
Multi-core Curriculum
Development at Georgia Tech:
Experience and Future Steps

Ada Gavrilovska, Hsien-Hsin-Lee, Karsten
Schwan, Sudha Yalamanchili, Matt Wolf

CERCS
Georgia Institute of Technology

Background for Multi-core

• CERCS team consists of CS and ECE faculty,
awarded equipment and grant funding for multi-core
curriculum development:

Key Idea: “… to upgrade the core curriculum at the College
of Computing (CoC) and School of Electrical and Computer
Engineering (ECE) at Georgia Tech to better prepare future
generations of hardware and software practitioners … to
harness the potential of current and future multi-core
platforms.”

• Bring concurrency and parallelism back into
CS/CompE education by coordinated updates to an
entire ecosystem of courses

• Engage broad set of faculty beyond PIs

Single New Course
– Not a Viable Solution

• At what level?
– senior or graduate students – too late
– freshman or sophomore – too early to

address all concepts and challenges, and
possibility of `turning off’ video game
generation’ through potentially `dry’
technical topics

• Administratively challenging to
introduce new `required’ course

• Limited coverage in terms of number of
students exposed

GT Solution:
Modules throughout Curriculum

Need for flexibility in multi-core offerings and content:
– Level of detail in experience and understanding of issues

related to concurrency and multi-core platforms differs for
students specializing in platforms and infrastructure
(systems, architecture) vs. applications (high performance,
pervasive-robotics, ...) vs. theory (design, modeling)

– CoC’s new ‘Threads’ program in Computer Science
education tailors distinct academic threads to match
students interests

– Joint CoC/ECE efforts to create new joint MS curriculum can
reach beyond traditional CS/ECE student population

– Outreach to non-CS/ECE faculty through efforts with
Science and Engineering (e.g., CSE) and international
cooperation (GT Lorraine, Korea program in embedded
software, TUM, ETH Zurich)

“If it’s worth saying once, it’s worth saying at least three
times.” – received wisdom

I. Course Modules

• Develop course modules for insertion into a
wide range of courses
– undergraduate and graduate
– CoC and ECE
– systems and architecture (incl. verification)
– compilers and programming languages
– high performance computing and applications
– enterprise computing and information integration
– interface applications in embedded domain (e.g.,

robotics, vision)

II. Problem Sets, Software Stack, Web
Repository

• Evolve Knowledge Base:
– Multi-core web repository (including links to non-GT

efforts)
– Build and share knowledge about important tools and

packages:
• VTune, threads checker, threads, locking, concurrency and

language techniques (including formal methods)
– Create sample problem sets, projects, involving

representative hardware
– Extend to real-life applications (online data visualization,

vision, robotics, information integration, ...)
• Build and maintain simulation and other software

stacks (e.g., MPI/OpenMP, messaging, ...)
• Extend to low-level, hardware-near systems (e.g.,

hypervisors, comm. and graphics subsystems)

Course Modules – Some Detail

• Format:
– Depending on class format, will include combination of 1-3

week lectures, with accompanying slides, handouts and
reference material, homework(s) and laboratory
assignment(s), or longer term (1/3 to full semester) class
projects (same for all, or choice of topics)

• Content:
– Will focus on new architectural enhancements, techniques

for exploiting parallelism at the instruction and threads
levels, operating systems design and implementation issues,
shifts in programming and program compilation (e.g., multi-
threaded programming), correctness issues, performance
analysis and debugging, and application development.

Roadmap

• Introduce course modules in courses taught by faculty involved
in proposal
– Systems and Arch.: CS4210, CS6210, CS7210, ECE3055
– initial upgrades already took place in Spring06 (lectures and/or

labs), process continues…

• Expand module development to other 3xxx and higher level
course
– Compilers and Languages (CS4240) and Applications (CS 6230)
– hire TAs from CS and ECE to interface between proposal Co-PIs

and faculty teaching other affected courses, to provide, create, and
adapt appropriate educational material, as well as help construct
and maintain appropriate software stacks

• Initiate upgrades to entry-level courses
– administrative limitations in ease of modifying 1xxx and 2xxx level

courses due to large student enrollment, multiple course sections,
several instructors; changes are regulated at College/Dept-level,
but there is room for innovative efforts (e.g., UG seminar, ‘fun’
projects in graphics/robotics/embedded, ...)

