
HyVM – Hybrid Virtual 
Machines
Ada Gavrilovska
Karsten Schwan

Sudha Yalamanchili

and many PhD students



Research Context
Future server and web applications
- Web: media-rich content => increasing computational needs
- Server: financial applications, critical enterprise codes, GPU-

supported database codes 

Heterogeneous Multicore Platforms (Hybrid Systems)
- off- and on-chip heterogeneous cores
- rich memory hierarchies

New Execution Models
- dynamic parallelism, e.g., in cloud computing
- data-intensive codes, e.g., MapReduce



Future Applications
Media and image 
processing:
• for dynamic web content
• ‘Snapfish‐like’
imaging
suite

Science and gaming:
• Fusion modeling
• Ray tracing
• High perf. I/O
• LAPACK,
BLAS, VSIPL, …

Financial and risk analysis:
• Black Scholes
• Risk Analysis
• Derivatives processing

Data‐intensive and web:
• Critical enterprise codes
• Data‐intensive codes
• Sensor data processing



Heterogeneous Platforms
• Asymmetries:

– Performance
• Different clock speeds, duty cycles
• Differing issue widths
• Varying cache sizes

– NUMA memory, NUCA caches
• Functional differences:

– Multiple accelerators: 
• GPU, Communications, Encryption, …

– Shared ISA:
• Missing SSE version
• Missing floating point
• Additional instructions for acceleration (Larrabee, …)



HyVM Approach

• Treat all hardware execution units as processors 
- PCPUs

• Distinguish ‘heterogeneous’ from ‘asymmetric’
(shared ISA) cores
– aCPUs, sCPUs, CPUs, …

• Create a software platform capable of exporting 
hybrid CPUs to VMs:
– HyVM – Hybrid Virtual Machines: 

• supported by heterogeneity- and asymmetry-aware 
hypervisors



HyVM Project Elements
Attaining the uniform HyVM execution model

– Leveraging virtualization technologies:
• Virtual Execution Units (VEUs)

– Finer grain schedulable entities than VCPUs
• Specialized execution environments (SEEs) for accelerators

– GViM for efficient GPU virtualization
– Earlier work on Cell processor creating our own SEE

• Dynamic resource management for sets of VEUs (SLA-
awareness, runtime monitoring)

– Coordinated scheduling for accelerators – VMaCS
– InTune - system abstractions for coordinated management
– Cache-centric ‘region’ scheduling + correlation 

scheduling for shared ISA VEUs
– Addressing NUMA properties
– Remote execution - `Keeneland’ extension

• Future hypervisors (using Xen): fully asymmetry- and 
heterogeneity-aware (e.g., using Ocelot)



HyVM Project Elements

– Emulated platform: leveraging evolving industry standards 
for accelerator APIs and interactions:

• Tool chain support for CUDA => LLVM/PTX translation, with 
future work on OpenCL – Ocelot

• Runtime APIs at CUDA level - GViM
– High performance:

• Exploiting compiler methods to optimize execution regimes 
for sets of VEUs – Harmony

• Scheduling via on-line performance models and dynamic 
code generation for GPU vs. Host ISAs Ocelot/LLVM

– New opportunities: 
• Analysis tools for debugging and performance tuning via 

emulation Ocelot++
• Exploring new programming models - Datalog to GPU 

compilation



GPUGPU CPUCPU sCPU (Shared ISA)sCPU (Shared ISA)Emulated GPUEmulated GPU

GPUGPU CPUCPU sCPU (Shared ISA)sCPU (Shared ISA)CPUCPU

Virtual Machine Monitor + Management DomainVirtual Machine Monitor + Management Domain

Physical Platform

Simple GuestSimple Guest

VCPUVCPUVCPUVCPU
Virtual Platform

Platform 
interactions

Enhanced GuestEnhanced Guest

VCPUVCPUVCPUVCPU
Virtual Platform

Cooperative export/use 
of platform information

sVCPUsVCPUaVCPUaVCPU

Homogeneous 
View

Heterogeneous 
View

Spectrum of Exported Heterogeneity



CK1

DataIn

DataOut

Virtual Execution 
Unit (VEU)
Virtual Execution 
Unit (VEU)

Executable CodeExecutable Code

State

CK1

DataIn

CK2
CK3

CK4

CK5

DataOut

DataIn

Virtual Execution 
Unit (VEU)

Virtual Execution 
Unit (VEU)

Executable CodeExecutable Code

State

Virtual Execution 
Unit (VEU)

Virtual Execution 
Unit (VEU)

Executable CodeExecutable Code

State

Virtual Execution 
Unit (VEU)

Virtual Execution 
Unit (VEU)

Executable CodeExecutable Code

State

Virtual 
Execution Unit 
(VEU)

Virtual 
Execution Unit 
(VEU)

Executable 
Code

Executable 
Code

State

OR

Execution 
Model(s)

Data Data

Virtual Execution 
Units (VEUs)
Virtual Execution 
Units (VEUs)

