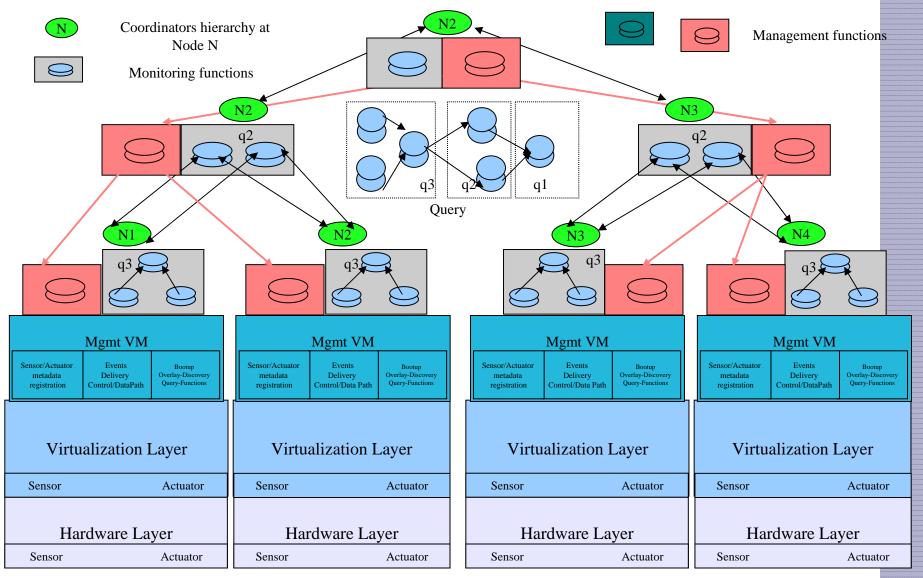


Automated Behavior Detection (for Utility Clouds)

Karsten Schwan (schwan@cc.gatech.edu)

Vanish Talwar (HP Labs) Partha Ranganathan (HP Labs)

Current Monalytics Architecture



Monalytics - Scalability

Dynamics I: Local analysis and filtering	Request Trace Records Size			
Without Local Analysis	1.41. MB			
With Local Analysis (via filtering)	60.45 KB			

Dynamics II: Zoom-in Analysis	Monalytics Run(3hr)	Offline Analysis(10hr)
Centralized: Data Transferred	394.08 KB	1.15 MB
Local Analysis: Data Transferred	123.32 KB	345.6 KB

RUBiS Testcase – details below

Aggregation Problem

- **1. Scalability:** reduce the data volume in communication and analysis
- 2. Retain valuable information for anomaly detection and identification.
- 3. 'horizontal crossing' and 'vertical crossing': metrics in different levels/components are collectively considered

Detection Problem

1. Online designating when the utility cloud is experiencing anomalies.

2. High Detection Rate and Low False Alarm Rate

3. Unsupervised method with minimal pre-knowledge about normal or abnormal behaviors.

Zoom-In Problem

Localizing anomalies so as to **narrow** the search scopes for further diagnosing the causes of those anomalies.

