
pMem- Achieving Dual Benefits of
PCM/NVM by Reducing Persistence
Overheads

Sudarsun Kannan, Ada Gavrilovska, Karsten
Schwan

Motivation

Growing number of end client apps
E.g., Webstore -33 million users. ~1 Million apps

Lots of Data-intensive applications
Picasa, Digikam, Facebook, Face/Voice recognition etc.

Increasing number of cores and multi-threaded applications

Effective memory capacity + persistent storage bottlenecks
- MDRAM has limited scalability
- External flash ~4- 16 MB/Sec (FAST' 11, Kim et al.)

Motivation - Memory Capacity

MotivationMotivation - Memory Capacity

Byte addressable storage?
NVM technologies like PCM

Byte addressable and persistent
2X-4X higher density compared to DRAMs
100X faster compared to SSDs
Less power due to absence of refresh
Byte addressability - (Can be connected across
memory bus and accessed with load/stores)

Limitations:
Hight write latencies compared to DRAMS

(4X - 10X slower around a microsec)
Limited endurance (approx. 10^8 writes/cell)
Limited bandwidth: interface and device bottlenecks

Prior Work: DRAM as Cache

Processor
Cache

 PCM Volatile
 DRAM Page
 Cache

APP

Good for high end server

Prior Work: Fast Non Volatile Heap

Processor
Cache

PCM
Persistent

Heap

APP

High Persistence Guarantees:
● Frequent cache flushing, memory fencing, writes to

PCM
● High persistent management overhead

○ (user + kernel layers)

Proposed: Capacity + Persistence

Processor cache plays crucial role in reducing write
latency

● Advantages
○ Dual benefits: Capacity + fast persistence

● Key Idea
○ Use PCM as NUMA node
○ PCM 'Node' partitioned to volatile + persistent heap
○ Applications are provided with suitable interfaces

■ Application control persistent/non persistent data
○ Throw/ stay way from traditional I/O calls

■ Goal: Reduce software interaction (includes OS)

Proposed: Dual Use using pMem

Proposed: Dual Use using pMem

 User level NVM Library

NVM Volatile Manager

-Similar to DRAM manager
-Almost no application state
maintenance

NVM Persistent Manager

APP1 APP2

Per process state across
session

Kernel Layer

 User NVM Library

NVM Volatile Manager NVM Persistent Manager

APP1 APP2

npmalloc()

 NUMA NODE

Proposed: Dual Use using pMem

 User NVM Library

NVM Volatile Manager NVM Persistent Manager

APP1 APP2

pmalloc(ID, size)

 NUMA NODE

Proposed: Dual Use using pMem

Impact on volatile applications

pMem System Structure

pMem Experimental Results

Experimental Method:

● DRAM as NVM with a NUMA node as PCM
● Persistence across sessions avoiding OS to reclaim

pages
● Accounting for NVM read/writes using PIN based

instrumentation
● Hardware counters to understand cache misses
● Also architectural simulations (MACSim)

Experimental Results

Experimental Use cases

Scalability:
Linux Scalability benchmark for paging/allocation

Memory Capacity:
Face recognition, Compression, Crime

Persistence:
Machine learning application to load user

 preferences during browser page time

pMem Paging Performance

pMem Memory Usage
Performance 4%-6% overhead

pMem Persistent Storage

45% Improved I/O compared to SSD
With increasing data, cost of persistence increases
~62% improvement in persistent hashtables

Summary

● Volatile-Persistent heap partitioning
● Idea: Use PCM as persistent NUMA node
● Upto 91% memory capacity benefits
● ~45% faster I/O for end client apps.
● Less that 6%-7% runtime overhead on some apps

But PCM/NVMs are theoretically 100x faster :-)

Persistence Overheads

Processor
 Cache

PCM Persistent Heap

APP
PCM volatile Heap

APP

Persistence requires constant barrier, cache line flushing

Is sharing cache a problem?

Effects of Persistence

Persistent Application: Hashtable with 1M Operations (puts and gets)
Intel Atom : Dual core, 1MB LLC, (8 way, Write Back, Shared LLC)
Persistent and volatile applications pinned to their cores

AddHash_Entry() {
//Fence and Flush log (in PCM).
BEGINTRANS((void *)table,0);
 ++(table->entrycount);

//Fence and flush
e = nvalloc(sizeof(struct entry));

//Fence and flush
BEGINTRANS((void *)e,0);
 e->h = hash(h,k);
 e->k = k;
 e->v = v;
 table->table[index] = e;
//Fence and flush
 COMMIT((void *)e, (void *)table, 0);

Effects of Persistence

AddHash_Entry() {
//Fence and Flush log (in PCM).
BEGINTRANS((void *)table,0);
 ++(table->entrycount);

//Fence and flush
e = nvalloc(sizeof(struct entry));

//Fence and flush
BEGINTRANS((void *)e,0);
 e->h = hash(h,k);
 e->k = k;
 e->v = v;
 table->table[index] = e;
//Fence and flush
 COMMIT((void *)e, (void *)table, 0);