Executable CodeExecutable Code

State

OS 
Structures

GPUGPU CPUCPU sCPU (Shared ISA)sCPU (Shared ISA)Emulated GPUEmulated GPU



Technical Elements – GViM + VMaCS

Dom0Dom0

Hypervisor (Xen)Hypervisor (Xen)

Mgmt 
Extension

GPU 
Backend

Traditional 
Device 
Drivers

General purpose multicoresGeneral purpose multicores

Compute Acc (NVIDIA GPU) Compute Acc (NVIDIA GPU) Traditional DevicesTraditional Devices

VM

GPU Frontend

LinuxGPU Driver

CUDA API
GPU Application

VM

GPU Frontend

Linux

CUDA API
GPU Application

Resource 
Management 

Logic

Polling 
thread(s) 
from 
Backend

Domain request queuesAccelerator ready queues

GViM:
• VEUs on

aVCPUs

VMAcS:
• Management 
Extensions for
Coordinated
Scheduling



GViM and VMaCs – Experimental Evaluation

• Xeon quad-core @3GHz, 3GB RAM
• 2 NVIDIA GPUs G92-450
• Xen, with Fedora guest domains with 512M memory, 

pinned to single cores, some runs with 
• Dom0 with `unlimited’ resources.
• Data sampled over 50runs, typically reporting means 

and standard deviations.



Technical Elements – GViM: Performance 
Implications of Virtualization

Benchmark Timings when running on Multicore Platform: 
all raw CUDA call timings < 60 microseconds

Slower
Faster



Technical Elements – VMaCS
SLA Compliance with Multiple Guests – Need for 

Active Resource Management

Without resource management, calls can be variably 
delayed due to interference from other domain



VMaCS Scheduling

• No coordination:
– Default – GPU driver based – base case
– Round Robin (RR)
– AccCredit (AccC) – credits based on static profiling 

(calibration)
• Coordination:

– XenCredit (XC) – use Xen CPU credits
– Augmented Credit based (AugC) – temporarily 

augment credits for co-scheduling
– SLA feedback based (SLAF)

• Controlled
– HypeControlled (HC) or co-scheduled



VMaCS – Experimental Results for Throughput-
vs. Latency-Sensitive Applications

• 4 x86 cores, 2 GPUs
• 2, 3, 4 Domains

– 3 domains: one GPU will be shared
– 4 domains: CPU sharing between either Dom0 and guest 

domain or two guest domains
• Throughput-sensitive benchmark combinations:

– Financial: BlackScholes, MC, Binomial options
– Imaging: Snapfish with DXTC, Matrix multiplication, histogram, 

FastWalshTransform
– Scientific: Coulomb Potential and Petri Net Simulation

• Latency-sensitive benchmark combinations:
– Financial: BlackScholes
– Imaging: Snapfish with DXTC, Matrix multiplication, Histogram, 

FastWalshTransform - measuring latency per image operation
– Scientific: Parboil



VMaCS Scheduling: Black Scholes : Equal Credits

Scheduling is important and can work well



VMaCS Scheduling

• Other lessons:
– no one correct scheduling strategy

• latency-sensitive codes => co-scheduling
• but: co-scheduling vs. fairness and throughput

– scheduling not useful for ill-structured GPU 
codes

• frequent requests with small compute times
– AugC and SLAF good when `mixing’ domains
– driver effects: e.g., large variations in 

execution times when sharing the GPU



Other Project Elements
• Asymmetric Cores: with R. Knauerhase, Intel

– Region Scheduling – NUCA and NUMA characteristics
– Correlation Scheduling – Core Asymmetries
– Power Management : with Vishal Gupta (and with Intel and Microsoft)

• Scalable Hypervisor Structures: Mukil Kesavan, Priyanka 
Tembey, Dulloor Rao
– Hypervisor structure should match `islands of cores’
– e.g., consider Xen `Dom0’ bundling of functionality
⇒ offer solutions for isolation with bundled functionality

• On Petascale Machines: with Jeff Vetter, Scott Klasky (ORNL)
– Large-scale GPU-based Cluster Machine for HPC codes

• Toward Exascale Systems: with Vanish Talwar, Partha 
Ranganathan (HP)
– Scalable Monitoring and Online Behavior Detection



Future Directions
• Why HyVMs: future applications:

– Media-rich web applications
• online `photoshop’ (with HP) 
• dynamic stream customization (with Motorola)

– Financial and HPC codes
• Benchmarks (e.g., Black Scholes – IBM, HPC – NVIDIA, Interactive - Intel)
• Petascale codes (with DOE)
• Petascale I/O (with DOE)

• From platforms to clusters to large-scale data centers:
– Distributed execution model for petascale machines
– Other execution models: data-intensive (Hadoop, System S, …)

• Future platforms:
– Power/performance tradeoffs and implications
– Memory hierarchies and their effects (on- vs. off-chip)
– Alternative memory models – e.g., PGAS
– Massively parallel HyVMs – e.g., 1000s of domains
– Tool chains: future standards (e.g., OpenCL), compiler research (other 

faculty)