Monalytics – Behavior Detection

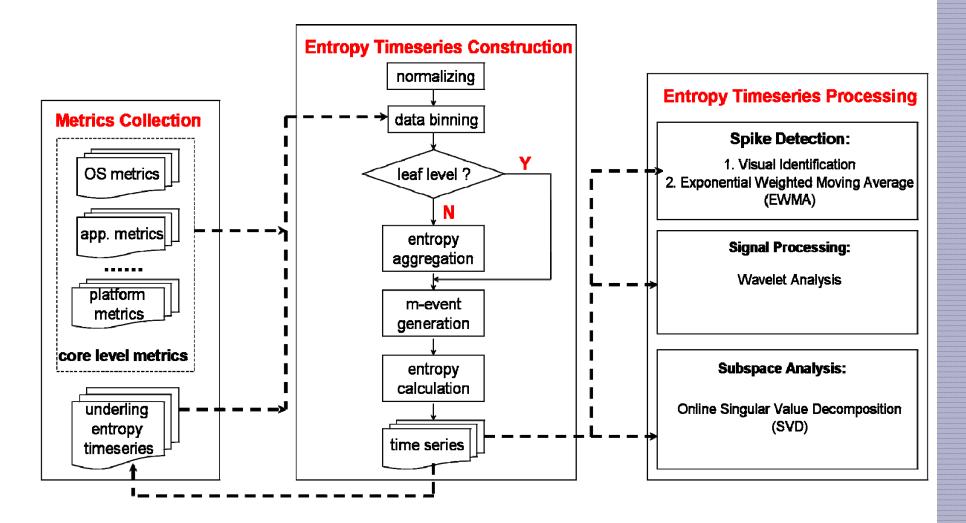
<u>EbAT</u>: Entropy based Anomaly Testing

or

Scalable Online Anomaly Detection Using Metric Distributions

- . 1. A lightweight online approach to scalable monitoring, capable of
- **.** raising alarms and zooming in on potential problem area.
- **5.** 2. Detects changes in aggregated metric distributions rather than
- . individual metric values (like threshold-based approaches)
- **3. Unsupervised, minimal prior knowledge**
 - [1] Chengwei Wang, Karsten Schwan, Matthew Wolf, "Ebat: An entropy based online anomaly tester for data center management", poster, In BDIM 2009: 4th IEEE/IFIP International Workshop on Business-driven IT Management
 - [2] Chengwei Wang, Vanish Talwar, Karsten Schwan, Parthasarathy Ranganathan, "Online Detection of Utility Cloud Anomalies Using Metric Distributions", to appear in NOMS, 2010.

EbAT Overview



Aggregating metric distributions

EbAT Results – RUBiS Failure Injection

Methods	Description	# Alarm s	# Successful Detections	Reca ll	Precisio n	Accuracy(F ₁)	FAR
Entropy I	Global Entropy Using Entropy of Child Entropies	45	43	0.86	0.96	0.91	0.04
Entropy II	Global Entropy Using Sum of Child Entropies	56	45	0.90	0.80	0.85	0.20
Threshold I	Near-Optimum	46	33	0.66	0.72	0.69	0.28
Threshold II	Static >0.9 or <0.05	18	16	0.32	0.89	0.47	0.11

$$Recall = \frac{\# of \ successful \ detections}{\# of \ total \ anomalies} Precision = \frac{\# \ of \ successful \ detections}{\# \ of \ total \ alarms}$$

$$Accuracy(F_1) = \frac{2 * precision * recall}{precision + recall}$$
 False Alarm Rate (FAR) = $\frac{\# \text{ of false alarms}}{\# \text{ of total alarms}}$

On Average 57.4% Improvement on Accuracy, 59.3% Reduction on FAR

Additional Results: Hadoop 80 node OpenCirrus runs + add. metrics

- Scaling to Exascale:
 - dynamics: needed: scalable control, including:
 - automation in deployment and use (e.g., monalytics QoS)
 - ease of use: higher level abstractions, including
 - linking abnormal behavior detection to problem diagnosis and prevention
 - real-life systems: distributed utility clouds

- Monitoring for effective management: Monalytics
 - rich domain for future work software architectures, systems and platform support, methods and techniques
 - close linkage with business analytics and real-time data analysis (for us: linkage to HPC)
 - encouraging cooperation and joint research: no one system does it all, need for many methods and structures, many unsolved problems, ...
- From Monalytics to Large-scale Management:
 - managing over time (simple example in vManage) to react to system and application changes over time (little understood)
- Dynamic change in management purpose and different/multiple simultaneous management goals
- Can we make systems more manageable?
 - constructing more robust (performance robustness and reliability) virtualization infrastructures runtime learning?
 - platform support for monitoring, management, and coordination