(111
jasmE
T
paaE
1
|
|

Performance Debugging Support
for Many-Threaded Applications

Gegrom (4 ,‘Ij”; comparch

= HE D

Motivation

e Scalable many-core performance is hard

— Parallel efficiency drops with more cores
* Less performance per core

— The drop in parallel efficiency grows with # of cores

« Performance per core drops very quickly!

e For a given app, many potential reasons

— Some problems are intrinsic to the application’s code
e Code wouldn’t scale to N cores regardless of the hardware

— Most have to do with the interplay between the two

 This code can’t scale to N cores with this hardware

* Very hard to figure out what to fix

Geqigiy # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

o = Bl O
Why is it so hard?

» Typical programmers lack the expertise

— Need to understand intricate details of HW
* And the myriad ways these interact with SW execution

— Many-core everywhere — not just |Q>150 PhDs
» A typical nuclear physicist => trained to learn and problem-solve
» Performance problems easier than superstrings or qguantum relativity

— Typical progammers
* Has very limited understanding of HW
« Can't fix a problem caused by something they don’t know exists

e Real reasons are often counter-intuitive

— Real reason often considered and dismissed

* “This code can’t have load imbalance” (turns out that it does!)
* “This code can’t have excessive cache misses” (but it does!)

Gegraln # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

= BE O

Solution: Better Tools

* Must report problems in an actionable way

— “90% of the thread time spent waiting on a barrier”
» This is what one gets from existing profiling tools
» First reaction usually “No way! All threads run exactly the same code”
« Spend 30-60 minutes checking if this is true
o OK, it's true... look at the code, but it still seems impossible

— 90% of the thread time spent waiting on the barrier,
60% of that due to different threads having different
iteration counts of the for-loop at line 233, another
35% is due to different threads having different cache miss
rates for the array access at line 700"
e This is what we want
* More believable, programmer can focus on how to avoid/fix it

 Easier to estimate effort level and decide if it's worth it

— E.g. 10 different causes, each with a 5% contribution will probably
take much longer to fix than one cause with 50% contribution

Gegraln # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

pE EE W
Imbalance Example (Radix)

534 BARRIER(...);
535 if (MyNum = (...)) {

540 while ((offset & Ox1) =0) { ... }

549 while ((offset & Ox1) =0) { ... }

557 for (i = 0; 1 < radix; 1++) { ... }

560 } else {

562 }

566 while ((offset & 0x1) '= 0) { offset=... }
575 for(hn = 0; 1 < radix; i1++) { ... }

578 while (offset = 0) {
579 IT ((offset & Ox1) = 0) {

582 for (1 = 0; 1 < radix; 1++) { ... }
585 }

589 }

500 for (i = 1; 1 < radix; 1++) { ... }

594 1t ((MyNum == 0) || (stats)) { --. }

598 BARRIER(...);

Gegrala 7% comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

= EERE D
Imbalance Example (Radix)

534 BARRIER(...);

535 if (MyNum = (...)) {

540 while ((offset & 0x1) = 0) { ..
549 while ((offset & 0x1) = 0) { ..
557 for (i = 0; 1 < radix; i++) { ..
560 } else {

562 }

566 while ((offset & 0x1) = 0) { off
575 for(i = 0; 1 < radix; i++) { ...
578 while (offset = 0) {

579 if ((offset & Ox1) 1= 0) {

582 for (i = 0; i < radix; i++) {
585 }

589 }

590 for (i = 1; i < radix; i++) { ...
594 if ((MyNum == 0) || (stats)) { --.
598 BARRIER(...);

Georgia 7 comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= EERE D
Imbalance Example (Radix)

534 BARRIER(...);

535 if (MyNum = (...)) {

540 while ((offset & 0x1) = 0) { ..
549 while ((offset & 0x1) = 0) { ..
557 for (i = 0; 1 < radix; i++) { ..
560 } else {

562 }

566 while ((offset & 0x1) = 0) { off
575 for(i = 0; 1 < radix; i++) { ...
578 while (offset = 0) {

579 if ((offset & Ox1) 1= 0) {

582 for (i = 0; i < radix; i++) {
585 }

589 }

590 for (i = 1; i < radix; i++) { ...
594 if ((MyNum == 0) || (stats)) { --.
598 BARRIER(...);

Georgia 7 comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= EERE D
Imbalance Example (Radix)

534 BARRIER(...);

535 if (MyNum = (...)) {

540 while ((offset & 0x1) = 0) { ..
549 while ((offset & 0x1) = 0) { ..
557 for (i = 0; 1 < radix; i++) { ..
560 } else {

562 }

566 while ((offset & 0x1) = 0) { offs
575 for(i = 0; 1 < radix; i++) { ...
578 while (offset = 0) {

579 if ((offset & Ox1) 1= 0) {

582 for (i = 0; i < radix; i++) {
585 }

589 }

590 for (i = 1; i < radix; i++) { ...
594 if ((MyNum == 0) || (stats)) { --.
598 BARRIER(...);

Gegrgia 7% comparch .

