Systems Software for Rich Client
Services via Persistent Memory

Sudarsun Kannan,

Ada Gavrilovska, Karsten Schwan
Georgia Institute of Technology

Hw |
yaotﬁu | Georgiahstituiie
JL—J cercs | o Technholog)v

Motivation — Client Memory Usage

» Growing number of end client apps
e.g., Webstore -33 million users, ~1 million apps

» Data-rich apps

Picasa, Digikam, Face/Voice recognition, etc.
» Multi-threaded apps, to exploit increasing core counts
» Increased app memory usage

App. features and data

Browsers and plugins are memory hungry

Google Chrome native client, Intel parallel JavaScript

» Severe persistent data storage bottlenecks (and overhead)
External Flash ~4- 16 MB/Sec (FAST' 11, Kim et al.)
Browsers - substantial sandboxing overheads

Motivation — Memory Usage

Membust benchmark in Google Chrome
= Experiments using Alexa Top 50 and Webstore apps.
= Average memory usage (RSS) 900 — 1500 MB!

Browser memory usage stats
ry 9 Top 50 web
2500 sites
)
s 2000
o 1500 ‘
N
? 1000
g |
S 500

5 10 15 20 25 30 35 40 45 50
No. of Tabs

Motivation — Memory Usage

—
-
-
o

¥ DRAM

oI I

FaceRecog Compress Crime

N B O O
o O O O
o O O O

Memory usage (MB)

FaceRecog: Memory usage dominated by input data sets
Compress: X264 compression, parallel threads, memory usage

Crime mash-up: Simple multithreaded parallel search on public crime database

Motivation — I/O Sandboxing

Browser I/O vs. Native I/0
14000

12000 —Native

Browser _ _ _ _
10000 Write Chunks: 512 bytes Increasing I/O calls, m@ndboxmg cost

affart

8000

N
S
S
S

Time (micro sec)

4000

2000
...-:“"/

16384 32768 65536 131072 262144 524288 1048576
Bytes written

Motivation: /0 S/W overheads

. High software overheads for block-based I/O interfaces
. End Client Apps: low per call data sizes, hence more calls
. Rarely use 'mmap' based interfaces
. Problems with 'mmap’:
. Every mmap/munmap call results in user/kernel transition
. Requires several supporting POSIX calls like open, close.

App. Avg. Write Size Avg. Read Size Read Count Write Count
JPEG 27 4096 146212 10000
OpenCV 0 1045256 765 0

Snappy 121307 121307 11108 11108

x264 152792 153600 1164 388
Mapreduce 0 67108864 1 0

Research Approach
NVM for Client Memory Capacity and
Persistent State Challenges

NVM technologies
» Byte addressable and persistent
» 2X-4X higher density compared to DRAM
» 100X faster compared to SSD
» Less power due to absence of refresh
» Byte addressability - (can be connected across
memory bus and accessed with load/stores)

Limitations
» Hight write latencies compared to DRAM
» 4X - 10X slower writes
» Limited endurance (approx. 1078 writes/cell)
» Limited bandwidth: interface and device bottlenecks

Prior Work: NVM with DRAM Cache

Processor DRAM Page
Cache g Cache [T'NVM Volatile

» DRAM acts like a page cache
» Works well for server machines with TBs of DRAM
» ‘Capacity’ benefits

Prior Work: Fast Non Volatile Heap

@ Processor
~— "|Cache | NVM Volatile

» Provides persistence, but

» Strong persistence guarantees require:
- frequent cache flushing, NVM writes, memory fencing

» Outcome: high persistence management overheads
- user and kernel level

Our Approach: pMem: Dual-Use NVM
Capacity + Persistence

Processor
/ Cache

Processor cache plays crucial role in reducing write latency

DRAM

/\

NVM heap

NVM persistent heap

Proposed: pMem: Dual-Use NVM

Key implementation ideas
> NVM as OS NUMA node

> NVM node' dynamically partitioned into capacity +
persistent heaps

> New applications APIs:

> Applications explicitly use capacity/persistent NVM
=> NVM not exposed as |/O calls

> Goal: minimize software interactions for NVM access

Advantages
» Dual benefits: capacity + fast persistence

» Leverage hardware memory management support for NVM
access

pMem - High Level View

Rich browser based client services

24 coogie

€ D> C @ waw.googeco.uk wQ3as A
i e s S Gaad e : e i

iGoogle e

Native Client

NVM user
library

DI NVM manager
manager
- With HIGHMEM
DRAM Node NVM node and KERNEL
Zones

w

pMem- Hi

Chrome browser
(Native Client)

h Level View

i

Crime
(map reduce)

