

The IBM Power Edge of Network[™] Processor:

A wire-speed System-on-a-Chip with 16 Power™ cores / 64 threads and optimized HW acceleration

Hubertus Franke Research Staff Member, Mgr Scalable Systems Department IBM T.J. Research Center Yorktown Heights, NY 10598 <u>frankeh@us.ibm.com</u>

Co-authors: Chief Architects: To many to mention (Research / STG) Charlie Johnson, Jeff Brown

Cloud Computing

Smarter Planet

SOA

Physics

Game Players

Disruptive Innovations Virtual Worlds

Mashups

Mobile Devices

Crowdsourcing

Petaflop Supercomputers

Web 2.0

Globally Integrated Enterprise

Services Sciences

Software as a Service

...........

Reinventing How Systems are Built

- Technology discontinuities driven by physics
- Business needs driving specialized hybrid systems
- Hybrid system future directions

100	1	1000	100
	1		_
	-		-
_		_	_

Key Technology Inflection Points

WHILE THE REAL

	TELE

Microprocessor Technology Trends

© 2010 IBM Corporation

Future Systems and New Applications

Future Systems and New Applications

 -	-	-
-	-	
	-	

Opportunity Exists for Optimization Across the Workload Space

System Workload Categorization

Workload Attributes

Transaction Processing and Database	Analytics and High Performance Computing	Transaction Processing and Database	Analytics and High Performance Computing
 Data Warehousing OLTP Batch Business Processing DB 	 Data Mining Applications Numerical Enterprise Search Gaming & Visualization 	Scale High Transaction Rates High Quality of Service Handle Peak Workloads Resiliency and Security	Compute intensive High I/O Bandwidth High Memory Bandwidth Floating point Scale-out Capable
Business Process Applications	Web, Collaboration and Infrastructure	Business Process Applications	Web, Collaboration and Infrastructure
• ERP • SCM • CRM	 Application Development Systems Management Infrastructure DB File & Print Web/Collaboration Content DB Web Serving/Hosting Web/Networking Acceleration Security Networking IMS/VOIP Infrastructure Proxy Caching Collaboration 	Scale High Quality of Service Large Memory Footprint Responsive Infrastructure	Highly Threaded Throughput-oriented Scale-out Capable

Wire-Speed Processing

A blurring of the Network and Server worlds

- Highly-multi-threaded low power cores with full PPC ISA
- Standard programming models with OS's & hypervisors
- Virtualization support for application consolidation
- Accelerators: for both Networking & Application tiers
- Integrated Network system & Memory I/O
- Server RAS & infrastructure
- Low total power solution based on throughput optimization

WHITE THE REAL

Wire-speed Differentiated Solutions

Emerging class of throughput and latency sensitive applications whose performance and scaling require the optimization of both networking and computing on specialized

wire-speed processors

Applications require: near real-time latency, high throughput, and ability to scale 1-1 with networking roadmaps

Examples: **Deep-Packet Inspection** (DPI) as prototypical transformation function for security, monitoring, filtering, pattern matching, and data conversions

As **data flow is transient** for network-optimized applications, compute resources must process data and scale with networking rates with near real-time latency

<u>Systems require</u>: a **scalable wire-speed compute node** as basis engine which cannot be accomplished with commodity components due to compute density, throughput, latency, and power requirements

IBM PowerEN[™]: Targeted at the Edge-of-Network

- Power efficient Throughput computing
 - Database Acceleration

- Service Oriented Architecture Acceleration
- Secure Multi-tenant Cloud Computing
- Enhanced processing of data payloads
 - Low latency message for Financial Information Exchange
- Deeper networking functions
 - Cyber Security
 - Network Intrusion Prevention
- Application targeted at "smarter planet" solutions
 - Compartmentalized streamed analytics
 - Data Reduction in storage subsystems

