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Motivation

e Main goal: Control the flow of traffic within an
enterprise network

e TWO scenarios

— Preventing confidential documents from leaving the
enterprise
~1/3 of companies victims of insider fraud

— Controlling the spread of malware
Damages from malware exceed $13 Billion



Scenario #1: Confidential Documents
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Existing Approaches

e Network firewalls

— Inspecting content may require deep-packet
iInspection: difficult at high-speed

e Host firewalls
— Must implement policies on host

* Restricted use (or separate machines)



Scenario #2. Malware Spreading

 Malware enters enterprise over thenetwork (e.g.,
remote exploit, Web application), mobile device,
etc.

o System administrators rely on virus scanners,
host AV, etc.

— Problem: Payloads may change, hard to keep AV up-
to-date



Pedigree Design

e Trusted tagging component on host
e Arbiter on network switch
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Tag Structure and Function
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Design Decisions

o Specify and enforce policy in the network (not at
the host).

e Taint files and processes.
* Implement tagger as a kernel module.

e Use a separate control channel to associate tags
with network connections.



Transferring Taints

e System calls (e.g., read,
write) intercepted, used

to track taints

o Sets of taints stored Iin
separate “tag store”

— Mounted on separate
device

 Implementation: Linux
Security Modules

Resource Interaction
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Assumptions and Trust Model

 Network elements don’'t modify tags

 End host has a trusted component
— Privileged process
— Kernel module
— Hypervisor
— Qutside the host




Scenario: Exfiltration Prevention

e Users can use a tainting service to assign
security classes to files.
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concerns

 Performance Overhead
— Connection setup overhead
— System call overhead
— Storage overhead
e Overflow of taint set
— Size of taint set could become quite large

 How to identify taints that reflect a certain
class of traffic?



Connection Setup
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System Call Overhead
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How Many Talnts’P
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e Our research group: 15,000 unique binaries

« Ways to deal with large sets of taints
— Compression (Bloom filter)

— Aggregation (Second-level taints)

— “Bottom” security level



Summary

* Enterprises need to control information flow
within their networks
— Data leak/loss prevention
— Malware containment

e |dea: Track information flow across processes.
Implement control in network.
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