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= EERE D
Imbalance Example (Radix)

534 BARRIER(...);

535 if (MyNum = (...)) {

540 while ((offset & 0x1) = 0) { ..
549 while ((offset & 0x1) = 0) { ..
557 for (i = 0; 1 < radix; i++) { ..
560 } else {

562 }

566 while ((offset & 0x1) = 0) { offs
575 for(i = 0; 1 < radix; i++) { ...
578 while (offset = 0) {

579 if ((offset & Ox1) 1= 0) {

582 for (i = 0; i < radix; i++) {
585 }

589 }

590 for (i = 1; i < radix; i++) { ...
594 if ((MyNum == 0) || (stats)) { --.
598 BARRIER(...);

Georgia 7 comparch .

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= EERE D
Imbalance Example (Radix)

534 BARRIER(...);

535 if (MyNum = (...)) {

540 while ((offset & 0x1) = 0) { ..
549 while ((offset & 0x1) = 0) { ..
557 for (i = 0; 1 < radix; i++) { ..
560 } else {

562 }

566 while ((offset & 0x1) = 0) { offs
575 for(i = 0; 1 < radix; i++) { ...
578 while (offset = 0) {

579 if ((offset & Ox1) 1= 0) {

582 for (i = 0; i < radix; i++) {
585 }

589 }

590 for (i = 1; i < radix; i++) { ...
594 if ((MyNum == 0) || (stats)) { --.
598 BARRIER(...);

Gegrgia 7% comparch .

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

- NE BE D
Assigning Blame

— Event counts that are the same in all threads
— That event can’t be causing imbalance

Group the potential suspects
} Statistical clustering

Exculpate the clearly innocent }
Trivial

— Event counts that go together
(strongly correlated to each other)

ldentify group leaders
— Events that lead to other events in the group

Find the leaders to blame . |
— Which leader gets which share of the blame [>ttistical regression

Report

— Group leader events

— Their share of the blame

— Typical solutions for that type of event

Next few slides

Gegrala % comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= B O
Group Leaders — Control Flow

534 BARRIER(...);

535 if (MyNum = (...)) {

540 while ((offset & 0x1) = 0) { ..
549 while ((offset & 0x1) = 0) { ..
557 for (i = 0; 1 < radix; i++) { ..
560 } else {

562 }

566 while ((offset & 0x1) = 0) { offs
575 for(i = 0; 1 < radix; i++) { ...
578 while (offset = 0) {

579 if ((offset & Ox1) 1= 0) {

582 for (i = 0; 1 < radix; i++) {
585 }

589 }

590 for (i = 1; i < radix; i++) { ...
594 if ((MyNum == 0) || (stats)) { --.
598 BARRIER(...);

Geqraln # comparch |

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= Il O
Group Leaders — Control Flow Events

Only one CF
event in the

group
(trivial)

Leader event

Gegroia 77 comparch .

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

= R D
Group Leaders — Control Flow Events

Leader event

Gegroia 77 comparch .

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

= BE O

Control Flow Leader Events

 Group leader is the decision that causes control
flow to enter the group

— This decision creates the difference among threads

 Thread 1 tends to have more iterations of loop X than thread O
 Thread 1 tends to take “true” path of an “if’ more often than thread 0

o Other decision’s execution counts simply follow

— No additional differences among threads created

 Thread 1 has a larger total # of iterations of loop Y than thread O,
but that's because loop Y is nested within loop X

 Thread 1 has a larger total # of iterations of loop Y than thread O,
but that's because loop Y is on the “true” path of the “if”

 Thread 1 takes the “false” path of an “if” more times than thread O,
but that's because the whole “if-then-else” statement is nested inside
loop X (or another “if” statement)

Georgia 7
CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech ' COITIPEI"CI'I

= BE O

Other Causes of Imbalance

* |Imbalance can also be caused by
— Unequal cache miss rates in private (e.g. L1) caches
— Unequal cache miss rates in shared (e.g. L3) caches
— Unequal waiting when grabbing the CPU-MEM bus
— Unequal waiting when obtaining a lock
— Any other unequal behavior on delay-causing events

o Same “leader” problem for these events

 Example: ThO has more L3 misses than Thl
— If same # of L2 misses, L3 is he real reason
— If # of L3 mises in each thread is proportional to its L2
miss count, L3 is not the real reason (is it L27?)

Geqigiy # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= HE D

Example

 Example: ThO has more L3 misses than Thl

— The real reason can be a control-flow decision
 Execute a load more times in ThO than Thl
e« Same miss rate in both threads, but ThO has more misses than Thl

* |n this case, the control-flow decision, the L1 miss count, the L2 miss
count, and the L3 miss count are in the same group

— The real reason can be different L1 behavior

« Similar number of executions for the instruction

 Number of misses in L1 differs, correlated to imbalance
 Number of L2 and L3 misses proportional to # of L1 misses

« Now L1, L2, L3 misses on that instruction are in the same group

— The real reason can be different L2 behavior
— Or different L3 behavior

Gegraln # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

= HE 0

Handling on non-CF events

* Hierarchy of events
— Each such event
treated as a “decision”

— Then apply the same
algorithm as before

Mem
Access

Gegrala 7% comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

. NE EE W
Implementation

» Lots of details and improvements
— Need good “distance” metric for clustering

— Handling of weakly correlated decisions

* E.g. if-then-else introduces some imbalance,
a nested loop adds more on top of that,
a loop within that adds even more, etc.

