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Research Context

Future server and web applications
- Web: media-rich content => increasing computational needs

- Server: financial applications, critical enterprise codes, GPU-
supported database codes

Heterogeneous Multicore Platforms (Hybrid Systems)
- off- and on-chip heterogeneous cores
- rich memory hierarchies

New Execution Models
- dynamic parallelism, e.g., in cloud computing
- data-intensive codes, e.g., MapReduce



Future Applications

Media and image

processing:

e for dynamic web content

¢ ‘Snapfish-like’
Imaging
suite

Science and gaming:

 Fusion modeling

* Ray tracing

e High perf. 1/0

o LAPACK, AL
BLAS, VSIPL, ... Esiawak

Financial and risk analysis:

e Black Scholes
e Risk Analysis
e Derivatives processing
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Data-intensive and web:
e Critical enterprise codes

e Data-intensive codes

e Sensor data processing




Heterogeneous Platforms

« Asymmetries:

— Performance
 Different clock speeds, duty cycles
 Differing issue widths
« Varying cache sizes

— NUMA memory, NUCA caches

e Functional differences:

— Multiple accelerators:
 GPU, Communications, Encryption, ...

— Shared ISA:
e Missing SSE version
« Missing floating point
« Additional instructions for acceleration (Larrabee, ...)



HyVM Approach

« Treat all hardware execution units as processors
- PCPUs

 Distinguish ‘heterogeneous’ from ‘asymmetric’
(shared ISA) cores

— aCPUs, sCPUs, CPUs, ...
e Create a software platform capable of exporting
hybrid CPUs to VMs:

— HyVM — Hybrid Virtual Machines:

e supported by heterogeneity- and asymmetry-aware
hypervisors



HyVM Project Elements

Attaining the uniform HyVM execution model

— Leveraging virtualization technologies:
 Virtual Execution Units (VEUS)
— Finer grain schedulable entities than VCPUs
» Specialized execution environments (SEES) for accelerators
— GVIM for efficient GPU virtualization
— Earlier work on Cell processor creating our own SEE

e Dynamic resource management for sets of VEUs (SLA-
awareness, runtime monitoring)

— Coordinated scheduling for accelerators — VMaCS
— InTune - system abstractions for coordinated management

— Cache-centric ‘region’ scheduling + correlation
scheduling for shared ISA VEUs

— Addressing NUMA properties
— Remote execution - Keeneland’ extension

» Future hypervisors (using Xen): fully asymmetry- and
heterogeneity-aware (e.g., using Ocelot)



HyVM Project Elements

— Emulated platform: leveraging evolving industry standards
for accelerator APIs and interactions:

« Tool chain support for CUDA => LLVM/PTX translation, with
future work on OpenCL — Ocelot

 Runtime APIs at CUDA level - GVIM
— High performance:

« EXxploiting compiler methods to optimize execution regimes
for sets of VEUs — Harmony

« Scheduling via on-line performance models and dynamic
code generation for GPU vs. Host ISAs - Ocelot/LLVM
— New opportunities:

« Analysis tools for debugging and performance tuning via
emulation - Ocelot++

« Exploring new programming models - Datalog to GPU
compilation



Spectrum of Exported Heterogeneity
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Accelerator ready queues

N

Domain request queues

echnical Elements — GVIM + VMaCS
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GVIM and VMaCs — Experimental Evaluation

« Xeon quad-core @3GHz, 3GB RAM
2 NVIDIA GPUs G92-450

o Xen, with Fedora guest domains with 512M memory,
pinned to single cores, some runs with

e DomO with "unlimited’ resources.

o Data sampled over 50runs, typically reporting means
and standard deviations.



Technical Elements — GVIM: Performance
Implications of Virtualization
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Technical Elements — VMaCS
SLA Compliance with Multiple Guests — Need for
Active Resource Management

Total execution time (without host data assignment)
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Micro-benchmarks (with dataset values)

Without resource management, calls can be variably
delayed due to interference from other domain



VMaCS Scheduling

e NO coordination:
— Default — GPU driver based — base case
— Round Robin (RR)

— AccCredit (AccC) — credits based on static profiling
(calibration)

e Coordination:
— XenCredit (XC) — use Xen CPU credits

— Augmented Credit based (AugC) — temporarily
augment credits for co-scheduling

— SLA feedback based (SLAF)

e Controlled
— HypeControlled (HC) or co-scheduled



VMaCS - Experimental Results for Throughput-
vs. Latency-Sensitive Applications

4 x86 cores, 2 GPUs
2, 3, 4 Domains
— 3 domains: one GPU will be shared

— 4 domains: CPU sharing between either DomO and guest
domain or two guest domains

Throughput-sensitive benchmark combinations:
— Financial: BlackScholes, MC, Binomial options

— Imaging: Snapfish with DXTC, Matrix multiplication, histogram,
FastWalshTransform

— Scientific: Coulomb Potential and Petri Net Simulation
Latency-sensitive benchmark combinations:
— Financial: BlackScholes

— Imaging: Snapfish with DXTC, Matrix multiplication, Histogram,
FastWalshTransform - measuring latency per image operation

— Scientific: Parboll



VMaCS Scheduling: Black Scholes : Equal Credits
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Scheduling is important and can work well



VMaCS Scheduling

e Other lessons:

— no one correct scheduling strategy
e latency-sensitive codes => co-scheduling
 but: co-scheduling vs. fairness and throughput

— scheduling not useful for ill-structured GPU
codes

 frequent requests with small compute times
— AugC and SLAF good when "mixing’ domains

— driver effects: e.qg., large variations in
execution times when sharing the GPU



Other Project Elements

Asymmetric Cores: with R. Knauerhase, Intel
— Region Scheduling — NUCA and NUMA characteristics
— Correlation Scheduling — Core Asymmetries
— Power Management : with Vishal Gupta (and with Intel and Microsoft)

Scalable Hypervisor Structures: Mukil Kesavan, Priyanka
Tembey, Dulloor Rao

— Hypervisor structure should match “islands of cores’
— e.g., consider Xen DomO’ bundling of functionality
= offer solutions for isolation with bundled functionality

On Petascale Machines: with Jeff Vetter, Scott Klasky (ORNL)
— Large-scale GPU-based Cluster Machine for HPC codes

Toward Exascale Systems: with Vanish Talwar, Partha
Ranganathan (HP)

— Scalable Monitoring and Online Behavior Detection



Future Directions

Why HyVMs: future applications:

— Media-rich web applications
» online "photoshop’ (with HP)
» dynamic stream customization (with Motorola)

— Financial and HPC codes
« Benchmarks (e.g., Black Scholes — IBM, HPC — NVIDIA, Interactive - Intel)

» Petascale codes (with DOE)
» Petascale I/O (with DOE)

From platforms to clusters to large-scale data centers:
— Distributed execution model for petascale machines
— Other execution models: data-intensive (Hadoop, System S, ...)

Future platforms:

— Power/performance tradeoffs and implications

— Memory hierarchies and their effects (on- vs. off-chip)
— Alternative memory models — e.g., PGAS

— Massively parallel HyVMs — e.g., 1000s of domains

— ]'cl'oollcl;ains: future standards (e.g., OpenCL), compiler research (other
aculty



