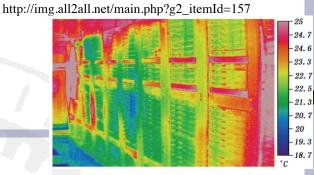
Power-Metering in Virtualized Datacenters

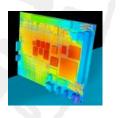
Ada Gavrilovska, Bhavani Krishnan, Hrishikesh Amur, Karsten Schwan, Surabhi Diwan, Matthew Wolf, Jhenkar Vidyashankar, Hui Chen, ... Hsien-Hsin Lee, Eric Fontaine

PLC2

Green Computing Initiative

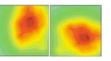
focus of our work:


Datacenter and beyond: design, IT management, HVAC control ... (ME, SCS, OIT...)


Rack: mechanical design, thermal and airflow analysis, VPTokens, OS and management (ME, SCS)

Board: VirtualPower, scheduling/ scaling/operating system ... (SCS, ME, ECE)

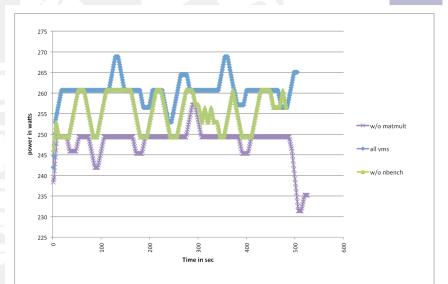
Chip and Package: power multiplexing, spatiotemporal migration (SCS, ECE)


<u>**Circuit level</u>**: DVFS, power states, clock gating (ECE)</u>

Power distribution and delivery (ECE)

Power-aware Datacenter Management

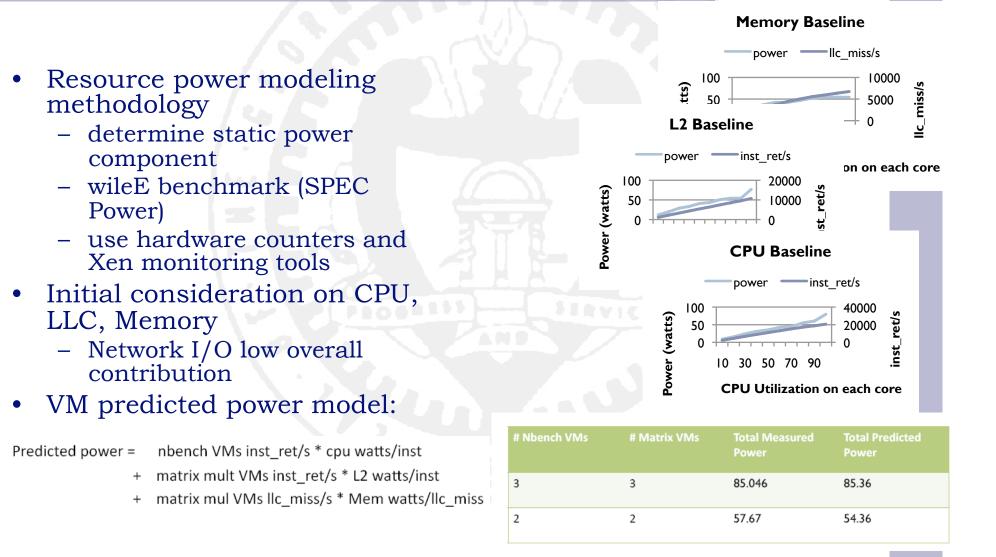
- Continuous power monitoring
 - RPDUs
 - SNMP or IPMI based infrastructure
- Continuous resource usage monitoring
 - Ganglia, SNMP, or EVPath based
 - aggregate and per VM usage of CPU, Mm, IO...
- Dynamic load reconfiguration
 - ???


 Closing the loop with power caps and distributions derived from CEETHERM thermal models

Power-centric Load Management

- Policy:
 - Balanced power usage
 - Improve energy efficiency
 - Run all servers at reduced load vs. half of them with consolidated load?
 - Cooling considerations
 - Minimize PUE
- Consideration of heterogeneity
- Impact of reconfiguration
 - Performance perturbation and overall performance degradation
- ..
- Which nodes and which VMs?

VM-level Power Metering


- Assess power and energy utilization of a VM, or a VM ensemble
- Use information in powercentric management policies
 - e.g., minimize number of VMs to migrated to reach power cap
- Use information in powercentric 'billing' policies
 - e.g., charge-back algorithm to translate power into CPU, memory, I/O resources, as needed...

VM-level Power Metering: Our Approach

- Built power profiles for various platform resources
 - CPU, memory, cache, I/O...
- Utilize low-level hardware counters to track resource utilization on per VM basis
 - xenoprofile, IPMI, Xen tools...
 - track sets of VMs separately
- Apply monitored information to power model to determine VM power utilization at runtime
 - in contrast to static purely profile-based approaches

VM Power Model

Easy... right...?!

- Moving to a dual-socket quad-core platform
 - Consideration of core-socket mappings
 - FSB saturation non-linear memory model
 - snooping traffic significant cause of possible overestimation
 - For mixes of CPU bound VMs model very accurate
 - Once memory bound VM included significant error up to 25.9W for a mix of 7CPU + 1Mm bound VM!
- Moving to a Nehalem platform
 - Inclusive caches accuracy of existing model improved with Mm bound VMs too.
 - Ah... NUMA! ... start with mix with single Mm-bound VM first... benchmark System Dynamic Predicted error
 - 2 CPUs < 1 CPU?

	benchmark	System power	Dynamic power	Predicted power	error
	povray	225.8	51.8	51.17	0.63
1	namd	225.1	51.1	50.02	1.08
	Lbm	230.2	56.2	57.06	-0.86
	gobmk	226.1	52.1	48.31	3.78
	h264ref	225.8	51.8	51.72	0.08

Ongoing work

- Continuing to try to make sense of it all! Understand feasibility, utility and limitations of the approach
- Important observation:
 - How power utilization is assessed is a platform property!
 - Approaches based on application profiles will have limited applicability
 - Same for approaches which ignore interactions with the memory subsystem
 - Dynamic monitoring adds overhead, but acceptable
- Apply to distributed management policy
 - VPMTokens
 - Energy-based charge back resource management algorithms

Monitoring overhead	w/o monitoring	Monitoring	mon 5s sleep
nbench	1010	1022	1013
bzip2	747	854	756
milc	954	1030	964
h264ref	1090	1180	1100