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Platform Trends

Increasing number
of cores

Heterogeneity
GPUs/Specialized
NICs




System Software Challenges
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System Software Challenges

[ Scalability 1

* Due to shared state and
cache coherence protocols
* “Fix-it” patches to
existing kernels when
number of cores increase
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(Independent resource \
management stacks

* Lack of interfaces to let
resource managers
coordinate, cache coherence

@sumption breaks )

(Consolidation of different\
types of workloads due to
virtualization

* No “one-size-fits-all”
scheduler function, multiple

@hedulers needed )




Islands of Cores: New System
software abstraction

[ Scalability 1

scalable framework

managed by a single Resource
Q/Ianager is an Island

* Create cells of resources for a

* Flexibly sized subset of resources

J >

a

Many core
platforms

N

o

Heterogeneity

J
<

[Heterogeneity 1

(Islands intuitively apply the best\
to heterogeneous resources

* Define message-based interfaces
to coordinate different
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An Islands Example
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An Islands Example
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Coordinated Islands are Important

If applications span islands, how to guarantee end-to-end
performance in presence of independent resource managers?




Coordinated Islands are Important

If applications span islands, how to guarantee end-to-end
performance in presence of independent resource managers?
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How to attain higher-level global system properties such as
global CPU utilization caps?
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Coordinated Islands are important

If applications span islands, how to guarantee end-to-end
performance in presence of independent resource managers?

How to attain higher-level global system properties such as
global CPU utilization caps?

! Dum e Creant 1

In the presence of heterogeneous resource managers, what are the
right standard interfaces and mechanisms for them to coordinate?




inTune
Island Coordination Framework

inTune inTune
coordinator coordinator

Message channels

inTune inTune
coordinator coordinator




inTune Coordination Messages

Tune: Increase/Decrease resource allocation
to a consumer in a remote island

Trigger: “Urgent” Tune

Borrow: Increase size of island resources
(limited by hardware cache coherence)
— Borrow_any

— Borrow_preferred

Release: Release resources to lender island



Benefits of inTune for CPU Islands
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Benﬁeﬁts of inTune for CPU Islands
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* For underloaded platforms, coordination helps in reducing performance variation
* As consolidation levels increase, performance variation and absolute performance
gains increase close to 20%

~

* Islands must not be statically sized, and should adapt to application’s elastic needs
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Islands amongst Shared Resources

CPUs are not independent entities. Due to platform architecture,
they share resources such as Memory controllers and Shared
Interconnect Bandwidth
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Islands amongst Shared Resources

CPUs are not independent entities. Due to platform architecture,
they share resources such as Memory controllers and Shared
Interconnect Bandwidth

How should islands be created in presence of shared resources?
Which inTune mechanisms can be used to provide performance
isolation to applications?
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2 VM Example




2 VM Example

[ VM-1 memory bandwidth drops by 35-40% in presence of VM-2 sharing MC




2 VM Example: Performance Isolation
for VM-1

Using hardware isolation, VM-2 can be pinned to Node-2, but can islands add more
flexibility?




2 VM Example

* “Borrow” CPU from neighbor island, so that some accesses directed to on-chip IC.
* VM-1 bandwidth lower by 10-15%.




2 VM Example

* “Borrow” Memory and CPU from neighbor island to see added benefits
* VM-1 bandwidth low by 5-10%




Summary

Islands and inTune coordination is important
to achieve higher level policies like CPU caps

Coordinated Islands show lesser performance
variation

Due to platform architecture and shared
resources, CPU and Memory islands need to
coordinate as well

Islands important for flexibility and
performance isolation



Thank you.
Questions?

P&




Backup slides



inTune Coordinator
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Implementation
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Cross Resource coordination:
CPU & Memory

* Can coordinated islands be used to manage
shared resource contention?

* Shared Resource Management

— Contention in local memory island
* Coordinate with local CPU island to tune CPU caps

* Need to distribute load to other memory islands (E.g.,
When remote memory access costs < local memory
access)

— Related work in hardware/simulated systems,
none in system software
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