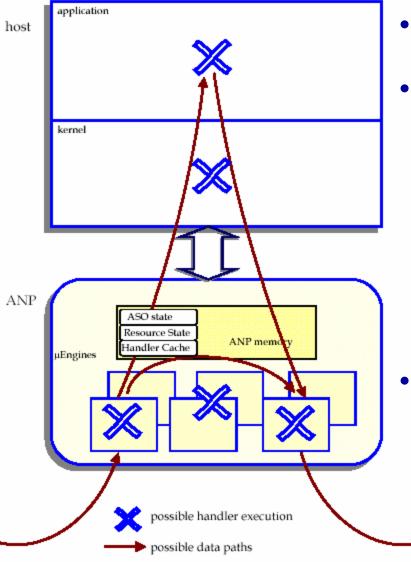
Exploiting Network-Near Processing: From Smart NICs to Information Appliances

Ada Gavrilovska CERCS

Georgia Institute of Technology

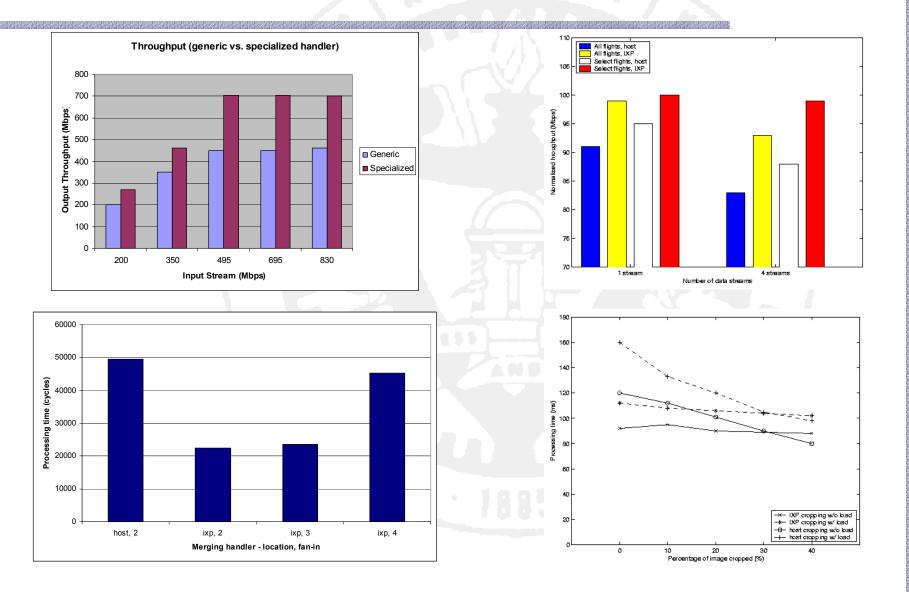

'Network-near' Processing Cores

- Existence and openness of processing cores dedicated to and/or specialized for communication tasks
 - Smart NICs
 - Network processors
 - Cores (or configurable accelerators) in multi- and many- core systems
- Benefits include
 - greater concurrency and overlap of computation and communication
 - reduced perturbations and memory and IO pressure on `main' application components
 - specialized cores have reduced power requirements, optimized ISAs for network operations, `cheaper' access to network packets...
 - lightweight or lack of OS -> lack of certain overheads

Multiple efforts

- Primarily based on Intel IXP network processors as development platform
 - as standalone systems, future NICs attached to general purpose hosts, or considered jointly with host CPUs as heterogeneous multicore platforms
- Addressing *higher-level services*, instead of just traditional network-level header and payload manipulations
- Three separate efforts
 - Dedicated cores
 - focus on systems services, e.g., IO acceleration and virtualization (Himanshu Raj and Sanjay Kumar presentations)
 - Intel funding
 - Specialized communication subsystem, i.e. NIC
 - ongoing work on application/middleware stack splitting on hosts with `attached NPs' acting as NICs
 - High-end SmartNIC targeting HPC systems
 - joint with RNet, Dept. of Energy SBIR II funding
 - Specialized platforms for customized communications-services
 - Application-level information appliances
 - Intel funding

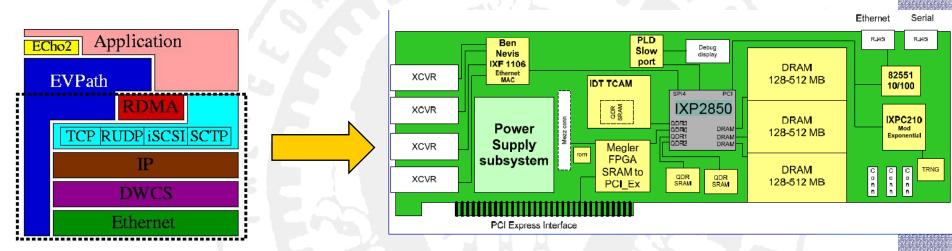
'In-transit' Data Transformations



- vertical movement of service components along application stack
- enable execution of middleware-/application-level processing actions jointly with communications
 - use metadata to describe application data, processing actions & requirements, platform state...
 - offload computational CPU, enable direct data placement of *needed* data
 - deploy computation (handlers) onto contexts best suited for its execution
- configure paths dynamically based on application needs, context capabilities...
 - flexible classification
 - runtime monitoring
 - dynamic code deployment/selection
 - `cache' current state

Application-specific Appliances

- Open platform to consolidate rich set of services
 - content distribution and filtering, XML translation and data translation, data integration...
- Flexible scheduling and resource allocation subsystem to meet dynamic range of QoS levels
 - dynamic allocation of processing context to flows
- Analyze impact of state and data placement along memory hierarchy
 - code specialization as topmost level
- Karsten Schwan, Sanjay Kumar, Radhika Niranjan, ...


Select experimental results

Recent funding: Smart NIC for HPC applications

- Address data movement in HPC domain
 - remote simulations, scientific visualization
 - HUGE data volumes -> important to tap into outputs and manage/prioritize their deliver in a application/user specific way
- Objectives
 - lightweight acceleration communication services and customization of their behavior
 - e.g., packet scheduling algorithm, protocol window rightsizing...
 - exploit OS- and application-bypass techniques
 - augment the communication specific services with applicationspecific codes
- DoE funding, interest by several national labs, joint with RNet
 - Greg Eisenhauer, Sudha Yalamanchili, Karsten Schwan, ...

SmartNIC approach

- dotted line -> hardware accelerated layers
- Netronome platform permits access to entire host memory
 - currently evaluating `software' coherency
- already demonstrated feasibility of
 - using EVPath for application-specific tuning of service behavior
 - flexible DWCS scheduling
 - execution of additional EVPath handlers for additional content manipulation

Conclusions

- Importance of associating rich functionality near the network boundary
- Specialized hardware delivers numerous benefits
 - APIs should permit applications to take advantage of those
 - e.g., apply XML processing only to data of interest
 - e.g., increase flow's priority based on critical content
- Tight integration with main compute cores and memory important
 - however benefits from eliminating memory/IO loads important
- Tools!