgia Institute of Technology

Motivation – Client Memory Usage

Ø Growing number of end client apps
 e.g., Webstore -33 million users, ~1 million apps

Ø Data-rich apps
 Picasa, Digikam, Face/Voice recognition, etc.
Ø Multi-threaded apps, to exploit increasing core counts
Ø  Increased app memory usage
 App. features and data
 Browsers and plugins are memory hungry
 Google Chrome native client, Intel parallel JavaScript

Ø Severe persistent data storage bottlenecks (and overhead)
 External Flash ~4- 16 MB/Sec (FAST' 11, Kim et al.)
 Browsers - substantial sandboxing overheads

Motivation – Memory Usage

§  Membust benchmark in Google Chrome
§  Experiments using Alexa Top 50 and Webstore apps.
§  Average memory usage (RSS) 900 – 1500 MB!

0

500

1000

1500

2000

2500

5 10 15 20 25 30 35 40 45 50

M
em

 s
iz

e
(M

B
)

No. of Tabs

Browser memory usage stats
Top 50 web
sites

Motivation – Memory Usage

FaceRecog: Memory usage dominated by input data sets

Compress: X264 compression, parallel threads, memory usage

Crime mash-up: Simple multithreaded parallel search on public crime database

Motivation – I/O Sandboxing

16384	
 32768	
 65536	
 131072	
 262144	
 524288	
 1048576	

0

2000

4000

6000

8000

10000

12000

14000

Bytes written

Ti
m

e
(m

ic
ro

 se
c)

Browser I/O vs. Native I/O

Native
Browser

Increasing I/O calls, increasing sandboxing cost
effect

Write Chunks: 512 bytes

Motivation: I/O S/W overheads
•  High software overheads for block-based I/O interfaces
•  End Client Apps: low per call data sizes, hence more calls
•  Rarely use 'mmap' based interfaces
•  Problems with 'mmap':

•  Every mmap/munmap call results in user/kernel transition
•  Requires several supporting POSIX calls like open, close.

Research Approach
NVM for Client Memory Capacity and

Persistent State Challenges

NVM technologies
Ø Byte addressable and persistent
Ø  2X-4X higher density compared to DRAM
Ø  100X faster compared to SSD
Ø  Less power due to absence of refresh
Ø Byte addressability - (can be connected across

memory bus and accessed with load/stores)

Limitations
Ø Hight write latencies compared to DRAM
Ø  4X - 10X slower writes
Ø  Limited endurance (approx. 10^8 writes/cell)
Ø  Limited bandwidth: interface and device bottlenecks

Prior Work: NVM with DRAM Cache

Processor
Cache NVM Volatile

 DRAM Page
 Cache

APP

Ø DRAM acts like a page cache
Ø Works well for server machines with TBs of DRAM
Ø ‘Capacity’ benefits

Prior Work: Fast Non Volatile Heap

Processor
Cache NVM Volatile

APP

Ø Provides persistence, but

Ø Strong persistence guarantees require:
 - frequent cache flushing, NVM writes, memory fencing

Ø  Outcome: high persistence management overheads

 - user and kernel level

Our Approach: pMem: Dual-Use NVM
Capacity + Persistence

Processor cache plays crucial role in reducing write latency

Processor
 Cache

NVM persistent heap

APP

NVM heap

APP

DRAM

Key implementation ideas
Ø  NVM as OS NUMA node
Ø  `NVM node' dynamically partitioned into capacity +

persistent heaps
Ø  New applications APIs:

Ø  Applications explicitly use capacity/persistent NVM
=> NVM not exposed as I/O calls

Ø  Goal: minimize software interactions for NVM access

Advantages
Ø  Dual benefits: capacity + fast persistence
Ø  Leverage hardware memory management support for NVM

access

Proposed: pMem: Dual-Use NVM

Na-ve	
 Client	

NVM	
 user	

library	

DRAM	
 Node	
 NVM	
 node	

NVM	
 manager	
 DRAM	

manager	

Rich	
 browser	
 based	
 client	
 services	

pMem - High Level View

With HIGHMEM
and KERNEL
Zones

pMem (NVM) user lib

DRAM NVM

DRAM Node

Kernel level

sys_nvmmap()

Mem. Mgr

Facerecog.

