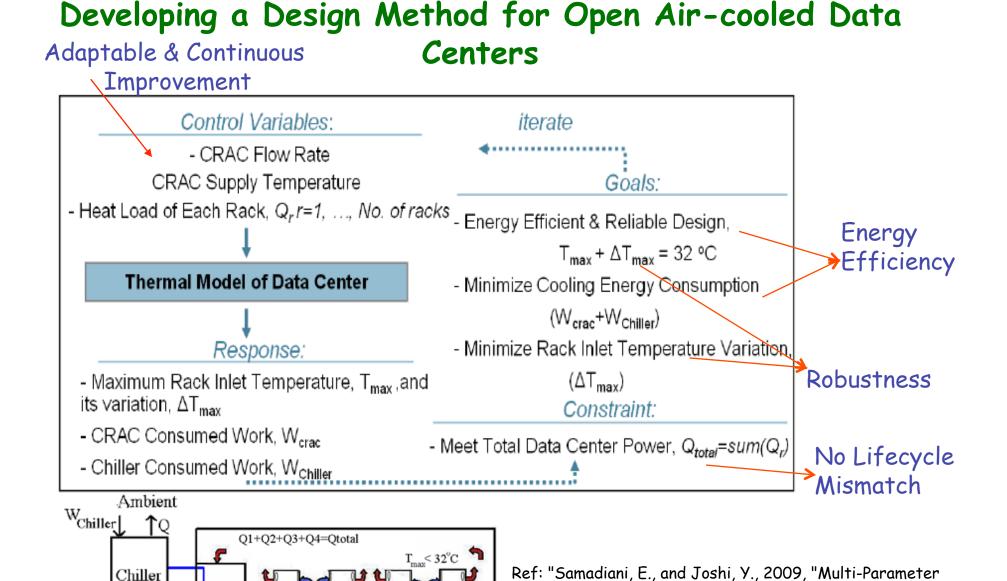


CEETHERM - Activities Overview

CEETHERM – Consortium for Energy Efficient Thermal Management.


Initiated in 2002 as part of the industry-academia joint initiative to develop techniques for efficient energy management of electronic equipments.

CEETHERM activities address the thermal issues of concern to a number of industries – Data centers, Telecommunications, Microprocessor thermal design, Power Electronics, Automotive, Aerospace, Compact energy systems.

Goals and Objectives

- ✓ Develop newer sustainable data centers with lower energy costs
- ✓ Waste heat recovery-reduce chiller power
- ✓ Liquid cooled rack development
- ✓ Thermally aware compute load allocation tools
- ✓ Compact CFD model development
- \checkmark Green IT initiatives \longrightarrow Achieve a PUE of 1

Examples of current research at CEETHERM

Model Reduction in Multi-Scale Convective Systems,"

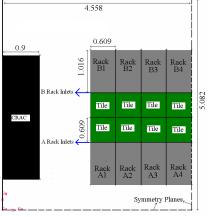
Int. J. Heat Mass Transfer, in press."

Q4

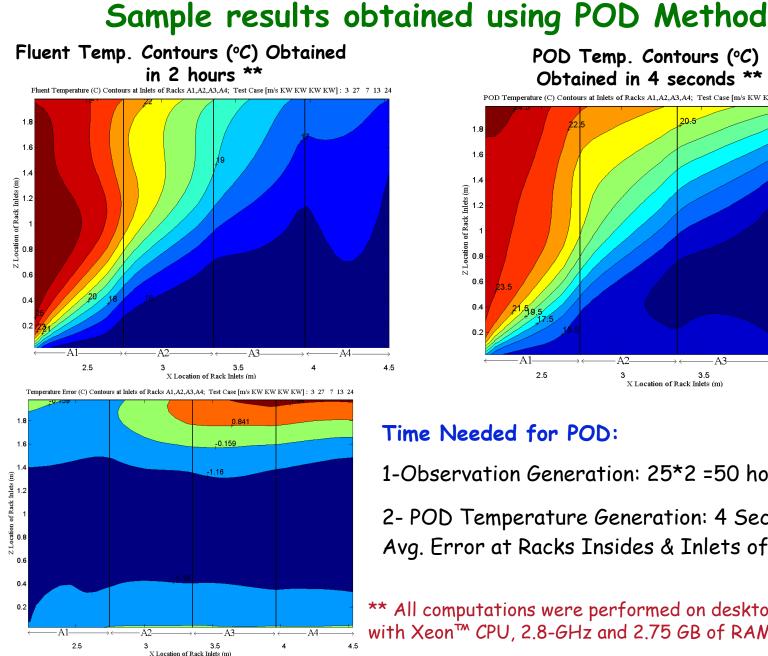
CERCS Energy Workshop April 26th 2010, College of Computing, Georgia Institute of Technology, USA

