

VMAcS: Virtualization and Resource Management in Accelerator-based Heterogeneous Multicore Systems

Presented by: Vishakha Gupta

Georgia Tech: Karsten Schwan, Harshvardhan Kharche, Ada Gavrilovska

HP Labs: Niraj Tolia, Vanish Talwar, Partha Ranganathan

In a Nutshell

Motivation

- Industry trend towards heterogeneous multicores
- Benefits offered by virtualization for broader application domain

Problem statement

- Implement and evaluate virtualization of accelerator based systems
- Provide performance guarantees to guests running on such a system

Work done

Virtualized specific off-chip accelerator – NVIDIA GPU

Outline

- System architecture
 - Virtualized Homogeneous Multicore Systems
 - Virtualization of Accelerator based Systems
- Management extension
- Evaluation
- Related work
- Future work and conclusion

Virtualized Homogeneous Multicore Systems

Virtualization of Accelerator based Systems Extending Xen for GPU

NVIDIA's CUDA - Compute Unified Device Architecture for managing GPUs

Outline

- System architecture
- Management extension
 - Scheduling in Dom0
 - System highlights
- Evaluation
- Related work
- ▶ Future work and conclusion

Dom0 - Management extension

System Highlights

Frontend:

- Applications in guest VM can be multi-threaded
- Currently one application at a time
- Call path is synchronous from application's view

Backend

- Multiple domains
- Multiplex resources across multiple GPUs
- Simple load balancing and admission control
- A general framework for virtualization and resource management

Outline

- System architecture
- Management extension
- Evaluation
 - Testbed details
 - Benchmarks
 - Preliminary results
 - Discussion
- ▶ Related work
- ▶ Future work and conclusion

Testbed Details

- Hardware configuration:
 - Xeon quad-core @ 2.5GHz and 2GB memory
 - NVIDIA 8800 GTX PCIe card
- Software configuration
 - Xen 3.2.1 running 2.6.18 Linux kernel
 - CUDA SDK 1.1 with gpu driver 169.09

Micro-benchmarks

- Bitonic sorting
 - Smaller data size sort
 - Tested with 512 elements
- Matrix multiplication
 - Used 48x48 floating pt. matrices for the numbers
- MersenneTwister
 - Pseudo-random number generator
 - Tested with generation of 12000 random numbers
- BlackScholes
 - Financial algorithm for call/put option prices
 - 30000 options with 512 iterations

Benchmark - CDO

- Collateralized debt obligation pricing model
- Financial product which takes the risk of a portfolio and segments into several tranches
- Multiple compute kernels involved
 - Generating uniform random numbers
 - Cholesky decomposition
 - Matrix multiplication, Sorting etc.
- Adjustable number of iterations and portfolio size

Guest GPU Access Performance

Total execution time (without host data assignment)

Micro-benchmarks (with dataset values)

Less than 15% slowdown in the worst case

10/21/2008

13

Multiple Guest Scenario

No Resource Management

Micro-benchmarks (with dataset values)

Without resource management, calls can get variably delayed due to interference from other domain

Ongoing and Future Work

Ongoing

- Optimizations to GPU virtualization code
- Thorough measurement of benchmarks
- Scheduling in Dom0 and related measurements

Future

- Heterogeneous multicore scheduling
- SLA management policies
- Scalability and stability models/analyses
- Power-awareness in the scheduler

Related Work

- Scheduling extension [Cypress], [Xen Credit Scheduling], [QoS Adaptive Communication], [Intel Shared ISA Heterogeneity]
 - Differences in (system design heterogeneity)
- GPU Virtualization: [OpenGL], [VMWare DirectX] [VMGL]
 - Difference in API level virtualization
- Other related work
 - Accelerator Frontend or multi-core programming models: [Georgia Tech Harmony], [Georgia Tech Cellule], [IBM ALF], [Intel QuickAssist], [9p from Plan 9]
 - Some examples: [Intel Tolapai], [Intel Larrabee], [AMD Fusion],
 [IBM Cell], [LANL Roadrunner]