List of Courses under
Immediate Consideration

• CS3210 Design of Operating Systems
• CS4210 Advanced Operating Systems
• CS4290/CS6290 Advanced Computer Organization
• CS6210 Advanced Operating Systems
• CS6230 High Performance Parallel Computing: Tools and

Applications
• CS7210 Distributed Computing
• CS8803HPC High Performance Communications
• ECE3055 Computer Architecture and Operating Systems
• ECE4100/ECE6100 Advanced Computer Architecture
• ECE6101 Parallel and Distributed Computer Architecture
• ECE7102 RISC Architecture
• CS 3220 Processor Design (Arch. and Verification)
• CS 4235/6235 Embedded and Real-time Systems

Case Study: CS4210 Advanced
Operating Systems (Gavrilovska)

• Course heavily centered around threads and concurrency
– two thirds of course discusses various concurrency related issues:

threads and multithread programming, address space switches and
IPC, webservers and RPC…

– includes a sequence of three Pthreads-based projects where
experimentation and performance analysis constitute 30% of project
grade

• New additions:
– discussion on trends in multi-core platforms
– greater emphasis on select multithreading topics:

• synchronization and deadlocks,
• advanced synchronization constructs, and
• scheduling – general algorithms, and scheduling for chip multiprocessors

• Planned additional updates:
– ensure availability of single CPU, SMP, and dual-core systems for

project development and evaluation, and require comparative
performance analysis

• currently only some students/groups
– use of tools – VTune licenses pending

Case Study: CS6230 Intro to High
Performance Computing (Wolf)

• Course is designed to be useful for both CS
and non-CS graduate students

• Deals extensively with design
and application of parallel
algorithms, methods and tools,
and architecture.

• Adaptation to new/novel
hardware is a recurring theme

• Addition last semester: Students were given a relatively open-
ended assignment to explore trade-offs in multi-core & hyper-
threading using SMP & multi-core hardware.
– Analysis of performance of OpenMP – down to level of compiler

instruction choices – was discussed w/student data
• Upcoming work: Extend module w/use of performance tools;

issues in multi-core + VT in HPC

Upcoming: ECE/CoC 8XXX
Multicore Systems

• Conceived as an advanced, project intensive
graduate course
– Coupled with industry guest lectures
– Industry influenced projects?

• Organized as 10-12 modules covering
architecture (core and platform),
programming and operating systems

• Taught by 3-5 faculty
• Goal: first offering Fall 2007

Current Infrastructure Support

• Hardware available for instruction
– dual-core nodes in Netlab (remote boot, ...), dual

SMP teaching facility, small number of larger MPs
(8-way) machines, multi-core IXP platforms, …

• Environments and tools
– primarily open source, based on Linux or other

Unix flavors
• (Windows in select courses or areas)

– Linux kernel-based performance monitoring
– Commercial (Intel) performance tools coming

soon…
• Open web and knowledge repository

Multicore Curricular Infrastructure
Goals

• Insight: why?
– Understanding causality between HW and SW

• prototype methodology developed jointly with Intel MTL
• currently being integrated with GEMS modeling and simulation

environment
• Experimentation: how?

– Extensible interfaces to memory, interconnect, and I/O behaviors
• construction of laboratory exercises to reinforce foundational classroom

material
• Exploration: what if?

– Integration of models for technology and architecture exploration
• Status: Considering modification to available tool chains, e.g.,

GEMS or basic SIMICS
– target Fall 2007 for first use in graduate multicore course

Ties to Ongoing Research

• Students involved, for credit or for thesis
work (UG, MS, PhD) in a range or research
projects where concurrency and/or multicore
issues are key elements
– Scalable Hypervisors
– Embedded and pervasive systems
– Architecture
– High performance computing and

communications
• Collaboration directly with ORNL, Sandia, ...

– Middleware and enterprise systems

