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The General Purpose GPU 
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 GPU is a many core co-processor 
  10s to 100s of cores 
  1000s to 10,000s of concurrent 

threads 
  CUDA and OpenCL are the 

dominant programming models 

 Well suited for data parallel apps 
 Molecular Dynamics, Options 

Pricing, Ray Tracing, etc.   

 Commodity: led by NVIDIA, AMD, 
and Intel 
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Enterprise: Amazon EC2 GPU Instance 

Amazon EC2 GPU Instances 
Elements Characteristics 

OS CentOS 5.5 

CPU 2 x Intel Xeon X5570 (quad-core "Nehalem" arch, 2.93GHz) 

GPU 2 x NVIDIA Tesla "Fermi" M2050 GPU Nvidia GPU driver and CUDA toolkit 3.1 

Memory 22 GB 

Storage 1690 GB 

I/O 10 GigE 

Price $2.10/hour 

NVIDIA Tesla 
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Data Warehousing Applications on GPUs 
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 The good 
 Lots of potential data parallelism 
 If data fits in GPU mem, 2x—27x 

speedup has been shown 

 The bad 
 Very large data set (will not even fit in 

host memory) 
 I/O bound (GPU has no disk) 
 PCI data transfer takes 15–90% of the 

total time* 

Order Price Discount 
0 10 10% 

1 20 20% 

2 10 15% 

3 51 14% 

4 33 13% 

5 22 10% 

…… …… …… 

* B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query co-processing on graphics processors. In TODS, 2009. 
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This Work 
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 Goal: Enable Large data warehousing applications on GPUs 

 Assumptions 
 In-memory system 

 Host memory, not GPU memory 

 Not OLTP (Online Transaction Processing) type simple 
queries 
 Focus on data analysis instead of data entry/retrieval 
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Research Thrusts 
 I: Optimized implementations of primitives 

 Relational algebra (RA) 
 Data management within the GPU memory hierarchy 

 II: Data movement optimizations 
 Between host and accelerators 
 Within an accelerator 

 III: In-core processing 
 Cluster wide memory aggregation techniques 
 Change the ratio of host memory size to accelerator memory size 
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Red Fox: Execution Environment for the Enterprise 

 Bridge the x86-based Database Enterprise platform and Database 
backend with NVIDIA accelerators 

 10x-100x targeted improvement in application speedup 

Collaboration with 
LogicBlox Inc. 
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graphML front-end 
Logic language  

Business rules 

LogicBlox Inc. 

Declarative 
Language 
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Thrust I: Optimized Primitives 

 Optimized implementation of each relational algebra (RA) 
operator 
 Synthesized from micro-primitives 
 Implemented as a CUDA/PTX kernel template and available as a library 

 The Redfox compiler synthesizes an application by 
instantiating templated skeletons of these primitives  

 Provides a framework for optimizations (e.g. kernel fusion) 
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Relational Algebra Operators in GPU  

Operator NVIDIA 
C2050 

Phenom 9570 Speedup 

Inner join 26.4-32.3 GB/s 0.11-0.63 GB/s > 42x 

Select 104.2 GB/s 2.55 GB/s 41x 

Set operators 45.8 GB/s 0.72 GB/s 64x 

Projection 54.3 GB/s 2.34 GB/s 23x 

Cross product 98.8 GB/s 2.67 GB/s 37x 

 10 Datalog microbenchmarks running 
 Metrics based on random data sets, compressed rows and 
16M tuple relations   

 Cost of initial sort not included 
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Status 
 Moving Red Fox to the Amazon EC2 

 Robustness extensions across 
 Scale and size of tables 
 Size and diversity of data types 

 Performance extensions 
 Single node and multi-node implementations 

 Ocelot remote device interface 
 Using multiple GPU configurations 
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Thrust II: Optimization of Data Movement  
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Our solution is Kernel Fusion 

This is the problem!!! 

CPU (Multi Core) 
2-12 Cores 

MAIN MEM 
~128GB 

GPU 
~512 Cores 

GPU MEM 
~6GB 

PCI-E 

~8GB/s 

Collaboration with 
NEC Inc. 
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+/- 

Kernel Fusion 
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Benefits of Kernel Fusion-1 
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Benefits of Kernel Fusion-2 
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Faster Computation 

Traverse the data only ONCE 

GPU  

temp 

GPU 

temp Result 

GPU 

Result 

temp 
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Enable More Optimization 

Fused 
Kernel 

A, B 

Larger code is good for other optimizations: 

a) instruction scheduling,  
b) register assignment,  
c) constant propagation 
……  

Kernel A 

Kernel B 
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Preliminary Result (2 Quad-Core CPU, C2070 GPU) 
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TPC-H Q21: 15GB Data 
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Q1+Q21: 35GB Data 

GPU 

Transfer 

CPU 

Fused across Queries 
• Part of the query is run on CPU 
• Transfer and GPU Computation 
time is much smaller 
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Thrust III: Cluster-based Memory Aggregation 

 Hardware support for global non-coherent, physical address 
space system 

 Change the ratio of host-memory : GPU-memory 
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Global Address Space Support for In-Core Databases  
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Collaboration with AIC Inc. & 
University of Heidelberg 

 Use of low-latency, commodity network (HyperTransport) allows global, non-
coherent access to remote memory 

 Query app sees one large database / host memory from the application level  
 Global address support can be extended in the future to support GPU memory 

  Applications could remotely read/write a remote GPU’s memory without needing to involve its OS 
or CPU 
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Conclusions 
 Fast GPU implementations of RA operators provide 
opportunity to run large data warehousing applications on 
GPU. 

 Data movement optimization (Kernel Fusion) saves the 
memory transfer time and speeds up the computation time. 

 New Memory Hierarchy (GAS) offers a larger logical memory 
for GPU database system. 
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Thank You 

Questions? 
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Backup 
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Efficient Data Movement – Intelligent Scheduling  
(in progress) 
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Inner Join 
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Blocking into pages, shared memory buers, and transaction sized chunks 
makes memory accesses ecient. 


