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Scalable Simulation Frameworks
Sudhakar Yalamanchili, George Riley, Tom Conte, Hyesoon Kim
and many students....
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Modeling and Simulation Demands
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Complexit :
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Scope
m System complexity is outpacing simulation capacity
= Cannot perform analysis at scale
m The problem is getting worse faster - Simulation Wall
m Islands of simulators and simulation systems
= Customized interactions
= Difficult to leverage individual investments
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Prioritized Major Challenges*

1. Cost of building a validated useful simulator
= Composable
= New methodologies for building simulators

Accuracy
= Need for calibrated models
= Methodologies for constructing calibrated models

3.  Performance
m  Parallelism, multiscale, and hardware acceleration
4. Power and thermal models
5. Ease of use: Productivity and Management Tools

= Visualization, deployment, debugging, etc.
= Documentation & deployability

n

*From Outbrief: Performance Prediction and Simulation for Exascale Interconnection Networks, (Co-Chairs C.
Janssen (SNL) and S. Yalamanchili (GT) Interconnect Workshop, DoE Institute for Advanced Architectures, July
2008
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Spectrum of Solutions

Highest performance
L t perfc ”
aWiZVf:st IZ‘ZZf e Highest cost
Software
siﬁiﬁggﬁs. Simulation: Accelerated FPGA-Based Custom
single node Parallel Simulation Prototyping  Prototyping
(e.g., SIMICS) (e.g., Manifold, (€9, FAST) (e.g., RAMP)
COTSon)

nSimple Premise: Use parallel machines to simulate/emulate
parallel machines

mLeverage mature point tools via standardized API for
common services
= Event management, time management, synchronization

m Support Sandia’s Structural Simulation Toolkit (SST)
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Coarse Grain Parallel Simulation
Example Modeled System
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Logical
process

Key Challenges

1. Exploit program semantics

2. Exploit architecture
behaviors

event
messages

1. D.Burger and D. Wood, “Accuracy vs. Performance in Parallel Simulation of Interconnection Networks”, /CPP 1995
2. A. Falcon P. Faraboschi D. Ortega, “An Adaptive Synchronization Technique for Parallel Simulation of Networked Clusters,”
ISPASS, 2008

3. Parallel SST, SNL
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Separation of Timing and Functionality

QEMU Timing Model
IPC
Machin ™
achine State 1O Times - \
| Pipeline )
" ‘\ Code Cache | Events - Mem. Hierarchy
) _ i Imn Network
et e Disk S
Main Loop [T | Inst. Events ot
== ™
=l -
Instructions
L | |
=Data Flow .
~Control Flow! Mem. Ops

= Granularity of the timing model & time synchronization
= Sampling interface

= Direct interface into the code cache

= Timing model feedback

= Synchronized advance of functional and timing models rather than
roll-back and recovery

= Modeling 1/0
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M a.n IfO | d Exe C u t| 0 n M 0 d e I NSF Manifold: S. Yalamanchili, T. Conte, G. Riley

Non-timing API

Kernel — Component AP| I

Manifold Kernel Manifold Kernel
Inter- KemelAPl

Core 0 Corel
s Components, virtual machines, models, and logical
processes

mScalable parallel kernel to manage progression of time
mAPIs = key to integrating mature point tools
m Introspector API not shown (later)
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Extensions to the Core Framework

Interface to Thermal Models (/0//71‘ with S. Mukhopadyay)
‘
£ h

GPGPU Moa’e/s (H. K/m)

mpmP|mP|mP

Texture
DRAM jinterconnect l DRAM
Texture

MP MW MP

Manifold Kernel
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Ocelot: Dynamic Execution Infrastructure

PTX Emulation
m\d
“""’ -PTX 1.4 compliant Emulation

NVIDIA Virtual ISA - « Validated on full CUDA SDK
PTX Kemel Ociiot s P Triistagir * Open Source version released
(G. Diamos and A. Kerr)
) GPU Execution

w2y
a:"'-;;: Vector (SSE) and AMD

backends are in progress
NVIDIA GPU
wm LLVM Translation \w\

I inter-thread loads / Id.shared
1 Id.shared / dynamic instructions |
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Simulating the Tesla Architecture — MACSIm

(H. Kim)

Host
Input Assembler

Thread Execution Manager

| | OO0 EO|Ec
I ) [ [ dojacHooisc
| | OO0 EO|Ec
] ] [ | | o] o]