Persistent Region Non Persistent Region

p-Mem Node

Snappy Crime
(map reduce) Chrome browser

(Native Client)

Mem. Bus

Shared LLC

 pMem- High Level View

Using pMem: Capacity

 User level NVM Library

Capacity Persistence

APP1

Kernel Layer

 DRAM

NVM Node

CapMalloc(size)

Ø User and Kernel managers route application calls
Ø Application decides when to use NVM for capacity

 - NVM used as heap

Using pMem: Persistence

 User level NVM Library

APP2

Kernel Layer

 DRAM

NVM Node

PersistMalloc(size)

Ø Application decides when to use NVM for persistence
 - API calls

Ø Persistence metadata only maintained when needed

Capacity Persistence

Proposed: Dual Use using pMem

hash *table = PersistMalloc(entries, "tableroot");
 for each new entry:

 entry_s *entry = PersistMalloc(size, NULL);
 hashtable[count] = entry;
 count++

Example: Persistent Hashtable using pMem

Only root pointer of a data structure needs a name

pMem Software Architecture
Design Principles

§  OS supports separate NVM node
§  Clean system level abstraction for

heterogeneous memory device
§  Lightweight NVM memory manager

§  Handles NVM memory pages and maintains
persistence structures

§  NVM-specific allocation policies
§  Scalability and isolation from interference

Process	
 	
 1	

Compartment1	

pages	

Compartment2	

RB	
 tree	

Process	
 2	
 Process	
 3	
 List	
 of	
 processes	

Uses	
 process	
 id,	
 compartment	
 id	
 ,and	

fault	
 address	
 to	
 iden-fy	
 the	
 page 	
 	

	

Separate	
 Process	
 Data	
 and	
 Metadata	

Compartments	
 for	
 	
 each	
 process	

1 bit for each NVM page flag and 1 bit flush flag

Software Architecture – Kernel

Compartments:
•  large region of NVM allocated by the user level NVM manager using nvmmap
•  are virtual memory area structures (VMA),
•  apps. can explicitly request separate compartments (‘nvmmap’)
•  provides isolation b/w persistent and non-persistent NVM regions

Applica-on	

allocates in chunks

chunks

To	
 kernel	
 layer	

pMem user level
memory manager

Modified	
 jemalloc	
 to	

support	
 user	
 level	

persistence	

Ø  Provides application interfaces like “capmalloc”, “persistmalloc”,
“flushnvm”

Ø  Manages application data in chunks

Ø  Implemented by extending the jemalloc library

Software Architecture – Allocator

Consistency and Recovery

•  Logging and lock-based transactions
•  Lock-based transactions instead of STM
•  Logging supports durability, pMem support

UNDO and REDO logs, and hybrid (word +
object-based) logs

•  UNDO logging reduces code changes for
heap-based use of pMem

•  Recovery accomplished via lazy pointer
swizzling

Support for Browsers

Trusted Region Untrusted Region

Slow sandboxed writes to NVM

Key Idea

Ø  By providing byte addressable heap, no need to
trap every load/store software-controlled read/
write

 - Create NVM heap for each untrusted plugin

 - Plugin can access any data within its heap

 - Only accesses outside its heap trap

Ø  Avoids sandboxing each read/write call

Ø  Performance results below

Browser Sandboxing and NVM

Implementation Comments

Ø Configure an OS NUMA node to emulate NVM
Ø Use ‘allocate on write’ policy
Ø All NVM pages locked, and swapping disabled

Ø For persistence:
 - All NVM pages are locked, swapping is disabled
 => persistence across application sessions
 - For persistence across boots, use SSD

Summary

Ø pMem addresses capacity + persistence needs
Ø Provides flexible interfaces to applications

(capmalloc, persistmalloc)
Ø Treats NVM as a NUMA node, and exploits

NUMA based allocation policies
Ø Provides support for browsers to reduce I/O

overheads.

pMem Experimental Evaluation

Experiment Setup:

Ø Emulate NVM with DRAM-based NUMA node
Ø Persistence across sessions: prevent OS from reclaiming

pages
Ø Account for NVM read/writes using PIN based

instrumentation
Ø Use hardware counters to capture cache misses
Ø Additional use of simulations (MACSim) to understand

cache misses

Intel Atom : Dual core, 1MB LLC, (8 way, Write Back, Shared LLC)

