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Motivation

Growing number of end client apps
E.g., Webstore -33 million users. ~1 Million  apps

Lots of Data-intensive applications 
Picasa, Digikam, Facebook, Face/Voice recognition etc. 

Increasing number of cores and multi-threaded applications

Effective memory capacity + persistent storage bottlenecks 
- MDRAM has limited scalability
- External flash ~4- 16 MB/Sec (FAST' 11, Kim et al.)



Motivation - Memory Capacity
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Byte addressable storage?
NVM technologies like PCM 

Byte addressable and persistent 
2X-4X higher density compared to DRAMs 
100X faster compared to SSDs
Less power due to absence of refresh
Byte addressability - (Can be connected across 
memory bus and accessed with load/stores)

Limitations:
Hight write latencies compared to DRAMS 

(4X - 10X  slower around a microsec)
Limited endurance (approx. 10^8 writes/cell)
Limited bandwidth: interface and device bottlenecks



Prior Work: DRAM as Cache
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Good for high end server



Prior Work: Fast Non Volatile Heap

Processor 
Cache

PCM 
Persistent 

Heap 

APP

High Persistence Guarantees:
● Frequent cache flushing, memory fencing, writes to 

PCM
● High persistent management overhead 

○ (user + kernel layers) 



Proposed: Capacity + Persistence

Processor cache plays crucial role in reducing write 
latency



● Advantages
○ Dual benefits: Capacity + fast persistence 

● Key Idea
○ Use PCM as NUMA node
○ PCM 'Node' partitioned to volatile + persistent heap 
○ Applications are provided with suitable interfaces

■ Application control persistent/non persistent data
○ Throw/ stay way from traditional I/O calls

■ Goal: Reduce software interaction (includes OS)

Proposed: Dual Use using pMem
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    User level NVM  Library

NVM Volatile Manager

-Similar to DRAM manager 
-Almost no application state 
maintenance

NVM Persistent Manager

APP1 APP2

Per process state across 
session

Kernel Layer



    User NVM  Library

NVM Volatile Manager NVM Persistent Manager

APP1 APP2

npmalloc()

   NUMA NODE

Proposed: Dual Use using pMem



    User NVM  Library

NVM Volatile Manager NVM Persistent Manager
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pmalloc(ID, size)

   NUMA NODE

Proposed: Dual Use using pMem



Impact on volatile applications

pMem System Structure



pMem Experimental Results

Experimental Method:

● DRAM as NVM with a NUMA node as PCM
● Persistence across sessions avoiding OS to reclaim 

pages
● Accounting for NVM read/writes using PIN based 

instrumentation
● Hardware counters to understand cache misses
● Also architectural simulations (MACSim)



Experimental Results

Experimental Use cases

Scalability: 
Linux Scalability benchmark for paging/allocation  

Memory Capacity: 
Face recognition, Compression, Crime

Persistence: 
Machine learning application to load user  

     preferences during browser page time



pMem Paging Performance



pMem Memory Usage
Performance 4%-6% overhead 



pMem Persistent Storage

45% Improved I/O compared to SSD
With increasing data, cost of persistence increases
~62% improvement in persistent hashtables



Summary

● Volatile-Persistent heap partitioning 
● Idea: Use PCM as persistent NUMA node
● Upto 91% memory capacity benefits
● ~45% faster I/O for end client apps.
● Less that 6%-7% runtime overhead on some apps

But  PCM/NVMs are theoretically 100x faster  :-)



Persistence Overheads

Processor    
   Cache

PCM Persistent Heap 

APP
PCM volatile Heap 

APP

Persistence requires constant barrier, cache line flushing 

Is sharing cache a problem?



Effects of Persistence 

Persistent Application:  Hashtable with 1M Operations (puts and gets)
Intel Atom : Dual core, 1MB LLC, (8 way, Write Back, Shared LLC)
Persistent and volatile applications pinned to their cores



AddHash_Entry() {
//Fence and Flush log (in PCM). 
BEGINTRANS((void *)table,0);
 ++(table->entrycount);

//Fence and flush
e = nvalloc(sizeof(struct entry));

//Fence and flush
BEGINTRANS((void *)e,0);
     e->h = hash(h,k);
    e->k = k;
    e->v = v;
    table->table[index] = e;
//Fence and flush 
 COMMIT((void *)e, (void *)table, 0); 

Effects of Persistence
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Transactional 
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Cost of Persistence

● User level Overheads
○ Allocator metadata maintenance
○ Restart/ Recovery Swizzling

● Transactional (Durability) Overheads 
○ Logging
○ Substantial code changes
○

● Kernel level Overheads
○ Kernel metadata maintenance
○ Kernel metadata swizzling



Allocator Overhead

Problem:  Complex allocator metadata in PCM, High random writes, 
        High Cache miss rate



Proposed Allocation
Complex allocator state in DRAM 2 level allocator

Metadata log in PCM
App1

MMAP log
(sequential)

C1 C2 C3 ..... ....