Effects of Persistence

Transactional
overhead

Transactional
overhead

Allocator overhead

Cost of Persistence

● User level Overheads
○ Allocator metadata maintenance
○ Restart/ Recovery Swizzling

● Transactional (Durability) Overheads
○ Logging
○ Substantial code changes
○

● Kernel level Overheads
○ Kernel metadata maintenance
○ Kernel metadata swizzling

Allocator Overhead

Problem: Complex allocator metadata in PCM, High random writes,
 High Cache miss rate

Proposed Allocation
Complex allocator state in DRAM 2 level allocator

Metadata log in PCM
App1

MMAP log
(sequential)

C1 C2 C3

Chunk log - sequential

Insert - O(n)
Lookup- O(log n) + C

baseaddr
length
*dataptr
compartment ID

Proposed Allocation

Reduction in Cache Flush: 8X

Cost of Persistence

● User level Overheads
○ Allocator metadata maintenance
○ Restart/ Recovery Swizzling

● Transactional (Durability) Overheads
○ Logging
○ Substantial code changes
○

● Kernel level Overheads
○ Kernel metadata maintenance
○ Kernel metadata swizzling

Swizzling - Recovery overheads

During Reboot,

Lets say process heap starting address is 2000

hash_s *hashtable = load_entire_hashtable("hashtable_root")

cout << "hashtable ptr << endl;

prints incorrectly 1000, should be >= 2000

Swizzling - Recovery overheads
Normal Execution:

hash_s *hashtable = nvmalloc(size, "hashtable_root");
for each new entry:

entry_s *entry = nvmalloc(size);
hashtable[count] = entry;
count++

cout << "hashtable ptr << endl; prints 1000

SYSTEM CRASH

Traditional Recovery - Serialization

Requires extensive modification of datastructures

Substantial I/O calls, and more OS interaction

Two phase overhead:

1. serialization when saving data
2. deserializationfor recovery
3. kills byte addressability
4. Can increase overhead upto 20% each phase

Prior Work: Swizzling during application execution

Proposed Solution - Lazy Swizzling
○ Lazy/ On demand pointer swizzling

○ Use allocator metadata as history of previous
allocation

○ On restart, when a chunk is accessed, get its stale
pointer value.

○ See if stale pointer is in history (allocator log)

○ If yes, map the state pointers to get new virtual
address

○ Convert the old state pointer to new pointer

Proposed Solution - Lazy Swizzling

 h = (struct hashtable *)nvalloc_("root_hash");

for each entry in hash:

 LOADNVPTR(&key);
 LOADNVPTR(&value);

Benefits:
● No serialization of pointers required during commit
● Application decides what to load during restart
● Multiple level of pointer can be recovered
● Less than 10 % performance overhead during restart

Constant Virtual address

○ Use same virtual address across sessions

○ No requirement of pointer swizzling

○ Requires static partitioning of NVM/PCM

Cost of Persistence

● User level Overheads
○ Allocator metadata maintenance
○ Restart/ Recovery Swizzling

● Transactional (Durability) Overheads
○ Logging
○ Substantial code changes
○

● Kernel level Overheads
○ Kernel metadata maintenance
○ Kernel metadata swizzling

Durability overheads - Logging types
Log every write (in PCM) to overcome failures

Undo Logging

● Create a log, and copy the original data to log
● Modify the data in-place
● Upon failure before commit, restore stable log version
● Problems

○ Two writes for every single write
○ Random Writes

Durability overheads - Logging types
Write Ahead logging (most favoured and widely used)

● Create log and write sequentially to log
● When log fills up, log committed to original data

● Problems
○ Usually for heaps, every word is logged
○ High Log Metadata/ Log Data overhead
○ Metadata: 24bytes even for 8 bytes
○ Substantial Code changes

Prior Work: Word based or Object based logging

Write Ahead logging (WAL) in Heap

 i = (unsigned int)LOAD(&h->entrycount);
 STORE(&h->entrycount, i++);

 if (LOAD(&h->entrycount) > h->loadlimit)
 {
 hashtable_expand(h);

 }
 e = (struct entry *)nvmalloc(sizeof(struct entry));

 STORE(&e->h, hash(h,k));
 STORE(&e->v, v);
 STORE(&e->next, h->table[index]);
 STORE(&h->table[index], e);

 COMMIT;

Proposed: Hybrid logging Heap
● Using only Word or Object based logging granularity not

optimal (Why?)

● Combine Object and Word based logging with Undo
Logging

● Maintain separate Object and Word based logs

● Object based log: Less Log Metadata/ Log Data
ratio

● Word based log: Convenient for small changes (e.g.,
hash entry count)

Benefits: Hybrid logging Heap

For Object based undo logging, easy dirt checking
● e.g, first time inserts

Object based allocator metadata used also for logging

No separate log metadata is required

Benefits: Hybrid logging Heap

Summary

Goal to reduce persistence overheads
Cache efficient NVM allocator
Lazy pointer swizzling to reduce serialization cost
Less than 10% swizzling overhead
Novel hybrid logging (Object + Word)
Improved I/O performance by 63%

More opportunities:
Reducing Kernel Overheads
Compiler optimizations

Questions / Comments

Thanks!

