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The General Purpose GPU 
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 GPU is a many core co-processor 
  10s to 100s of cores 
  1000s to 10,000s of concurrent 

threads 
  CUDA and OpenCL are the 

dominant programming models 

 Well suited for data parallel apps 
 Molecular Dynamics, Options 

Pricing, Ray Tracing, etc.   

 Commodity: led by NVIDIA, AMD, 
and Intel 
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Enterprise: Amazon EC2 GPU Instance 

Amazon EC2 GPU Instances 
Elements Characteristics 

OS CentOS 5.5 

CPU 2 x Intel Xeon X5570 (quad-core "Nehalem" arch, 2.93GHz) 

GPU 2 x NVIDIA Tesla "Fermi" M2050 GPU Nvidia GPU driver and CUDA toolkit 3.1 

Memory 22 GB 

Storage 1690 GB 

I/O 10 GigE 

Price $2.10/hour 

NVIDIA Tesla 
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Data Warehousing Applications on GPUs 
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 The good 
 Lots of potential data parallelism 
 If data fits in GPU mem, 2x—27x 

speedup has been shown 

 The bad 
 Very large data set (will not even fit in 

host memory) 
 I/O bound (GPU has no disk) 
 PCI data transfer takes 15–90% of the 

total time* 

Order Price Discount 
0 10 10% 

1 20 20% 

2 10 15% 

3 51 14% 

4 33 13% 

5 22 10% 

…… …… …… 

* B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query co-processing on graphics processors. In TODS, 2009. 
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This Work 
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 Goal: Enable Large data warehousing applications on GPUs 

 Assumptions 
 In-memory system 

 Host memory, not GPU memory 

 Not OLTP (Online Transaction Processing) type simple 
queries 
 Focus on data analysis instead of data entry/retrieval 
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Research Thrusts 
 I: Optimized implementations of primitives 

 Relational algebra (RA) 
 Data management within the GPU memory hierarchy 

 II: Data movement optimizations 
 Between host and accelerators 
 Within an accelerator 

 III: In-core processing 
 Cluster wide memory aggregation techniques 
 Change the ratio of host memory size to accelerator memory size 
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Red Fox: Execution Environment for the Enterprise 

 Bridge the x86-based Database Enterprise platform and Database 
backend with NVIDIA accelerators 

 10x-100x targeted improvement in application speedup 

Collaboration with 
LogicBlox Inc. 
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Thrust I: Optimized Primitives 

 Optimized implementation of each relational algebra (RA) 
operator 
 Synthesized from micro-primitives 
 Implemented as a CUDA/PTX kernel template and available as a library 

 The Redfox compiler synthesizes an application by 
instantiating templated skeletons of these primitives  

 Provides a framework for optimizations (e.g. kernel fusion) 
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Relational Algebra Operators in GPU  

Operator NVIDIA 
C2050 

Phenom 9570 Speedup 

Inner join 26.4-32.3 GB/s 0.11-0.63 GB/s > 42x 

Select 104.2 GB/s 2.55 GB/s 41x 

Set operators 45.8 GB/s 0.72 GB/s 64x 

Projection 54.3 GB/s 2.34 GB/s 23x 

Cross product 98.8 GB/s 2.67 GB/s 37x 

 10 Datalog microbenchmarks running 
 Metrics based on random data sets, compressed rows and 
16M tuple relations   

 Cost of initial sort not included 
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Status 
 Moving Red Fox to the Amazon EC2 

 Robustness extensions across 
 Scale and size of tables 
 Size and diversity of data types 

 Performance extensions 
 Single node and multi-node implementations 

 Ocelot remote device interface 
 Using multiple GPU configurations 
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Thrust II: Optimization of Data Movement  
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Our solution is Kernel Fusion 

This is the problem!!! 
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~8GB/s 

Collaboration with 
NEC Inc. 
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+/- 

Kernel Fusion 
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Benefits of Kernel Fusion-1 
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Benefits of Kernel Fusion-2 
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Faster Computation 
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Preliminary Result (2 Quad-Core CPU, C2070 GPU) 
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TPC-H Q21: 15GB Data 
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Q1+Q21: 35GB Data 

GPU 

Transfer 

CPU 

Fused across Queries 
• Part of the query is run on CPU 
• Transfer and GPU Computation 
time is much smaller 
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Thrust III: Cluster-based Memory Aggregation 

 Hardware support for global non-coherent, physical address 
space system 

 Change the ratio of host-memory : GPU-memory 
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Global Address Space Support for In-Core Databases  
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Collaboration with AIC Inc. & 
University of Heidelberg 

 Use of low-latency, commodity network (HyperTransport) allows global, non-
coherent access to remote memory 

 Query app sees one large database / host memory from the application level  
 Global address support can be extended in the future to support GPU memory 

  Applications could remotely read/write a remote GPU’s memory without needing to involve its OS 
or CPU 
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Conclusions 
 Fast GPU implementations of RA operators provide 
opportunity to run large data warehousing applications on 
GPU. 

 Data movement optimization (Kernel Fusion) saves the 
memory transfer time and speeds up the computation time. 

 New Memory Hierarchy (GAS) offers a larger logical memory 
for GPU database system. 
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Thank You 

Questions? 
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Backup 
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Efficient Data Movement – Intelligent Scheduling  
(in progress) 
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Inner Join 
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Blocking into pages, shared memory buers, and transaction sized chunks 
makes memory accesses ecient. 