02

T_{discharge}=15℃ ⇒

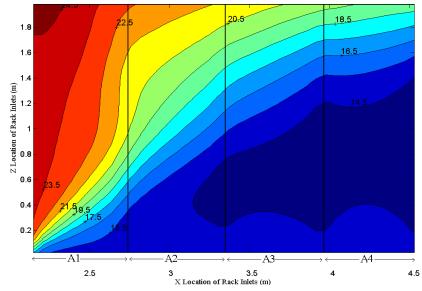

RAC

1


W_{CRAC}

Optimal CRAC flow Rate and Racks Heat Load Allocation Example

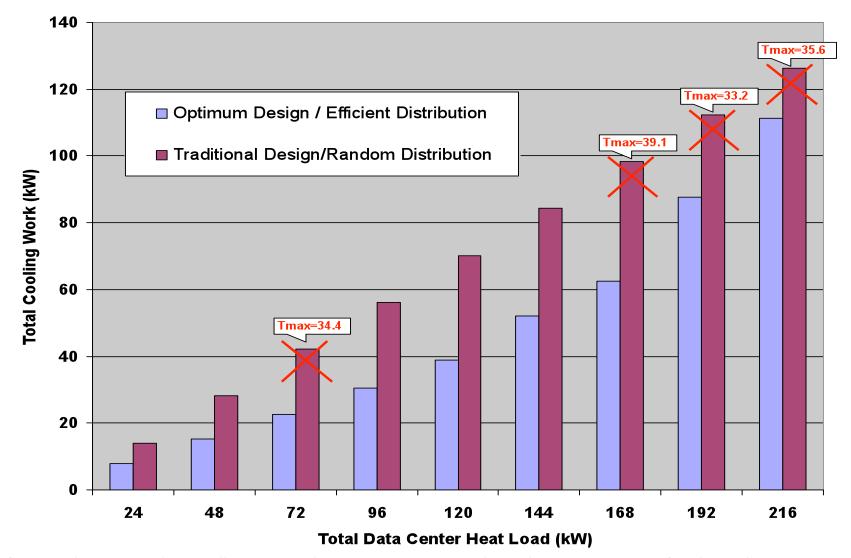
	Year#	1st	2nd	Зrd	4th	5th	6th	7th	8th	9th
	Data Center Utilization	10%	20%	30%	40%	50%	60%	70%	80%	90%
	Data Center									
	Heat Load (kW)	24	48	72	96	120	144	168	192	216
	Vin (m/s)	0.76	1.51	2.27	3.03	3.79	4.54	5.30	6.06	6.82
	Q1 (kW)	2	8.4	4.8	7.5	14.8	9.9	4.8	25.7	27.3
	Q2 (kW)	6.1	5.1	3.4	13.5	11.7	15.1	29.7	23.2	28.5
	Q3 (kW)	2.8	7.1	2.1	18	14.8	17.7	28	29.7	22.8
Traditional/	Q4 (kW)	1.1	3.4	25.7	9	18.7	29.3	21.5	17.4	29.4
Baseline	Tmax	27.74	26.08	34.41	26.32	28.06	31.85	39.09	33.19	35.56
Design	Supply Temp. (C)	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
	Wcrac (kW)	2.05	4.09	6.14	8.18	10.23	12.27	14.32	16.36	18.41
	Wchiller (kW)	12.00	24.00	36.00	48.00	60.00	72.00	84.00	96.00	108.00
	Wtotal (kW)	14.05	28.09	42.14	56.18	70.23	84.27	98.32	112.36	126.41
	Vin (m/s)	1.12	1.93	3.00	3.00	3.71	3.24	3.39	9.40	9.38
	Q1 (kW)	8.35	12.9	3.8	9.5	2.725	11.1	9.3	11.9	18
	Q2 (kW)	1.05	4.5	29.8	29.9	15.625	29.9	29.7	24.7	30
	Q3 (kW)	1.55	3.3	1	2.3	29.925	13.9	26.9	29.9	30
	Q4 (kW)	1.05	3.3	1.4	6.3	11.725	17.1	18.1	29.5	30
Adaptable	Tmax	21.48	21.90	21.29	23.33	23.72	26.55	27.14	27.40	29.69
Optimal Design	New Supply Temp. (C)	25.52	25.10	25.71	23.67	23.28	20.45	19.86	19.60	17.31
	Wcrac (kW)	3.03	5.22	8.10	8.10	10.01	8.74	9.16	25.38	25.33
	Wchiller (kW)	4.89	10.08	14.48	22.40	28.84	43.41	53.22	62.22	86.04
	Wtotal (kW)	7.92	15.30	22.58	30.50	38.85	52.15	62.39	87.60	111.37
	Energy Saving (%)	43.6	45.5	46.4	45.7	44.7	38.1	36.5	22.0	11.9