Chunk log - sequential

Insert  - O(n)
Lookup- O(log n) + C

baseaddr
length
*dataptr
compartment ID



Proposed Allocation

Reduction in Cache Flush: 8X



Cost of Persistence

● User level Overheads
○ Allocator metadata maintenance
○ Restart/ Recovery Swizzling

● Transactional (Durability) Overheads 
○ Logging
○ Substantial code changes
○

● Kernel level Overheads
○ Kernel metadata maintenance
○ Kernel metadata swizzling



Swizzling - Recovery overheads

During Reboot,   

Lets say process heap starting address is 2000

hash_s *hashtable =  load_entire_hashtable("hashtable_root")

cout << "hashtable ptr << endl; 

prints incorrectly 1000, should be >= 2000



Swizzling - Recovery overheads
Normal Execution:

hash_s *hashtable  = nvmalloc( size, "hashtable_root");
for each new entry:

entry_s *entry = nvmalloc( size);
hashtable[count] =  entry;
count++ 

cout << "hashtable ptr << endl;  prints 1000

SYSTEM CRASH



Traditional Recovery - Serialization

Requires extensive modification of datastructures

Substantial I/O calls, and more OS interaction

Two phase overhead:

1. serialization when saving data
2. deserializationfor recovery
3. kills byte addressability
4. Can increase overhead upto 20% each phase

Prior Work: Swizzling during application execution



Proposed Solution - Lazy Swizzling
○ Lazy/ On demand pointer swizzling

○ Use allocator metadata as history of previous 
allocation

○ On restart, when a chunk is accessed, get its stale  
pointer value.

○ See if stale pointer is in history (allocator log)

○ If yes, map the state pointers to get new virtual 
address

○ Convert the old state pointer to new pointer



Proposed Solution - Lazy Swizzling

   h =   (struct hashtable *)nvalloc_("root_hash");
  

for each entry in hash:

       LOADNVPTR(&key);
       LOADNVPTR(&value);
 

Benefits:  
● No serialization of pointers required during commit
● Application decides what to load during restart
● Multiple level of pointer can be recovered
● Less than 10 % performance overhead during restart



Constant Virtual address

○ Use same virtual address across sessions

○ No requirement of pointer swizzling

○ Requires static partitioning of NVM/PCM



Cost of Persistence

● User level Overheads
○ Allocator metadata maintenance
○ Restart/ Recovery Swizzling

● Transactional (Durability) Overheads 
○ Logging
○ Substantial code changes
○

● Kernel level Overheads
○ Kernel metadata maintenance
○ Kernel metadata swizzling



Durability overheads - Logging types
Log every write (in PCM) to overcome failures

Undo Logging

● Create a log, and copy the original data to log
● Modify the data in-place
● Upon failure before commit, restore stable log version 
● Problems

○ Two writes for every single write 
○ Random Writes 



Durability overheads - Logging types
Write Ahead logging ( most favoured and widely used )

● Create log and write sequentially to log
● When log fills up, log committed to original data

● Problems
○ Usually for heaps, every word is logged
○ High Log Metadata/ Log Data overhead
○ Metadata: 24bytes even for 8 bytes
○ Substantial Code changes

Prior Work: Word based or Object based logging



Write Ahead logging (WAL) in Heap

 i = (unsigned int)LOAD(&h->entrycount);
 STORE(&h->entrycount, i++);

 if (LOAD(&h->entrycount) > h->loadlimit)
 {
     hashtable_expand(h);

 }
 e = (struct entry *)nvmalloc(sizeof(struct entry));

 STORE(&e->h, hash(h,k));
 STORE(&e->v, v);
 STORE(&e->next, h->table[index]);
 STORE(&h->table[index], e);

 COMMIT;



Proposed: Hybrid logging Heap
● Using only Word or Object based logging granularity not 

optimal (Why?)

● Combine Object and Word based logging with Undo 
Logging

● Maintain separate Object and Word based logs

● Object based log:  Less  Log Metadata/ Log Data 
ratio

● Word based log:  Convenient for small changes (e.g., 
hash entry count)



Benefits: Hybrid logging Heap

For Object based undo logging, easy dirt checking
● e.g,  first time inserts

Object based allocator metadata used also for logging

No separate  log metadata is required



Benefits: Hybrid logging Heap



Summary

Goal to reduce persistence overheads
Cache efficient NVM allocator
Lazy pointer swizzling to reduce serialization cost
Less than 10% swizzling overhead
Novel hybrid logging (Object + Word)
Improved I/O performance by 63%

More opportunities:
Reducing Kernel Overheads
Compiler optimizations



Questions / Comments 

Thanks!