Parallel Dataj | Parallel Data| | Parallel Dataj | Parallel Data] JParallel Data| | Parallel Datal
Cache Cache Cache Cache Cache Cache

Load/store Load/store Load/store Load/store Load/store Load/store

Global Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, UIUC
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MACSIM’s GPU SM Core
Streaming Processor Array
TPC TPC TPC oo TPC TPC TPC
No model yet
Modeled as a
regular cache / -
exture Processor Cluster Streaming Multiprocessor
SM | Instruction Fetch/Dispatch |
N | Shared Memory |
TEX
sm
SFU SFU

[
Coordinated Power and Thermal Modeling

S. Mukhopadhyay(ECE), S. Kumar(ME), and S. Yalamanchili(ECE)

m Scope of architecture simulation has changed
mNeed on-line (simulation) analysis of performance, power,
and thermal behaviors

= Architectural techniques for energy management driven by on-line
analysis of the thermal field

mNeed to couple physics of heat flow with detailed
architecture simulation

= System energy optimization requires trade-offs between compute
energy and cooling energy

= Coupling these models is a challenge!

S. Mukhopadhyay's work was supported in part by Intel and a I1BM Faculty Partnership Award
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Modeling and Simulation Challenges
(a) Ve-k:city Vectors A

= How do you couple different

simulation models?
i K g n Differing physical time scales
Chip

e = Reduced order

| —

S. Kumar computational techniques

Termgpara
Gradisnt

= How do we model coordinated
mechanisms in a single
environment?

= Time management

= What interfaces do we provide?

= Manifold/SNL API
xtensions?

S. Yalamanchili . Actlve core I:l Inactive core
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Introspector API

= An Introspector is a pseudo component that monitors a set of model
components

= An Introspector provides a uniform interface to physical properties of
of a monitored component

Architecture Timing Simulator

Core Core Core Introspector

Cache Cache Dababase #

| Core Introspector D | Power Models

Dababase Cacti

Core Core Core Introspector

| Core Introspector

, Access Counts

- > Panalyzer
Dababase

Uncore Introspector

-

Power Parameters

Results (e.g., Power, Area)

External Interfaces

Graphic Interface

Thermal Analysis
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Introspector Functionality: Example

= Timing simulator reports the access counts of the components to the

Introspector
= User selected models

= The Introspector records energy values based on selected models

Thermal Analysis
Graphic Interface

=
@
5|2
3 3 -
o nt Statistics
2 3 (Power, Energy, Temperature, etc.)
g B
2
2
Introspector Dynamic Power
Timing Simualtor Access Counters @ Report Cycle Leakage Power
gCore @ Report Cy Dababase Power Models
Computation ™
Power Parameters

*_Status:
* v0.9 completed and under test
e * Validation studies

Timingciirr:uallor Access Counters @ Report Cycle ‘ Off-“ne Ilnk tO HOtSDOt
Computation
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Interactions
(e.g., Thread migration, parallel simulation)

suonoesau|

Unmanaged Thermal Behavior Managed Thermal Behavior
(multiplexed power)

Spatial gradient:
10.5°@0.75mm

Temporal gradient:
2.5°@100Kcyles

Spatial gradient:
2.5°@0.75mm

Temporal gradient:
1.99°@100Kcyles

750 75°
700 70°
*64 on-tiles
*256 total tiles
*100K time slice
interval @3GHz
- 45°
?"0 ms Courtesy: Nikil Sathe E Sb ms
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Some Research Problems

= Integrating interconnection and memory subsystems
= #memory controllers, address space mappings, routing, topology

mEnergy management (with S. Mukhopadhyay)
= Application signatures = runtime management
= Integration of non-volatile memory technologies
m Integrated package-level power and thermal management

mAlgorithm-architecture analysis
= Data mining and (fast) model construction

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | GEORGIA INSTITUTE OF TECHNOLOGY CASL 17

[
Concluding Remarks

m Integration with Sandia SST in Q4/2010
m X86 processor models
m Execute code generated by stock compilers and boot (version) Linux

mKeep simulation capacity scaling with Moore’s Law
m Coordinated with the Manifold Project (NSF)

m A focus on validation infrastructure in 2011
= Leverage the GreenlT infrastructure
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Thank You
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