Applications pinned to cores

pMem Experimental Evaluation

Use cases

Scalability:

Linux scalability benchmark for page allocation

Memory Capacity:

Face recognition, Compression, Crime

Persistence:

User behavior/preferences while browsing
 - persistent cross-session state
 compiled using ML methods

pMem DRAM Memory Usage
 Performance: 4%-6% overhead

pMem Memory (DRAM) Usage

FaceRec JPEG Snappy x264 Crime

0

100

200

300

400

500

600

700

Blck-SSD

pMem- IO

pMem- FullMemory usage (MB)

pMem for Persistence –
Performance Gains

FaceRec JPEG Snappy gthumb Crime

-40

-20

0

20

40

60

80

100

120

pMem M-RD

R
ed

uc
tio

n
(%

) r
el

at
iv

e
to

 B
lc

kI
/O

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

M-SSD
M-RD

pMem
Blck-RD

0

10

20

30

40

50

60

70

System time(sec)

User time (sec)

E
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
)

FaceRec JPEG Snappy CrimeGThumb

 

FaceRec JPEG Snappy gthumb Crime



















pMem M-RD

R
ed

u
ct

io
n

 (
%

)
re

la
ti

v
e

to
 B

lc
k

I/
O



































































   !"#

Figure 7: Application run time (left) and relative reduction in user/kernel transitions (right).

image feature, and then copies the serialized data into
the corresponding matrix vector before running recogni-
tion. While the database size is just 240 MB, it is retained
until all matrix vectors are created and copied from the
database, and hence, total memory usage spikes to 650
MB. When using NVM, however, it is sufficient to deref-
erence the persistent matrix, and hence 97% reduction in
DRAM usage with pMem-Full and approx. 45% with
pMem-IO.

The x264 video compression loads all video frames
(each 180 bytes), identifies repetitive pixels, compresses,
and stores the output files/buffers. Several intermedi-
ate data structures are allocated for each frame, which
consumes the majority of DRAM space. Here, using
pMem-IO achieves only a 23% improvement by reduc-
ing the memory usage for the input data set, whereas
using pMem’s NVM-full for intermediate data can re-
duce memory usage by 91.5%. x264 uses several shared
libraries, which explains the small increase in memory
usage for the pMem-Full case. In case of Snappy com-
pression and JPEG conversion, the application memory
size is dependent on the input size, and hence when us-
ing pMem-IO, the benefits are moderate (approx. 45.9%
and 35.33% for Snappy and JPEG). In case of the mul-
tithreaded crime application using map-reduce, for the
Blck-SSD approach, data needs to be loaded from a
database to a portion of intermediate storage buffer for
each thread, which is approximately 2/3 of the input
database. When using pMem, no such intermediate
buffers are required and the benefits increases with the
input size.

5.4 Impact on Performance
We next discuss the execution time benefits and over-
heads when applications access and execute directly on
NVM. The use cases are the same as those used for un-
derstanding memory capacity benefits, with four cases
compared to all applications (see Figure 7): using a
(1) RAMDisk-based mmap interface (M-RD), (2) SSD-
based mmap approach (M-SSD), (3) pMem, and finally
(4) the existing RAMDisk block-based I/O access inter-
face (Blck-RD). Comparing pMem with current SSD de-

vices and memory based RAMDisk illustrates both the
overheads of pMem compared to faster storage devices
(RAM), and the impact of pMem’s heap-based interface.
With pMem, applications use NVM for both temporary
heap and persistent storage. Because NVMs have high
store (write) latencies, the effect of exposing applications
to execute directly on NVM depends on the application’s
load-store pattern and cache misses. As discussed ear-
lier, we use PIN-based binary instrumentation and the
MacSim [8] cycle accurate simulator to estimate NVM
load and store misses. Figure 8 reports the MPKI-Load
(cache misses due to NVM load per thousand instruc-
tions) and MPKI-Store for each application. Most client
applications have low MPKI, and even for applications
with high MPKI, the MPKI-Store is small.