Ref: "Samadiani, E., and Joshi, Y., 2009, "Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers," ASME Journal of Heat Transfer, in press."

POD Temp. Contours (°C) Obtained in 4 seconds **

POD Temperature (C) Contours at Inlets of Racks A1, A2, A3, A4; Test Case [m/s KW KW KW KW]: 3 27 7 13 24


Time Needed for POD:

1-Observation Generation: 25*2 = 50 hours

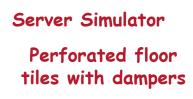
2-POD Temperature Generation: 4 Seconds with Avg. Error at Racks Insides & Inlets of 1.4 °C

** All computations were performed on desktop computer with Xeon[™] CPU, 2.8-GHz and 2.75 GB of RAM.

Energy Saving by POD-Based Design Approach

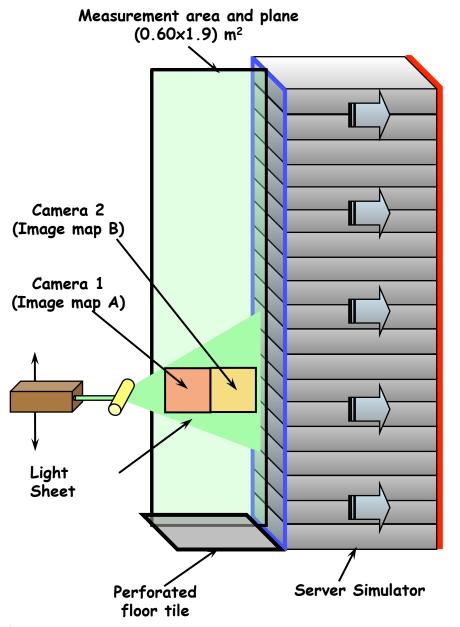
Ref: "Samadiani, E., Joshi, Y., Allen, J.K., and Mistree, F., 2009, "Adaptable Robust Design of Multi-scale Convective Systems Applied to Energy Efficient Data Centers," Numerical Heat Transfer, Part A: Applications, (accepted) "