Snappy Facerecog.

pMem (NVM) user lib

S}T/s_nvmmap()

Kernel level

DRAM Node

Shared LLC | p-Mem Node

< Mem. Bus > Persistent Region

Non Persistent Region

Using pMem: Capacity

SR [User level NVM L|bra|"y J

Kernel Layer

[Capacity IPersistence J { DRAM J

» User and Kernel managers route application calls
» Application decides when to use NVM for capacity
- NVM used as heap

Using pMem: Persistence

APP2

PersistMalloc(size) [
User I

evel NVM Library J

NVM Node

v

Kernel Layer

E[Capacity IPersistence 1 { DRAM J

» Application decides when to use NVM for persistence

- API calls

» Persistence metadata only maintained when needed

Proposed: Dual Use using pMem

Example: Persistent Hashtable using pMem

hash *table = PersistMalloc(entries, "tableroot");
for each new entry:
entry_s *entry = PersistMalloc(size, NULL);
hashtable[count] = entry;
count++

Only root pointer of a data structure needs a name

pMem Software Architecture
Design Principles

= OS supports separate NVM node

= Clean system level abstraction for
heterogeneous memory device

= Lightweight NVM memory manager

* Handles NVM memory pages and maintains
persistence structures

* NVM-specific allocation policies
= Scalability and isolation from interference

Software Architecture — Kernel

List of processes
%

—

Compartlrfentl Compartment2

Uses process id, compartment id ,and

_|>Dages<_f fault address to identify the page
l ‘ l] l] L] Separate Process Data and Metadata
Compartments for each process
RB tree

1 bit for each NVM page flag and 1 bit flush flag

Compartments:
. large region of NVM allocated by the user level NVM manager using nvmmap

. are virtual memory area structures (VMA),
. apps. can explicitly request separate compartments (‘nvmmap’)
. provides isolation b/w persistent and non-persistent NVM regions

Software Architecture — Allocator

pMem user level

allocates in chunks memory manager -
. |
Application 4@ O ZO O Modified jemalloc to
chunks - — support user level
) OO0 persistence

To kernel layer

LE 1]

» Provides application interfaces like “capmalloc”, “persistmalloc”,

“lushnvm”
» Manages application data in chunks

» Implemented by extending the jemalloc library

Consistency and Recovery

Logging and lock-based transactions
Lock-based transactions instead of STM
Logging supports durability, pMem support
UNDO and REDO logs, and hybrid (word +
object-based) logs

UNDO logging reduces code changes for
neap-based use of pMem

Recovery accomplished via lazy pointer
swizzling

Support for Browsers

Trusted Region Untrusted Region

Sandbox Disk

Slow sandboxed writes to NVM

L] .
.....
. .
ay .

L] Py
......

Browser Sandboxing and NVM

Key ldea

» By providing byte addressable heap, no need to
trap every load/store software-controlled read/
write

- Create NVM heap for each untrusted plugin
- Plugin can access any data within its heap
- Only accesses outside its heap trap

» Avoids sandboxing each read/write call

> Performance results below

Implementation Comments

» Configure an OS NUMA node to emulate NVM
» Use ‘allocate on write’ policy
» All NVM pages locked, and swapping disabled

» For persistence:
- All NVM pages are locked, swapping is disabled
=> persistence across application sessions
- For persistence across boots, use SSD

Summary

» pMem addresses capacity + persistence needs

» Provides flexible interfaces to applications
(capmalloc, persistmalloc)

» Treats NVM as a NUMA node, and exploits
NUMA based allocation policies

» Provides support for browsers to reduce |/O
overheads.

pMem Experimental Evaluation

Experiment Setup:

» Emulate NVM with DRAM-based NUMA node

» Persistence across sessions: prevent OS from reclaiming
pages

» Account for NVM read/writes using PIN based
iInstrumentation

» Use hardware counters to capture cache misses

» Additional use of simulations (MACSim) to understand
cache misses

Intel Atom : Dual core, 1MB LLC, (8 way, Write Back, Shared LLC)
Applications pinned to cores

pMem Experimental Evaluation

Use cases

Scalability:
Linux scalability benchmark for page allocation

Memory Capacity:
Face recognition, Compression, Crime

Persistence:
User behavior/preferences while browsing
- persistent cross-session state
compiled using ML methods

pMem DRAM Memory Usage

Performance: 4%-6% overhead

700

600

500
M BIck-SSD
B pMem- 10
B pMem- Full
) .— l
0

FaceRec JPEG Snappy X264 Crime

Memory (MB)
w B

N
o
o

Execution time (sec)

