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Research Context
Future server and web applications
- Web: media-rich content => increasing computational needs
- Server: financial applications, critical enterprise codes, GPU-

supported database codes 

Heterogeneous Multicore Platforms (Hybrid Systems)
- off- and on-chip heterogeneous cores
- rich memory hierarchies

New Execution Models
- dynamic parallelism, e.g., in cloud computing
- data-intensive codes, e.g., MapReduce



Future Applications
Media and image 
processing:
• for dynamic web content
• ‘Snapfish‐like’
imaging
suite

Science and gaming:
• Fusion modeling
• Ray tracing
• High perf. I/O
• LAPACK,
BLAS, VSIPL, …

Financial and risk analysis:
• Black Scholes
• Risk Analysis
• Derivatives processing

Data‐intensive and web:
• Critical enterprise codes
• Data‐intensive codes
• Sensor data processing



Heterogeneous Platforms
• Asymmetries:

– Performance
• Different clock speeds, duty cycles
• Differing issue widths
• Varying cache sizes

– NUMA memory, NUCA caches
• Functional differences:

– Multiple accelerators: 
• GPU, Communications, Encryption, …

– Shared ISA:
• Missing SSE version
• Missing floating point
• Additional instructions for acceleration (Larrabee, …)



HyVM Approach

• Treat all hardware execution units as processors 
- PCPUs

• Distinguish ‘heterogeneous’ from ‘asymmetric’
(shared ISA) cores
– aCPUs, sCPUs, CPUs, …

• Create a software platform capable of exporting 
hybrid CPUs to VMs:
– HyVM – Hybrid Virtual Machines: 

• supported by heterogeneity- and asymmetry-aware 
hypervisors



HyVM Project Elements
Attaining the uniform HyVM execution model

– Leveraging virtualization technologies:
• Virtual Execution Units (VEUs)

– Finer grain schedulable entities than VCPUs
• Specialized execution environments (SEEs) for accelerators

– GViM for efficient GPU virtualization
– Earlier work on Cell processor creating our own SEE

• Dynamic resource management for sets of VEUs (SLA-
awareness, runtime monitoring)

– Coordinated scheduling for accelerators – VMaCS
– InTune - system abstractions for coordinated management
– Cache-centric ‘region’ scheduling + correlation 

scheduling for shared ISA VEUs
– Addressing NUMA properties
– Remote execution - `Keeneland’ extension

• Future hypervisors (using Xen): fully asymmetry- and 
heterogeneity-aware (e.g., using Ocelot)



HyVM Project Elements

– Emulated platform: leveraging evolving industry standards 
for accelerator APIs and interactions:

• Tool chain support for CUDA => LLVM/PTX translation, with 
future work on OpenCL – Ocelot

• Runtime APIs at CUDA level - GViM
– High performance:

• Exploiting compiler methods to optimize execution regimes 
for sets of VEUs – Harmony

• Scheduling via on-line performance models and dynamic 
code generation for GPU vs. Host ISAs Ocelot/LLVM

– New opportunities: 
• Analysis tools for debugging and performance tuning via 

emulation Ocelot++
• Exploring new programming models - Datalog to GPU 

compilation
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Technical Elements – GViM + VMaCS
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GViM and VMaCs – Experimental Evaluation

• Xeon quad-core @3GHz, 3GB RAM
• 2 NVIDIA GPUs G92-450
• Xen, with Fedora guest domains with 512M memory, 

pinned to single cores, some runs with 
• Dom0 with `unlimited’ resources.
• Data sampled over 50runs, typically reporting means 

and standard deviations.



Technical Elements – GViM: Performance 
Implications of Virtualization

Benchmark Timings when running on Multicore Platform: 
all raw CUDA call timings < 60 microseconds

Slower
Faster



Technical Elements – VMaCS
SLA Compliance with Multiple Guests – Need for 

Active Resource Management

Without resource management, calls can be variably 
delayed due to interference from other domain



VMaCS Scheduling

• No coordination:
– Default – GPU driver based – base case
– Round Robin (RR)
– AccCredit (AccC) – credits based on static profiling 

(calibration)
• Coordination:

– XenCredit (XC) – use Xen CPU credits
– Augmented Credit based (AugC) – temporarily 

augment credits for co-scheduling
– SLA feedback based (SLAF)

• Controlled
– HypeControlled (HC) or co-scheduled



VMaCS – Experimental Results for Throughput-
vs. Latency-Sensitive Applications

• 4 x86 cores, 2 GPUs
• 2, 3, 4 Domains

– 3 domains: one GPU will be shared
– 4 domains: CPU sharing between either Dom0 and guest 

domain or two guest domains
• Throughput-sensitive benchmark combinations:

– Financial: BlackScholes, MC, Binomial options
– Imaging: Snapfish with DXTC, Matrix multiplication, histogram, 

FastWalshTransform
– Scientific: Coulomb Potential and Petri Net Simulation

• Latency-sensitive benchmark combinations:
– Financial: BlackScholes
– Imaging: Snapfish with DXTC, Matrix multiplication, Histogram, 

FastWalshTransform - measuring latency per image operation
– Scientific: Parboil



VMaCS Scheduling: Black Scholes : Equal Credits

Scheduling is important and can work well



VMaCS Scheduling

• Other lessons:
– no one correct scheduling strategy

• latency-sensitive codes => co-scheduling
• but: co-scheduling vs. fairness and throughput

– scheduling not useful for ill-structured GPU 
codes

• frequent requests with small compute times
– AugC and SLAF good when `mixing’ domains
– driver effects: e.g., large variations in 

execution times when sharing the GPU



Other Project Elements
• Asymmetric Cores: with R. Knauerhase, Intel

– Region Scheduling – NUCA and NUMA characteristics
– Correlation Scheduling – Core Asymmetries
– Power Management : with Vishal Gupta (and with Intel and Microsoft)

• Scalable Hypervisor Structures: Mukil Kesavan, Priyanka 
Tembey, Dulloor Rao
– Hypervisor structure should match `islands of cores’
– e.g., consider Xen `Dom0’ bundling of functionality
⇒ offer solutions for isolation with bundled functionality

• On Petascale Machines: with Jeff Vetter, Scott Klasky (ORNL)
– Large-scale GPU-based Cluster Machine for HPC codes

• Toward Exascale Systems: with Vanish Talwar, Partha 
Ranganathan (HP)
– Scalable Monitoring and Online Behavior Detection



Future Directions
• Why HyVMs: future applications:

– Media-rich web applications
• online `photoshop’ (with HP) 
• dynamic stream customization (with Motorola)

– Financial and HPC codes
• Benchmarks (e.g., Black Scholes – IBM, HPC – NVIDIA, Interactive - Intel)
• Petascale codes (with DOE)
• Petascale I/O (with DOE)

• From platforms to clusters to large-scale data centers:
– Distributed execution model for petascale machines
– Other execution models: data-intensive (Hadoop, System S, …)

• Future platforms:
– Power/performance tradeoffs and implications
– Memory hierarchies and their effects (on- vs. off-chip)
– Alternative memory models – e.g., PGAS
– Massively parallel HyVMs – e.g., 1000s of domains
– Tool chains: future standards (e.g., OpenCL), compiler research (other 

faculty)