IBM PowerEN™

Overview of IBM PowerEN[™] Processor Chip

- ✓ 64-bit PowerPC Architecture
- ☑ Virtualization Support
- ✓ Dual DDR3 DRAM Controllers
- ☑ Optimized Ethernet Offload Engine
- ✓ Integrated PCI-Express bus
- Cryptography Unit
- ☑ Regular Expression Unit
- ✓ XML Processing Unit
- Compression Unit
- ✓ Upward Scalability 4 Chip
- ☑ Downward scalability Subset

PowerEN[™] has all basic IP needed for user/data plane and control plane traffic processing

	÷		-	22	-	-1	
terms range grant man grant pa							
the second distance where the second s		-				2.	-

PowerEN: Wire-Speed Processor

Technology	IBM 45nm SOI		
Core Frequency	2.3GHz @ 0.97V (Worst Case Process)		
Chip size	428 mm2 (including kerf)		
Chip Power (4-AT node) Chip Power (1-AT node)	65W @ 2.0GHz, 0.85V Max Single Chip 20W @ 1.4GHz, 0.77V Min Single Chip		
Main Voltage (VDD)	0.7V to 1.1V		
Metal Layers	11 Cu (3-1x, 2-1.3x, 3-2x, 1-4x, 2-10x)		
Latch Count	3.2M		
Transistor Count	1.43B		
A2 Cores / Threads	16 / 64		
L1 I & D Cache	16 x (16KB + 16KB) SRAM		
L2 Cache	4 x 2MB eDRAM		
Hardware Accelerators	Crypto, Compression, RegX, XML		
Intelligent Network Interfaces	Host Ethernet Adapter/Packet Processor 2 Modes: Endpoint & Network		
Memory Bandwidth	2x DDR3 controllers 4 Channels @ 800-1600MHz		
System I/O Bandwidth	4x 10G Ethernet, 2x PCI Gen2		
Chip-to-Chip Bandwidth	3 Links, 20GB/s per link		
Chip Scaling	4 Chip SMP		
Package	50mm FCPBGA (4 or 6 layers)		

_		
- X	-	7
10.00		
 	-	

Special Purpose Hardware - PowerEN Accelerator Bandwidths

	# of			Typical Ba	ndwidth	Peak Ba	ndwidth
Accelerator Unit	# of Engines	Algorithm	single stream	total	single stream	total	
HEA	4	Network node mode (Gbps)	25 pac	10	40	10	40
	4	Endpoint mode (Gbps)	6B ⊧ket	10	40	10	40
De/Compression	1	Compression (Gbps input)		8	8	16	16
	1	Decompression (Gbps output)	8	8	16	16	
Security Unit*	8	DES (Gbps)		4	32	6	48
	5	AES (Gbps)		5	25	8	40
	8	TDES (Gbps)		2	16	2.5	20
	2	ARC4 (Gbps)		1	2	2.5	5
	2	Kasumi (Gbps)		2.5	5	3	6
	6	SHA-1,256,512 (Gbps)		3.5 - 4	21 - 24	4 - 6	24 – 36
	6	MD5 (Gbps)		4	24	5	30
	5	AES/SHA-1,256,512 (Gbps)		2 - 3	10 - 15	4 - 6	20 - 30
	6	TDES/SHA-1,256,512 (Gbps)		1.5 - 2	9 - 12	2	12
	3	RSA/ECC exp. w/ 1024/2048 bits / key (ops / second)		15000 / 2000	45000 / 6000	1666 / 2420	50000 / 7260
RegX	8	(Gbps input)		2.5 - 5	20-40	9	72
XML	4	(Gbps input)		1 - 3	4 - 12	5	20

*Multiple algorithms can be processed in parallel but aggregate bandwidth may be effected