70

60

50

40

30

20

10

0

M-SSD

pMem for Persistence —
Performance Gains

B System time(sec)
[User time (sec
= (sec)

M-RD Blck-RD
pMem

M-RD Blck-RD
M-SSD pMem

M-RD Blck-RD
M-SSD pMem I

FaceRec JPEG

Snappy

Reduction (%) relative to Blckl/O
S
o

FaceRec

User-kernel switch reduction
relative to Blck-1O

l d B EE DDDD

M-RD Rlck-RD

DR EE

M-RD RIck-RT

HpMem

80

60

) I I I
0

JPEG

Snappy gthumb Crime

Web page load time (sec)

Cost of Recovery Mechansims

3000
2500
2000
1500
1000
500
0

Blck-RD (msec)
“ITpMem (msec)

~45% improved performance
compared to using SSD
~62% improvement for
persistent hashtables
Increased data size =>
Increased persistence cost

2 4 8 12 16
#. of classification categories
Function pMem Block
Learn 8.337921 12.3453
Logging 1.22304 -NA-
Cache Flush 0.00232 -NA-

Table 5: Cost of Logging.

Summary of Results

Partitioned NVM: Capacity vs. Persistence

« up to 91% memory capacity benefits

« ~45% faster I/O for end client apps

* less that 6%-7% runtime overhead on
some apps, compared to using DRAM

« But NVM should be ~100x faster!

Next Steps: Persistence Overheads

DRAM

Processor

/\

NVM heap

/ Cache

NVM persistent heap

Persistence requires frequent cache line flushing

=> cache sharing a problem?

Cache Sharing — Performance Effects

U

o= N N W W
o U1 ©O U1 O

U

Increase in Cache Miss (%)

N A5
\>$\\(°6 o™

2% ®

Persistent application: Hashtable with 1M Operations (puts and gets)
Intel Atom : dual core, 1MB LLC, (8 way, Write Back, Shared LLC)
Persistent and capacity applications pinned to their cores

Frequent Cache Flushes

AddHash_Entry() {
//[Fence and Flush log (in NVM).
BEGINTRANS((void *)table,0);

++(table->entrycount);

/[Fence and flush
e = nvalloc(sizeof(struct entry));

/[IFence and flush

\

BEGINTRANS((void *)e,0);
e->h = hash(h,k);
e->k = k;
e->v = v;
table->table[index] = e;
//Fence and flush
COMMIT((void *)e. (void *)table. 0):

Flushing the
cache
repeatedly,
even when only
entering a
single new
hash table
value

Additional Persistence Overheads

AddHash_Entry() {
/[Fence and Flush log (in PCM).
BEGINTRANS((void *)table,0);

++(table->entrycount);

—— T[ransactional
overhead

/[I[Fence and flush

e = nvalloc(sizeof(struct entry)); — Allocator overhead

/[I[Fence and flush
BEGINTRANS((void *)e,0);

e->h = hash(h.K): > Transactional
o>k = k. overhead
e->v = v;

table->table[index] = €;
//[Fence and flush
COMMIT((void *)e, (void *)table, 0);

Persistence Overheads - Summary

Cache Flushes
- Cache partitioning? Logging and bundling?

User level Overheads
- Allocator metadata maintenance
- Restart/Recovery Pointer Swizzling

Transactional (Durability) Overheads

- Logging
- Substantial code changes

Kernel level Overheads
- Kernel metadata maintenance
- Kernel metadata pointer swizzling

Next steps

® Many interesting open questions

® Power model

® Client vs. datacenter/server vs. HPC pMem
stack

® From single node/single NVM node to multi
node heterogeneous systems.

Questions/Comments

Thanks!

% cercs

Hybrid logging

AddHashEntry() {
ID = begin_trans(”word”);
++(table->entrycnt);
commit_trans(ID, &table-> entrycnt);

key = (char *)nvalloc(64);
val= (char *)nvalloc(4096);

ID1 = begin_trans(”object”);
memcpy(val, page, 4096);
commit_trans(ID1, value);

ID2 = begin_trans();
table->k = key;
table->v = val;
commit_trans(ID2,table);

|

