Coordinated Architecture – Multi-Physics Modeling and Reliability Analysis

William Song, Saibal Mukhopadhyay, and Sudhakar Yalamanchili School of Electrical and Computer Engineering Georgia Institute of Technology

Microarchitecture and Physics Interactions

- Multi-physics modeling:
 - Workload dynamics

Architecture-Level Modeling

- Single phenomenon Modeling (conventional):
 - Power modeling:
 - Circuit-level breakdown (i.e., functional units)
 - Measurement-based regression models
 - Thermal impacts? Process variation?
 - Thermal modeling:
 - Package-level analysis (i.e., differential equations)
 - Source-layer floorplanning
 - Temperature-power interactions? Performance impacts?
 - Reliability modeling:
 - Device-level characterization (i.e., NBTI)
 - Turbo boosting/core? Race/idle computing?
- + Dynamic control techniques:
 - DVFS
 - Power gating
 - Thread migration

Coordinated Architecture Modeling

• Abstract representation of *Microarchitecture-Physics Interactions*:

Proposed Architecture Simulation Framework

- Energy Introspector (EI):
 - Compatibility:
 - <u>Integration of various C/C++ models</u> already (or being) developed, validated by different research groups.
 - Usability:
 - Model-independent *interface* and handy *user functions*.
 - Flexibility:
 - <u>Adaptation</u> to different microarchitecture, technologies, and designs.
 - Coordination:
 - Interactions between integrated models.
 - Scalability:
 - Large core-count processor modeling.

Microarchitecture Modeling

- Scalable simulation framework:
 - *Parallel, scalable architecture simulation* via MPI implementations.
 - o <u>Structural Simulation Toolkit (SST)</u> from Sandia National Labs
 - o Manifold from Georgia Tech

Microarchitecture Breakdown

- Microarchitecture characterization:
 - Statistics (i.e., performance counts) are collected at functional architecture blocks (*sources in El term*).
 - Collected statistics are used in the EI to characterize switching activities and compute energy (and power) and reliability (i.e., failure probability).

Calculation of Physical Phenomena

- Physics characterization is via conventional models.
- BUT, the calculations are based on *transient data* dynamically updated via *runtime simulation* (vs conventional trace-driven or offline modeling).
- <u>Coordination problem</u>:
 - *Switching activities* are characterized via microarchitecture simulation.
 - *Energy (or power)* is calculated at basic functional blocks (i.e., circuit-level or block-level granularity).
 - *Temperature* is computed at the package-level.
 - *Reliability* may be characterized at block or floorplan levels.

Abstract Representation of Processor Hierarchy

 Processor is modeled as *a hierarchical tree of <u>pseudo</u>* <u>components</u> that represents processor components at different levels.

Revisiting Coordinated Architecture Modeling

A number of combinations/options to select from each modeling pool.

Library Models

- Similar models are grouped into the same *library*.
 - C++ subclassing, virtual functions, etc.
- The Interface does not handle input parameters.
 - $\circ~$ The wrapper class handles input parsing via gcc libconfig.

Overview of Energy Introspector

MPI-based Multi-Process Simulation

- Single-threaded simulation of architecture simulation is practically limited to a few cores.
- *MPI*-based implementation enables scalable simulation.
- Architecture simulators and Energy Introspector run on *multiple MPI ranks*.
- Energy Introspector spawns server threads that wait for client node requests.

Application of Coordinated Architecture Simulation to Reliability Analysis

Race-to-Idle Execution and Reliability

- Race
 - The execution of a core is *boosted* for a short period of time to *increase performance*.
 - Performance improvement is traded with *increased power and heat dissipation* and *accelerated degradation*.
- Idle
 - Idle period following the race *mitigates increased temperature and failure rate*.
 - *Leakage energy is saved* by turning off cores.
- Reliability is believed to be worse for race-to-idle than normal executions?

Simulation Setup

• 64-core Asymmetric Chip Multiprocessor:

Scheduler				Frontend			ос		ос			ос			ос		
Units			Units			ю	ю	ю	IC	IC	IC	ю	ю	ю	ю	IC	ю
OUT-ORDER CORE				L1 \$ & LD/ST Units			ос		ос		ос		ос				
Execution Units						IC	IC	IC	ю	ю	ю	IC	IC	ю	ю	ю	IC
	DER (IC)	pua	L1 \$ LD/ST Units	Frontend Jtion Its			ос			ос			ос		ос		
IN-ORD		Fronte			Execution Units		IC	ю	IC	IC							
CORE (L1 \$		L1 \$ Å & LD/ST Units			X			ос		ос			ос		
		& LD/ST Units					IC	ю	IC								
RTI-EXEC SET 0 RTI-EXEC SET 1 RTI-EXEC SET 2 RTI-EXEC SET 3																	

TABLE I. EXPERIMENT CONFIGURATION FOR COORDINATE ARCHITECTURE SIMULATION

Configuartion	Description								
Simulator	Manifold 64-core simulation [2]								
Benchmarks	Multi-programmed execution of SPEC2006 suite								
Cores	Out-of-order	In-order							
Core counts	16	48							
Issue width	4	1							
Reorder buffer size	128	N/A							
L1 Cache	4-way assoc, 64-byte line, 32KB size								
L2 Cache	8-way assoc, 64-byte line, 256KB size, private L2								
Voltage/frequency levels	0.8V/2.0GHz for NE, 1.2V/4.0GHz for RTI								
Feature size	16nm technology projection to ITRS guideline								

Failure Probability Modeling

- Failure rates computed with 1) <u>NBTI</u>, 2) <u>TDDB</u>, 3) <u>HCI</u>, 4) <u>electro-migration</u>, 5) <u>thermal cycling</u>, 6) <u>stress migration</u>.
 - *Exponential distributions* with 6 failure mechanisms are used to calculate runtime failure probability.

$$P_{total}(t) = 1 - P_0 \prod_{i=1}^{n} \prod_{r \in \text{Risks}} \left(\begin{array}{c} 1 - P_r(t_i - t_{i-1}) \\ |C_i(T_i, F_i, V_i, A_i, G_i) \end{array} \right)$$

- Each exponential curve is *fitted to be equally likely* at the target condition (i.e., 3.0GHz, 65°C operation, etc.)
- Operation conditions (i.e., temperature, frequency, etc.) are dynamically adjusted via coordinated architecture simulation.

Transient Failure Probability of Race-to-Idle

- Periodic race-to-Idle compared with continuous normal execution.
- <u>x 1</u>0⁻¹¹ Race-to-Idle Exec Normal Exec Failure Probability **Continuous Race** IDLE RACE IDLE 2 RACE 20 80 40 60 100 Time [ms] 6<u>× 10</u>⁻¹² Failure Probability SM TC. TDDB NBTI 0 20 40 60 80 100 Time [ms]
- Breakdown of each failure mechanism.
- Dominance of failure mechanisms depends on operation condition.

Race / Idle Time Balancing

- Finding a good ratio of race/idle periods:
 - Race-to-idle execution is controlled such that the failure probability is equalized to pre-generated failure probability of normal execution.

Summary

 Architecture modeling and analysis have become more complicated and need coordinated infrastructure for future designs.