Observations. The left graph in Figure 7 shows
the performance of each approach, separating kernel and
user level execution times. pMem outperforms the M-
RD performance by up to 37.72%, M-SSD by up to 63%,
and Blck-RD I/O by up to 83%. For FaceRec, the input
training database is stored as a large XML file. With the
current block based method, the application parses the
training dataset deserializing the XML strings to float-
ing point vectors, and performs several block-based I/O
calls, like fseek(), which can be avoided in all other
cases. Using memory based storage (M-RD, pMem) pro-
vides higher benefits than M-SSD due to faster storage
access of the dataset.

When comparing pMem and M-RD, for FaceRec, the
overall improvement with pMem is less than 3.5%. This
is because even though the kernel gains with pMem is 2x
due to lesser page access latency, the gains from pMem’s
user time is same as mmap. One thing to note is that,
although FaceRec is a computationally intensive task,
the ratio of NVM loads to stores is around 17:1 (Fig-
ure 8). Read intensive workloads are less impacted by
NVM write performance, as evident by the comparable
user-times for both approaches. Similar results are ob-
served for JPEG conversion, with kernel time reductions
of approx. 2x for the pMem approach compared to M-
RD.

For Snappy compression, although the total input data
size is same as for the JPEG application, file sizes vary

10

User-kernel switch reduction
relative to Blck-IO

Cost of Recovery Mechansims

2 4 8 12 16
0

500

1000

1500

2000

2500

3000

Blck-RD (msec)

pMem (msec)

#. of classification categories

W
e
b
 p

a
g
e
 l
o
a
d
 t

im
e
 (

se
c
)

 

     




















 !"#

 $"







Figure 8: Cache Miss rates, Need to update for other
application. Simulation under progress

from a few bytes to few hundred megabytes with a
substantially large number of small files (around 11001
files). The time for compressing these files is compara-
tively less than the time to execute system calls like open,
mmap, unmmap, and close. In case of pMem, with a
heap based library based interface, there is no need for
system calls for every input. To understand the differ-
ence, the right hand side of Figure 7 shows the over-
all reduction in user/kernel switches of the MMAP (M-
RD) vs. pMem compared to the block based approach.
Clearly, the pMem based interface reduces the number
of transitions by upto 90%, whereas for the MMAP ap-
proach, the number increases by 10% for Snappy. This
explains the 34% performance improvement of pMem
over M-RD.

For the crime application, while in all the cases the en-
tire input dataset is loade once, for the block-based mode,
the dataset needs to be copied to a temporary buffer
before performing the map-reduce operation, which re-
sults in a slightly higher runtime (3%). In all other
cases, the difference in runtime ¡¡¡¡¡¡¡ .mine is negligi-
ble. The Phoenix implementation is highly cache ef-
ficient [?] and hence, using NVM for computation and
storage ======= is negligible. The Phoenix implemen-
tation is highly cache efficient [30] and hence, using
NVM for computation and storage ¿¿¿¿¿¿¿ .r15445 does
not impact performance substantially. Similar perfor-
mance characteristics hold for the Gthumb photo man-
ager.

5.5 Cost of Persistence
To evaluate the cost of providing persistence with trans-
actional guarantees, we use the browser-based email
classification application. The application is character-
ized by a write intensive learning phase, and a read I/O-
intensive classification phase.
Impact of Logging. In the original POSIX-I/O based
case, during the learning step, the application extracts
feature points from each file of a category, and com-
mits (using ‘fsync’) them to one training database per
category. The application relies on the ext4 recovery
mechanism. When using pMem, we enable both ap-
plication data and kernel persistent data structure log-
ging, by delimiting each feature extraction point with

Function pMem Block
Learn 8.337921 12.3453
Logging 1.22304 -NA-
Cache Flush 0.00232 -NA-

Table 5: Cost of Logging.

Figure 9: Persistent data access performance.