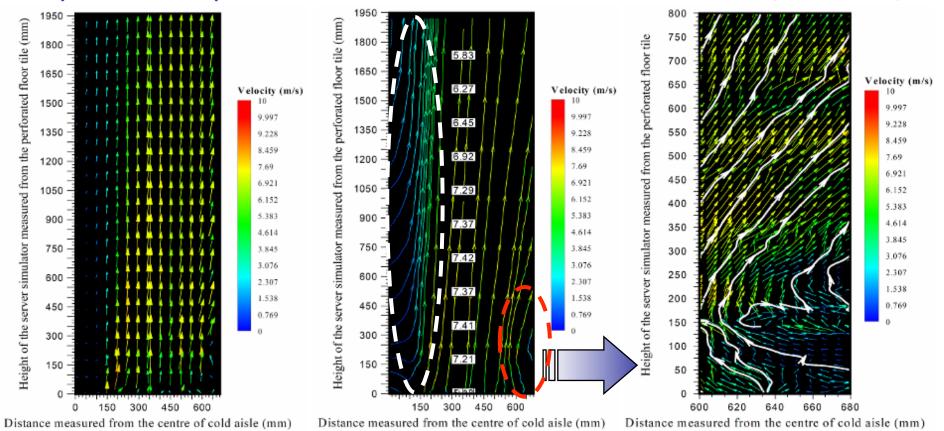
Experimental activities



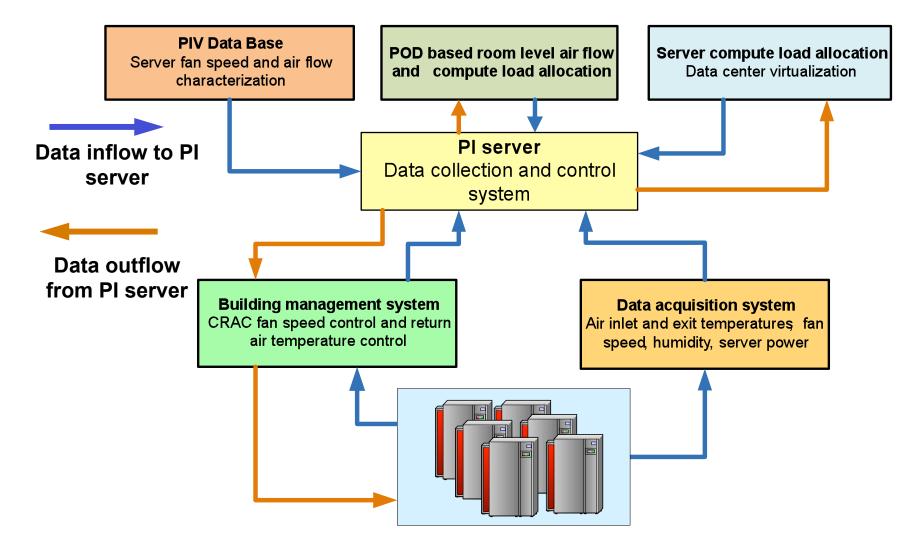
3-D PIV system

- 3-D Stereoscopic PIV (Particle Image Velocimetry system for room level air flow mapping.
- 25kW Server Simulator with adjustable fan and heater settings to simulate a variety of heat loads.
- Perforated tiles with adjustable dampers to control air discharge rate.