— Scoring of reported results

e Score ~ urgency with which to address this cause of imbalance
 Related to % of imbalance caused and how much imbalance exists

Gegrala 7% comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech

= Bl D
Results

o Applied this to Splash-2 and PARSEC
benchmarks

— Already highly optimized (no low-hanging fruit)

Gegraln # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= HE O
Results

« How many “causes” end up being reported
— 0-3 control flow decision points
— 0-9 load/store instructions

 What are the typical scores
— On ascale from0Oto 1, from 0.07 to 1.00

 How do we know the right things are reported

— Used a simulator to “erase” reported misses,

then verified that imbalance reduction is as expected

* Reported instructions are responsible for <10% of all cache misses
* Imbalance reduction >90% when these misses are eliminated

— Examined reported control-flow causes of imbalance

Geqigiy # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

o = N B
Verifying the report for LU

* Highest imbalance of all the apps we used
— 90% of execution time when using 64 cores

 Three lines of code reported (all control-flow)

Rank Address Score Code point (func.)
1 0x4018b4 0.9455 |u.C:668 (lu)
2 0x4014dc 0.0086 |u.C:595 (lu)
3 0x40187c 0.0033 1u.C:660 (lu)

668 1Tt (BlockOwner(l, J) == MyNum) { /* parcel out blocks */
669 B = a[K+J*nblocks];

670 C = a[l+J*nblocks];

671 bmod(A, B, C, strl, strJ, strK, strl, strK, strl);

672 }

556 long BlockOwner(long 1, long J)
557 {

558 return (J%Ncols)+(1%Nrows)Ncols;
559 }

Removed 61% of the imbalance

Geqigiy # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

. = WE o
Verifying the report for volrend

« Second-highest imbalance
— 46.9% when using 64 cores

 Two lines of code reported

Rank Address Score Code point (func.)
1 0x4068ec 0.9991 render.C:38 (Render)
2 0x447884 0.0002 pthread _mutex_unlock.c:52
31 Render(int my node) /* assumes direction is +Z */
32 {
33 iIT (my_node == ROOT) {
34 Observer_Transform_Light Vector();
35 Compute_Observer_Transformed Highlight Vector();
36 .
37 E;ay Trace(my node): This is reported because of
38y < = inlining and compiler’s

instruction scheduling (-03)
298 Render(my_node);

300 if (my node == ROOT) { < | Line 300

307 WriteGrayscaleTlIFF(outfile, image_len[X], ...); reported when
310 WriteGrayscaleTlFF(filename, image len[X], ---); : 00

312 } using -

Gegqedia 7 comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= HE O
What’s next?

 Release a Pin-based tool
— Can identify control-flow causes of imbalance

— Other events rely on HW simulation
(need event counts attributed to specific code points)

* Improve accuracy of HW-event reporting
— Different miss rates in different threads

— We want to report the mechanism behind it
« Some threads have a larger working set?
» Different data layout in different threads?

* Apply a similar approach to other perf. problems
— Lock overhead, contention, and convoying
— Destructive sharing and other resource-sharing

Geqigiy # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= HE O
Acknowledgments

o Student: Jungju Oh
— Second year student, will look for internships ©

o Collaborators
— Chris Hughes, Intel
— Guru Venkataramani, GWU (former student)

e Support
— NSF (1/2 student/year) and SRC (1/2 student/year)

— More support would be welcome ©
* Progress would be a lot faster with 2-3 students

Gegrala % comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic

= HE O
Other work

o Support for tainting at intranet level
— Automated, uncircumventable “tags” go with data
— Provenance tracking, disclosure prevention, etc.
— NSF-funded, joint work with Alex Orso, Nick Feamster

« Support for efficient multi-grain checkpointing

— Checkpoint often for quick rollback, but also
allow rollback to long-ago state
» Can be used for recovery when error detection latencies vary
» Can be used for reverse-execution debugging

— Partly NSF-funded, the student is loannis Doudalis

» Electric and electromagnetic side channel
— Signals on CPU pins carry more info than specs say
— Mobo wires == transmission antennas for some of this

— Very little understanding of underlying mechanisms
* How does internal signal X end up phase-modulating external signal Y?

— Seed funding from NSF (for 1 year)
» Joint work with Alenka Zajic, our resident signal processing and electromagnetics expert
e Two first-year students (one CS, one ECE) and one 20GHz oscilloscope ©

Gegraln # comparch

CS 8804 RSA - Fall 2010 - Prof. Milos Prvulovic Tech !

