
From Atoms to Clouds Ongoing CERCS-Intel Collaborations

Ada Gavrilovska, Karsten Schwan, PhD & MS students Matthew Wolf & Chad Huneycutt

CERCS – Intel Interactions

- Multiple, across many faculty and many research and product groups at Intel
 - e.g., HVM project
 - many others LRB, medical imaging algorithms for next gen hardware, architecture research, multicore curriculum...
- This presentation
 - Atom-based projects with Intel's Embedded and Communications Group (ECG)
 - Cloud-based efforts through OpenCirrus
 - (significant cross-leverage across all of these...)

On Clouds: OpenCirrus Update

- OpenCirrus open cloud platform
 - enabling cloud research and innovation
 - Intel, Yahoo!, HP partnership initiative
 - CMU, Illinois; Korea, Singapore, Malaysia; Germany, Russia;
 - 1000 core membership "fee"
- CERCS/GT is in final stages of formally joining
 - Intel donation of hardware resources
 - 400 + 2 future generation updates
 - Legal requirements non-trivial

CERCS/GT Contributions

- Provide regional capabilities
- vManage/Monalytics management infrastructure (joint with HP)
- Diverse workloads
 - HPC, large-scale SOA applications, etc...
- Focus on heterogeneity
 - advanced next generation platforms, presence of accelerators...
- Leverage on-going GreenIT effort
 - measurement-based approach to energy-aware management
- Leverage Georgia Tech connectivity for exploration of geographically distributed cloud opportunities
 - initiated with CERCS-Emory collaboration

Current Status

- Awaiting arrival of first hardware increment (& final legal signatures)
- Evaluation of basic cloud infrastructure
 - Eucalyptus (used at HP)
 - Tashi and Zoni (Intel)
 - XCP in initial release
- Expected to start providing services late summer/fall
 - initial plans for split mode:
 - existing open source cloud stack
 - advanced vManage management stack

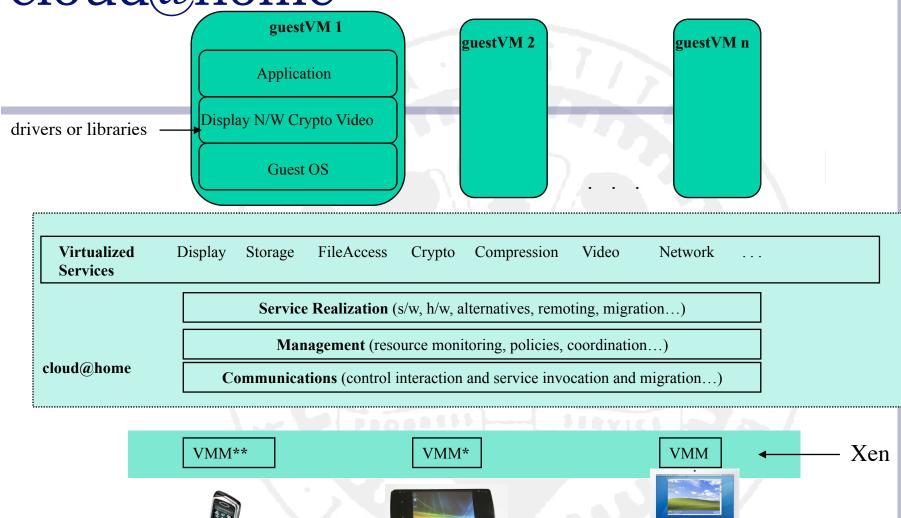
On Atoms: CERCS-ECG

- Relationship seeded in IXP work
- IXP uE cores part of Intel's embedded Tolapai SoC – a tightly coupled HVM platform
- Shift of vStore our joint effort with Motorola to Atom-based platforms
- vStore evolves in a larger cloud@home project
- Atom-Nehalem asymmetric multicore prototype