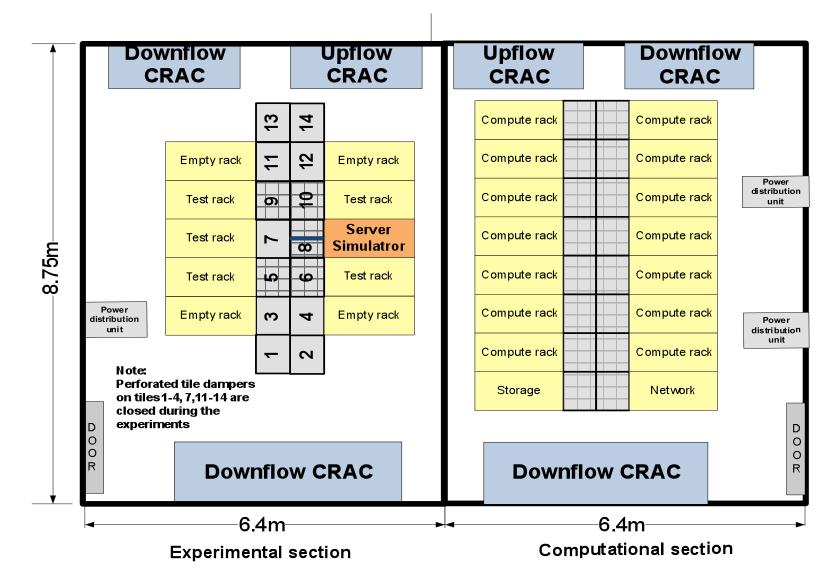


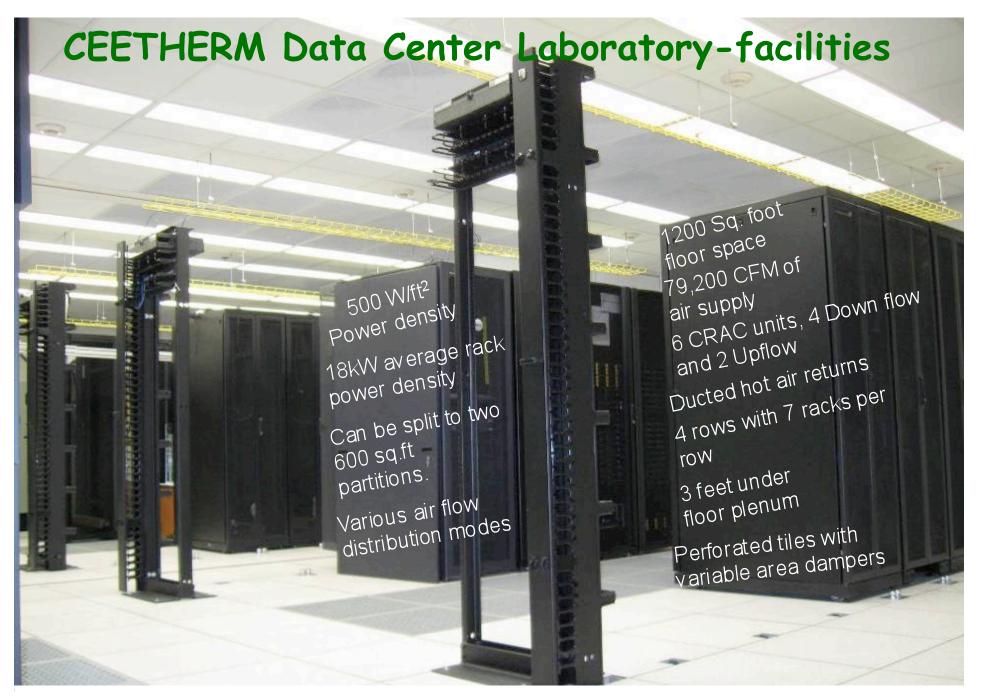

Fan speed and Heat setting dials

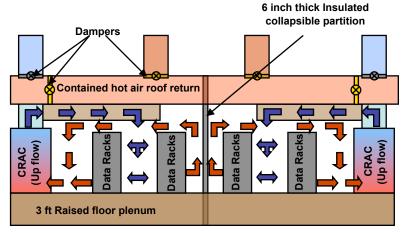
Details of the PIV Measurements


- Pulsed Argon Laser 200mJ power density @ 532nm wavelength - 200 Hz mounted on a traverse
- The flow is seeded with a water based fog droplets ~1µm
- 2 image maps in succession from 2 cameras in intervals of 800 µs
- Each location consists of 80 image map pairs and 24 such locations are captured to get a one complete flow
- Each experiment is repeated twice and a statistical average consisting of 80 image maps is taken to get the mean velocity component
- The 24 vector maps are stitched to get a complete picture of the flow
- Adaptive correlation along with a moving average filter is used to get the velocity vector map from the raw image data