‘begin trans()’ and ‘commit trans()’. Table 5 compares
the POSIX block based approach that uses RAMDisk
with pMem with logging enabled. The logging over-
head of the ext4 based RAMDisk is not shown, since,
in case of ext4, buffer cache flush/sync can be done
asynchronously by the ext4 demon and hence its over-
head is not directly represented via the fsync latency.
We observe that pMem results in superior performane
mainly because the block based approach makes sev-
eral reads/write I/O calls with granularity of a 256-1024
bytes, whereas pMem avoids such overheads. The re-
sulting 23% improvement is achieved in spite of pMem’s
synchronous logging and flushing operation, which cor-
responds to 14.6% of the execution time. This could be
further improved with asynchronous log flushing, like
what is done with ‘fsync’.
Impact of pMem in sandboxed I/O. We use the same ap-
plication to demonstrate an additional benefit of pMem
to providing isolation to in-browser sandboxed applica-
tions. When using a block based interface, every read
and write call incurs sandboxing costs (from the browser
extension to the trusted browser framework, and finally
to the OS.) The application reads/seeks I/O data at the
granularity of a 256-1024 bytes, and with increasing
number of categories, the overhead further increases. In
contrast, by using pMem and leveraging the hardware
memory protection mechanisms, isolation is maintained
while avoiding such sandboxing costs. The results in
Figure 9 demonstrate 26-45% faster page load times for
the classifier, compared to loading from a RAMDisk
based block-based I/O interfaces.

5.6 Summary of Results
The following conclusions may be drawn from the ex-
perimental result shown above.
1. pMem’s memory-based interfaces and OS-level NVM
management eliminate software-stack overheads, and

11

~45% improved performance
compared to using SSD
~62% improvement for
persistent hashtables
Increased data size =>
increased persistence cost

Summary of Results

Partitioned NVM: Capacity vs. Persistence
•  up to 91% memory capacity benefits
•  ~45% faster I/O for end client apps
•  less that 6%-7% runtime overhead on

some apps, compared to using DRAM

•  But NVM should be ~100x faster!

Next Steps: Persistence Overheads

Processor
 Cache

NVM persistent heap

APP

NVM heap

APP

Persistence requires frequent cache line flushing

=> cache sharing a problem?

DRAM

Cache Sharing – Performance Effects

Persistent application: Hashtable with 1M Operations (puts and gets)
Intel Atom : dual core, 1MB LLC, (8 way, Write Back, Shared LLC)
Persistent and capacity applications pinned to their cores

AddHash_Entry() {

//Fence and Flush log (in NVM).

BEGINTRANS((void *)table,0);
 ++(table->entrycount);

//Fence and flush

e = nvalloc(sizeof(struct entry));

//Fence and flush

BEGINTRANS((void *)e,0);
 e->h = hash(h,k);

 e->k = k;

 e->v = v;

 table->table[index] = e;

//Fence and flush

 COMMIT((void *)e, (void *)table, 0);

Frequent Cache Flushes

Flushing the
cache
repeatedly,
even when only
entering a
single new
hash table
value

AddHash_Entry() {

//Fence and Flush log (in PCM).

BEGINTRANS((void *)table,0);
 ++(table->entrycount);

//Fence and flush

e = nvalloc(sizeof(struct entry));

//Fence and flush

BEGINTRANS((void *)e,0);
 e->h = hash(h,k);

 e->k = k;

 e->v = v;

 table->table[index] = e;

//Fence and flush

 COMMIT((void *)e, (void *)table, 0);

Additional Persistence Overheads

Transactional
overhead

Transactional
overhead

Allocator overhead

Persistence Overheads - Summary
 •  Cache Flushes

 - Cache partitioning? Logging and bundling?

•  User level Overheads

o  Allocator metadata maintenance
o  Restart/Recovery Pointer Swizzling

•  Transactional (Durability) Overheads

o  Logging
o  Substantial code changes

•  Kernel level Overheads

o  Kernel metadata maintenance
o  Kernel metadata pointer swizzling

Next steps

• Many interesting open questions

• Power model
• Client vs. datacenter/server vs. HPC pMem

stack
• From single node/single NVM node to multi

node heterogeneous systems.

Questions/Comments

 Thanks!

AddHashEntry() {
 ID = begin_trans(”word”);
 ++(table->entrycnt);
 commit_trans(ID, &table-> entrycnt);

 key = (char *)nvalloc(64);
 val= (char *)nvalloc(4096);

 ID1 = begin_trans(”object”);
 memcpy(val, page, 4096);
 commit_trans(ID1, value);

 ID2 = begin_trans();
 table->k = key;
 table->v = val;
 commit_trans(ID2,table);
}

Hybrid logging