100	The second secon	-
1		
and the second second		-
 	-	

PowerEN: Projected power breakdown by function @ 2.0GHz

NAME OF TAXABLE

 	10	-	1.1	-
	-			

Evolution of a Wire-Speed Processor

Power Savings from Architecture / Integration

New York

 		-
	-	
Statements in the local division of the loca		
 		-

Interconnect Architecture

- *"All Peers" a*rchitecture
 - Accel. and I/O are first class citizens
- Proven Power-Bus architecture
 - Independent CMD Network (one/cycle)
 - Two north, two south 16B data busses
 - ECC protected data paths
- 64 Byte Cache Line
- Cache Injection
 - Packets flow to / from Caches
 - New PBus commands:
- 1.75 GHz operation
 - Asynchronous connection to AT Nodes and accelerators via PBICs
 - Synchronous connection to DRAM controllers
 - Three 4B 2.5 GHz EI3 external links (1,2, or 4 chip systems)

1000	100 10	1.1
		I and

PowerPC[™] Processing Element Architecture

- PowerPC 64 architecture Embedded
- Enhanced for Co-processor/I/O interface
- 4 way Fine Grained SMT
- In Order Dispatch and Execution
- 2 way concurrent issue.
 - 1 Integer + 1 FPU instruction per cycle
 - Different threads
- Unified fixed point, Id/st, and branch unit
- 16KB L1 Data Cache 4 Way Assoc.
- 16KB L1 Instr Cache 8 Way Assoc.
- 12 Stage Pipe 27 FO4 design (7 XU, 5 IU, 6 FU
- Fully associative I and D ERAT
- MMU: 512 Entry TLB w/ Hardware Table Walk
- Hypervisor / Virtualization One logical partition per core

	lane a		-
		1	
-	-		

PowerPC[™] Processing Element Architecture

- 4 cores x 4 slices of shared L2
 - -512KB per slice
 - -Concurrent reload data to all 4 cores
- 1:1 with processor cycle time
- 2MB eDRAM (total)
 - -64B cache lines
 - -Inclusive of L1 I & D caches
 - -8 way set associative
- Fast core wake up on reservation loss
- ECC (SEC/DED) Data and on Directory
- Line locking & Way locking
- Slave memory region (non-coherent)
- Cache injection (full & partial line)
- Power Saving Mode: Rip Van Winkle

..........

DDR3 DRAM Controller / PHY

- Two independent DDR3 DRAM controllers
 - -2 independent channels / controller
 - –Registered RDIMMs or unbuffered UDIMMs
 - Up to two DIMMs per channel and 1, 2 or 4 ranks on DIMM
 - -Attach up to 32 GB per DRAM controller
 - -64 byte block ECC matches cacheline size
 - -800 MHz, 1.066 GHz, 1.33 GHz, 1.6GHz DRAMS

PBus Interface

- -One PBus interface (C/D) per controller
- Capable of 16 Bytes outbound per PBus cycle and 16 Bytes inbound per PBus cycle

DDR3 Memory

_		-	-
	-	-	
-	-		

Accelerator (Co-Processor) Architecture

Objectives

...........

- Performance
- Common API (Ease of Use)
- QOS
- Virtualization Protection
- Common Architecture for all Accelerators
- Integrated in Power Architecture
 - New Initiate Co-Processor Instruction
 - New Wait on Loss of Reservation
 - (Thread wake up)
 - Application Context communicated to Co-Processor
 - Access Control
- L2 Cache Intervention / Injection
- Accelerator MMU derived from Processor MMU
 - Accelerators operate in Application Address Space

Accelerator Interface

- 1. Software receives an input packet
- 2. Software builds the CPB and CRB in cache
- 3. Software issues the ICSWX instruction
- 4. L2: ICSWX => Cop_Req PBus command
- 5. The PBus transports the Cop_Req
- 6. The PBIC passes the CRB and Cop_Req to Accelerator
- 7. The DMA logic assigns the Algorithm Engine and fetches data and parameters
- 8. The DMA logic and the Algorithm Engine work together to process the data and generate the output data
- 9. The DMA logic stores the output data
- 10. The DMA logic stores the status into the CSB
- 11. The DMA logic performs the final handshake
- 12. The SW retrieves the output status and data

.................