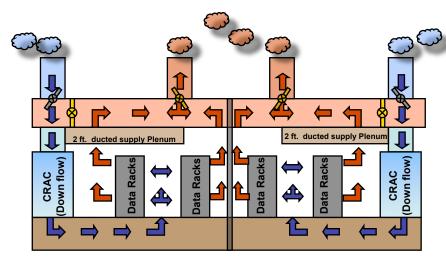
Sample case study: Perforated Tile Air Flow Rate = 1.224 m³/s (2594 CFM)

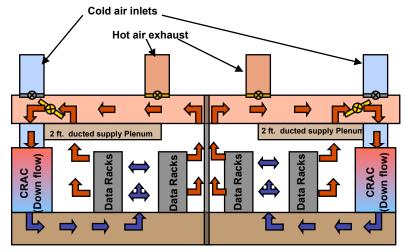

- ✓ Inlet velocities ~O(5.83 (top)-7.5 (tile surface) m/s
- ✓ Bottom servers up to the height of 500 mm from the floor do not receive cool air
- ✓ Air entrainment velocity in the cold aisle ~ 1.8m/s severely disrupts the air distribution to the opposite rack
- ✓ Reversed flow in the servers located in the bottom of the rack (v~2.5 m/s) up to a height of ~ 400 mm can lead to thermal failure of the servers placed in the bottom of the rack