cloud@home

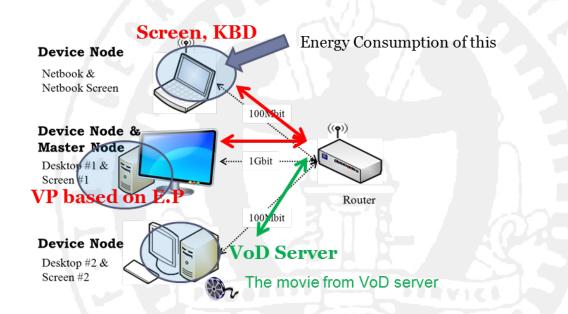
- @home, in-Vehicle, office... personal infrastructures increasingly more computationally rich
 - Rich resources == rich services
 - e.g., personalized entertainment, ...
 - Interactive, time-sensitive, sensingbased tasks
 - e.g., security camera analysis, ...
- Opportunities to tap into aggregate infrastructure resources and enrich enduser service experiences
 - Benefit from various service interface modalities
 - e.g., migrate between handheld and large flat screen...
- Key challenge is to deal with, and benefit from, resource heterogeneity
- Interface to open/public clouds
 - e.g., EC2, Facebook, ...

desktor


cloud@home Approach

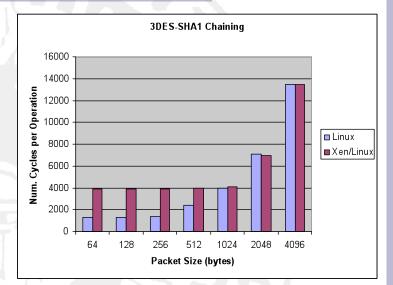
- Create 'compute clouds' in @home environments
- Leverage platform-level virtualization technology
 - dynamic deployment, migration, isolation...
- Combine with 'service-level' virtualization
 - services provided by infrastructure hardware components
 - storage, network, display, inputs, ...
 - graphics, crypto, compression, ...
 - ability to adapt service to best utilize underlying physical resources
 - ability to dynamically 'compose' platforms with required capabilities
- Enable infrastructure-wide management policies
 - e.g., battery life, application performance, platform efficiency...

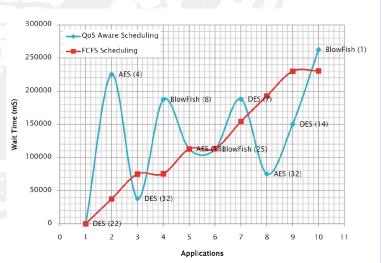
Why Cloud @home


- Rich resources == rich services
 - e.g., personalized entertainment, ...
- Benefit from various service interface modalities
 - e.g., migrate between handheld and large flat screen...
- Interactive, time-sensitive, sensing-based tasks
 e.g., security camera analysis, ...
- Privacy concerns
- Interface to open/public clouds
 - e.g., EC2, Facebook, ...

cloud@home

Low-res QVGA display WiFi Remote crypto Downsampled video	VS.	Mid-res VGA display WiFi Hardware crypto Downsampled video	VS.	High-res Full HD display GigE Software crypto Full stream video


Energy Policy



				Base line		
Configuration (Dom0+MVM)	Watt	Frame drop	Watt	Frame Drop		
	44.0		15.2	No		
1.66 GHz	14.3	21/1440	15.2	233/1441 (16%)		
1.00 GHz	13.5	18/1436		200/1111 (10/0)		
		Saving 12.5	%			

Dealing with heterogeneous hardware

- Need to benefit from hardware accelerators, including SoC
- Virtualize at library level ala 'split-driver' model
- Virtualized Tolapai SoC
 - 'driver' and OCF backend in dom0
 - wrapper frontend library in guest VMs
 - extra latency in address translation and interrupt routing
- Additional opportunities
 - smart scheduling and resource sharing
 - remoting & emulation
- Other examples: GPU, GPS...

