
Exploiting Network-Near Processing: 
From Smart NICs to Information 

Appliances

Ada Gavrilovska
CERCS

Georgia Institute of Technology



‘Network-near’ Processing Cores

• Existence and openness of processing cores dedicated 
to and/or specialized for communication tasks
– Smart NICs
– Network processors
– Cores (or configurable accelerators) in multi- and many- core 

systems
• Benefits include 

– greater concurrency and overlap of computation and 
communication

– reduced perturbations and memory and IO pressure on 
`main’ application components

– specialized cores have reduced power requirements, 
optimized ISAs for network operations, `cheaper’ access to 
network packets…

– lightweight or lack of OS -> lack of certain overheads 



Multiple efforts
• Primarily based on Intel IXP network processors as 

development platform
– as standalone systems, future NICs attached to general purpose 

hosts, or considered jointly with host CPUs as heterogeneous 
multicore platforms

• Addressing higher-level services, instead of just traditional 
network-level header and payload manipulations

• Three separate efforts
– Dedicated cores 

• focus on systems services, e.g., IO acceleration and virtualization 
(Himanshu Raj and Sanjay Kumar presentations)

• Intel funding
– Specialized communication subsystem, i.e. NIC

• ongoing work on application/middleware stack splitting on hosts with 
`attached NPs’ acting as NICs

• High-end SmartNIC targeting HPC systems
• joint with RNet, Dept. of Energy SBIR II funding

– Specialized platforms for customized communications-services
• Application-level information appliances
• Intel funding



‘In-transit’ Data Transformations
• vertical movement of service 

components along application stack 
• enable execution of middleware-

/application-level processing actions 
jointly with communications
– use metadata to describe application 

data, processing actions & requirements, 
platform state…

– offload computational CPU, enable 
direct data placement of needed data

– deploy computation (handlers) onto 
contexts best suited for its execution 

• configure paths dynamically based on 
application needs, context capabilities…
– flexible classification 
– runtime monitoring
– dynamic code deployment/selection
– `cache’ current state



Application-specific Appliances

• Open platform to consolidate rich set of services
– content distribution and filtering, XML translation and data 

translation, data integration…
• Flexible scheduling and resource allocation subsystem 

to meet dynamic range of QoS levels
– dynamic allocation of processing context to flows

• Analyze impact of state and data placement along 
memory hierarchy
– code specialization as topmost level 

• Karsten Schwan, Sanjay Kumar, Radhika Niranjan, …



Select experimental results
Throughput (generic vs. specialized handler)

0

100

200

300

400

500

600

700

800

200 350 495 695 830

Input Stream (Mbps)

O
ut

pu
t T

hr
ou

gh
pu

t (
M

bp
s)

Generic
Specialized

0

10000

20000

30000

40000

50000

60000

host, 2 ixp, 2 ixp, 3 ixp, 4

Merging handler - location, fan-in

Pr
oc

es
si

ng
 ti

m
e 

(c
yc

le
s)



Recent funding: 
Smart NIC for HPC applications

• Address data movement in HPC domain
– remote simulations, scientific visualization
– HUGE data volumes -> important to tap into outputs and 

manage/prioritize their deliver in a application/user specific way
• Objectives

– lightweight acceleration communication services and 
customization of their behavior

• e.g., packet scheduling algorithm, protocol window rightsizing… 
– exploit OS- and application-bypass techniques
– augment the communication specific services with application-

specific codes
• DoE funding, interest by several national labs, joint with RNet

– Greg Eisenhauer, Sudha Yalamanchili, Karsten Schwan, … 



SmartNIC approach

• dotted line -> hardware accelerated layers
• Netronome platform permits access to entire host memory 

– currently evaluating `software’ coherency
• already demonstrated feasibility of 

– using EVPath for application-specific tuning of service behavior 
– flexible DWCS scheduling 
– execution of additional EVPath handlers for additional content 

manipulation



Conclusions

• Importance of associating rich functionality near the 
network boundary

• Specialized hardware delivers numerous benefits
– APIs should permit applications to take advantage of those

• e.g., apply XML processing only to data of interest
• e.g., increase flow’s priority based on critical content

• Tight integration with main compute cores and 
memory important
– however benefits from eliminating memory/IO loads 

important
• Tools!