Compute Load Based Virtual Data Center Center Thermal Management Scheme

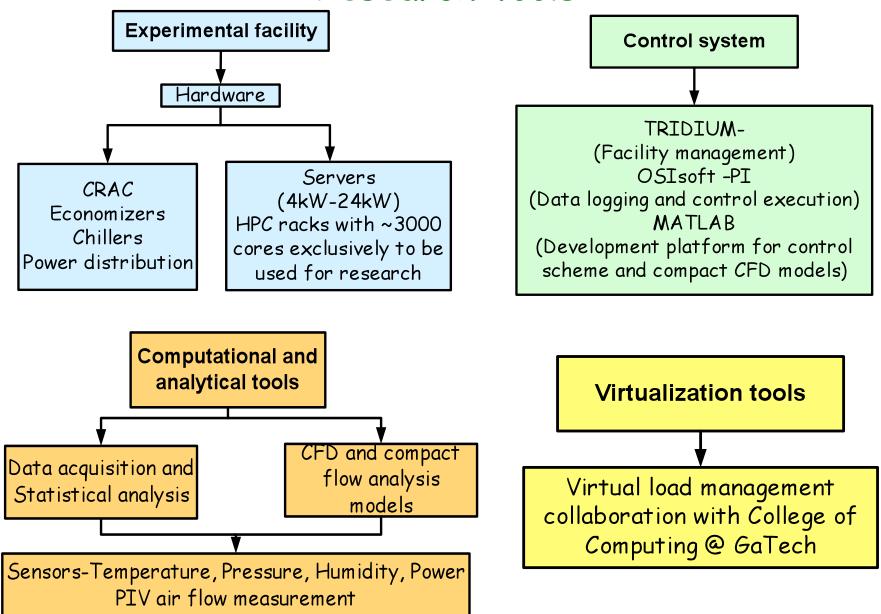

CEETHERM Data Center Experimental facilities

CEETHERM Data Center Layout




CEETHERM data center- air distribution system

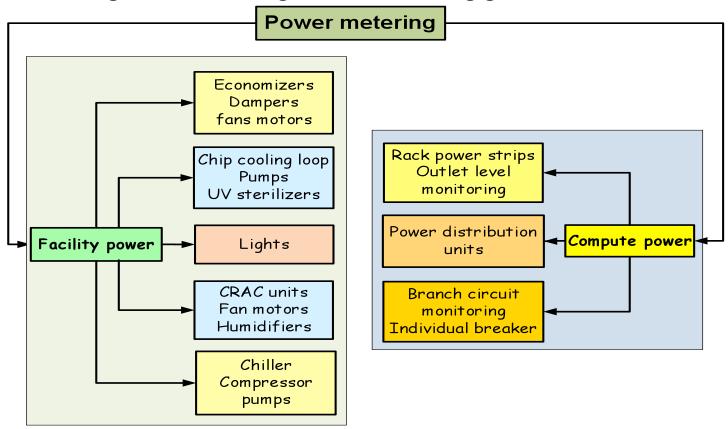
Over head cold air supply and hot air room return


Air economizer mode operation with under floor cold air supply

Under floor cold air supply and contained hot air ceiling return Outside air economizer operation

- ✓ Building monitoring system (BMS) monitors data center space temperature humidity and pressure.
- ✓ BMS performs psychometric calculations.
- ✓ BMS monitors outside air temperature and quality.
- ✓ Regulated dampers openings for hot and cold air inlet and exit
- ✓ Positive data centre space pressure to prevent influx of outside air.
- \checkmark The down flow CRAC units distribute the cold air.
- ✓ Electrostatic filters control air quality
- ✓ Independent economizer operations for both the partitions.

Research tools


Data acquisition

- ✓ 800 Temperature monitoring points distributed in room to measure space temperature (under progress)
- ✓ 70 temperature probes measure server inlet and outlet air temperatures at various heights in the rack
- \checkmark 8 humidity sensors in the rack
- ✓ BTU meters for chip cooling loop, CRAC's and chiller
- ✓ Air exit and return temperature for each of the CRAC units
- \checkmark Chilled water flow for all the CRAC units
- ✓ VFD fan speed control

All the data is continuously being measured (7/24)

Power metering

✓ Power metering at all levels right from incoming grid to individual server

- \checkmark The power meters are instrument grade certified with an accuracy of ± 0.5% accuracy
- ✓ Outlet level management for turning off unutilized servers
- Measure Current, Voltage, power factor, supply line frequency to compute kW, kW-hr and runtime of each unit
- ✓ Ability to quantify distribution losses

Photographs of the facility

High flow perforated tiles with dampers

3 ft. Plenum with dedicated chip cooling loop for liquid cooling and rear door heat exchangers

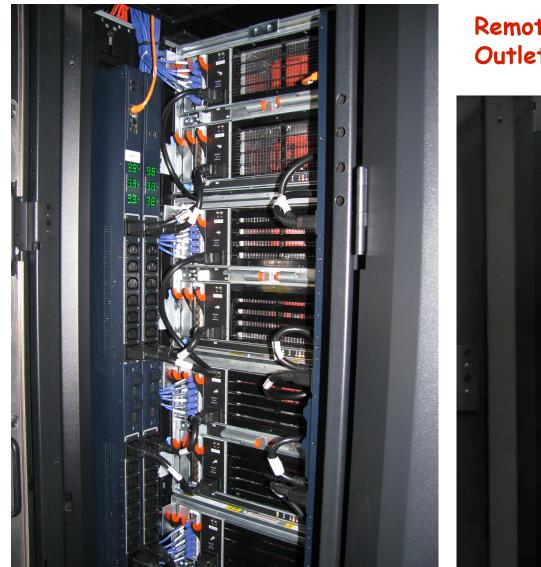
Chip cooling loop

24kW HPC racks are fitted with rear door heat exchangers BMS monitors and maintains the chilled water temp> Dew point temp

180 gallon expansion tank

Dedicated Chip cooling loop \longrightarrow

Power Distribution units



All the Power Distribution units are equipped with branch circuit monitoring devices

 PRESERVATION SUPPORT

 PRESERVATION SUPPORT

Server level monitoring

Remote switching with Outlet level monitoring

HPC racks

840 node/3360 core IBM BladeCenter cluster.

Each node has two dual-core AMD Opteron processors, 4GB ram, and two 73GB hard drives.