	-	
-		

Compression/Decompression

Standards

- Supports file formats defined by RFC1950 (ZLIB) and RFC1952 (GZIP)
- Compliant to RFC1951 and DEFLAT
- Pipelined data engine
 - Deep pipelines to minimize latency and increase bandwidth
 - 8 Gbps output from engine (Decomp)
 - 8 Gbps input to engine (Comp)
- Decompression
 - Supports interleaved messages, packet by packet decompression
 - Static & Dynamic Huffman decoding supported
- Compression
 - Supports single messages to be compressed
 - Static Huffman coding support

Crypto Data Mover

- Symmetric Algorithm Acceleration – AFSModes:
 - Key Lengths: 128b,192b,256b
 - DES & 3DES Modes:
 - ARC4, Kasumi
 - HASH: SHA-1, SHA-256, SHA-512, MD5
 - HMAC supported for SHA
 - Combined 3DES/AES and SHA
- Asymmetric Algorithm Acceleration
 - Modular Math Functions for RSA/ECC
 - Point Functions for ECC
 - RSA lengths: 512b,1024b,2048b,4096b
- Asynchronous Data Mover (ADM)
 - Any Source Byte offset, Any Dest Byte offset, Any length up to 16M bytes
- Random Number Generator (RNG)
 - Supplies a 64b random number, Supports FIPS 140 compliance

THE R. LANS.
States and and and

XML Unit / XML Engines

- Fully asynchronous offload operation
- Four Parsing Engines

- -Performs lexical analysis
- -Checks well-formness
- -Normalizes whitespace
- Seamlessly switches state to process interleaved document fragments
- Processes multiple characters simultaneously
- -Supports multiple character encodings
- Four Post Processing Engines
 - -XPATH evaluation
 - -Schema validation
 - -Filtering in hardware (reject)
 - Process a fragment of incoming document
 - -XSLT processing, XML Routing

RegX (Pattern Matching Engine)

- Processes 8 CRB's in parallel
- Four independent Physical Lanes; each composed of 4 programming state machines (BFSM)
 - Each lane is time multiplex by two logical lanes
 - Each BFSM is connected to 32KB of SRAM (total of 512KB)
- SRAM holds resident rules (SW managed cache) and temporary rules (HW managed cache)
- Strong dependency between hardware, complier, patterns and workload

.........

IBM PowerEN[™] Packet Processing Framework

Packet Processor Architecture

Offload Centralized Media Speed Functions

- -Packet Classification /Distribution / Ordering
- -BFSM based Parser
- -Virtualization Up to 16 LPARs,
 - Integrated L2 virtual Switch, PVID
- END POINT MODE: L4+ termination
 - -Pull model Software interface (128 Queues)
 - -Scatter/gather descriptors
 - -Low latency Queues, Header separation
 - -TCP/UDP IPv4, v6 Checksum assist
 - -QOS support (ingress Queue selection)
- NETWORK NODE MODE: Packet forwarding
 - -Push model Software interface (64 Queues)
 - -HW managed queues
 - -Ingress Egress Scheduler (Flexible ingress queue) selection
 - -Completion Unit (Packet ordering 16K packets)
 - -Thread to Thread messaging with ordering

PCI-Express

- Two PCIe ports
- PCIe Gen 2 Features
 - -5Gb/sec per lane/direction
 - -Max Payload: 512B, Max Read: 4K
- Root Port Mode PHB
 - -IODA-based definition
 - -TCE based Address Translation
 - -TCE cache: 64-entry 4-way
 - –Inbound MSI Validation
- Endpoint Mode
 - -PCIe SRIOV Virtualization
 - -DMA Follows accel. SW model
 - -Engaged via Coprocessor Request
 - -Similar compl/status reporting
 - -Tx and Rx data streaming engines
 - -Separate Doorbell and Interrupts per PCIe PF/VF
 - -Dedicated Mailbox space

IBM PowerEN™ Processor Chip

- **☑** Targeted at the Edge-of-network
- Power efficient Throughput computing
- Enhanced processing of data payloads
- **Deeper networking functions**
- Application targeted at "smarter planet" solutions

PowerEN[™] has all basic IP needed for user/data plane and control plane traffic processing at the Edge of Network

Thank you