ransactional Memory

Konrad Lai
Microprocessor Technology Labs, Intel

Inte Iticore University Research Conference
Dec 8, 2005

Copyright © 2005, Intel Corporation

Motivation

* Multiple cores face a serious programmability problem
o \Wiriting correct parallel programs is very difficult

* [Hansactional Memory addresses key part of the problem
2 Viakes parallel programming easier by simplifying coordination
5 Reguires hardware support for performance

Copyright © 2005, Intel Corporation

What Is Transactional Memory?

Transactional Memory (TM) allows arbitrary multiple memory locations to
be updated atomically

Thread 1 Thread 2

| ofif) aciior Thread 1's ojin) zction Thread 2 sees either
UoF: 2 aceesses and C =G “all” or “none” of

r"_g g updates to A, B, C A=A+20 Thread 1's updates

are atomic
el ‘

4
#’

lasm mechanlsms

"« |solation; Track read and writes, detect when conflicts occur
* Version management: Record new/old values
e Atomicity: Commit new values or abort back to old values

end xaction

.

Copyright © 2005, Intel Corporation 3

Problem: Lock-Based Synchronization

~ NSVt N
FEAGITESS

e Soitware engineering problems
U Lock-based programs do not compose
=@ Performance and correctness tightly coupled
[f‘v?_,;'Tim;ing dependent errors are difficult to find and debug

W
~ = Performance problems

)y o High performance requires finer grain locking

o M@fe and more locks add more overhead

[Need a better concurrency model for multi-core software}

Copyright © 2005, Intel Corporation

Transactional Memory benefits

* Focus: Multithreaded programmability crisis

= Programmability & performance
=>» Allews conservative synchronization

=¥ Programmer focuses on parallelism & correctness, HW extracts
perfermance

5 Seftware engineering and composability
=» Allowsi lilbrary re-use and composition (locks make this very difficult)

o Critieal fer wide multi-core demand
o Makeshiigh performance MT programming easier
= Captures a fundamental, well-known, intuitive “atomic” construct

o Been around for decades

o Similar to a “critical section” but without its problems
=»No deadlocks, priority inversion, data races, unnecessary serialization

Copyright © 2005, Intel Corporation

Software Transactional Memory

o Software Transactional Memory (1995 until now)
o Significant work from Sun, Brown, Cambridge, Microsoft

5 Serious performance limitations
=»Degrades “common” case of no conflicts/contention
=»>900% of transactions are no conflicts

— 90% of critical sections are uncontended: what if all these slowed
down by 5X?

E Serlous deployabllity limitations
“=yRelies on special runtime support
=» Invasive to applications and libraries
o [s STM is too slow and too invasive to deploy?
=» Could there be better implementation?
=»But great to understand complex usage models of the future

Copyright © 2005, Intel Corporation

Hardware Support for Performance

begin_xaction 1. Record recovery state
A.withdraw(20) 2. Buffer updates/track accesses
B.deposit(20) 3. Commit if no external access (discard

end_xaction all updates if conflict)

begin_xaction
Sum =

A.sum + B.sum
end_xaction

Archhi'tectur'a'l Memoery state Coherence protocol
' J for conflicts
A.sum = 80 ,VA.sum =100
>~ A <
B.sum =220 Bsum = 200
) 8
IR « W
[Core 2 sees $300 — never $280 or $320 J" 2
N

Copyright © 2005, Intel Corporation

What 1f HW Is not sufficient?

 This s the deployability challenge
o Tihe missing piece of the puzzle for all prior work...

o Reseurce limitations are fundamental

- & Space: caches
=y More HW delays the inevitable: will always be an n+1 case

= Jume: scheduling quanta
=» Programmers have no control over time

o Afiects functionality, not just performance
=» SOme transactions may never complete
o Making HW limit explicit is difficult
o Limited usage only
o Unreasonable for high level languages
o How do you architect it in an evolvable manner?

Copyright © 2005, Intel Corporation

Virtualize for Completeness

Timer interrupts,

Context switches, virtual address space
Exceptions,...

Virtual TM

Out-of-band concurrency control

OVerioWANEREGEIEN rogiamimeRiiciiSioeiEn

Usiirlg virtual memory fforrriznice isolaior)

Sofiwere [19s, el glereeo)efss

Copyright © 2005, Intel Corporation

Recent TM Research

 Recently, focus on solving the harder problem of TM

o Making the model immune to cache buffer size limitations,
scheduling limitations, etc.

* JICE (Stanford) (2004)

o Same limitation as Herliny/Moss for TM (size limited to local caches)

o [STMRMIT), VAIM (Intel), LogTM (Wisconsin) (2005)

o Assume hardware TM support
o Add support to allow transactions to be immune to resource limitations
"= Goals of each similar, approaches very different
=»L TM: only resource overflow

=V TM: complete virtualization
=»LogTM: only resource overflow

10

Copyright © 2005, Intel Corporation

Some Research Challenges

e |arge transactions

* |Language extensions

* |O, leophole, escape hatches, ...
* |nateraction and co-existence with

o Other synchronization schemes: locks, flags, ...

5 Other transactions
=» Database transaction
=¥ System transaction (Microsoft)

o @ther libraries, system software, operating system, ...

* Performance menitor, tuning, debugging, ...
* Open vs Closed Nesting
* |nteraction between transaction & non-transaction

 Usage & Workload
o PLDI workshop

Copyright © 2005, Intel Corporation

11

Copyright © 2005, Intel Corporation

12

TM - First Decade

IBMi 801 Database Storage (1980s)

o JLeck attribute bits on virtual memory (via TLBs, PTES) at 128 byte
granularity

Fead-Ltinked/Stere Conditional (Jensen et al. 1987)
- & Optimistic update of single cache line (Alpha, MIPS, PowerPC)

sirarsactional Viemory (Herlihy&Moss 1993)
= Coined term; TM generalization of LL/SC
E Instructlons explicitly identify transactional loads and stores

o Used dedicated transaction cache
=» Size of transactions limited to transaction cache

Oklalhema Update (Stone et al./IBM 1993)

= Similar to TM, concurrently proposed
o Didn’t use cache but dedicated monitored registers to operate upon

Copyright © 2005, Intel Corporation 13

	Transactional Memory �
	Motivation
	What is Transactional Memory?
	Problem: Lock-Based Synchronization
	Transactional Memory benefits
	Software Transactional Memory
	Hardware Support for Performance
	What if HW is not sufficient?
	Virtualize for Completeness
	Recent TM Research
	Some Research Challenges
	Backup
	TM – First Decade

