Securing Enterprise Networks
with Traffic Tainting

Anirudh Ramachandran
Nick Feamster
Yogesh Mundada
Mukarram bin Tarig

Motivation

e Main goal: Control the flow of traffic within an
enterprise network

e TWO scenarios

— Preventing confidential documents from leaving the
enterprise
~1/3 of companies victims of insider fraud

— Controlling the spread of malware
Damages from malware exceed $13 Billion

Scenario #1: Confidential Documents

.j"' Internet “‘*———' *
_4 Mallory

=

2, Bob retrieves file.

1. Alice copies file
to fileserver.

3, Bob's
attempt to ‘1‘
email the file .

to Mallory is
denied.

L

Existing Approaches

e Network firewalls

— Inspecting content may require deep-packet
iInspection: difficult at high-speed

e Host firewalls
— Must implement policies on host

* Restricted use (or separate machines)

Scenario #2. Malware Spreading

 Malware enters enterprise over thenetwork (e.g.,
remote exploit, Web application), mobile device,
etc.

o System administrators rely on virus scanners,
host AV, etc.

— Problem: Payloads may change, hard to keep AV up-
to-date

Pedigree Design

e Trusted tagging component on host
e Arbiter on network switch

T Controller
@ Check taints in
mH tag against poﬁc‘y’,-""

(3) Install rule |

(Drop/Permit)
Tag g] o
Eam;j "-.._’_t:_“ ‘Internet
Gl §28)° &)"%E e
;c?",‘}:" uﬂ_'i‘l Network Switch |
(2) Send tag g ¢ -;d?lgc? (Arbiter) .
| 78" | Hash(Tag)
'-. A tﬂ‘;ﬁ?' Paylond unn Tag stream

mmmm Application
flow

@Send application data

"____.\EﬂtErprise Hetwnrk__.-' SR

Tag Structure and Function

Flow Source IP

Flow Destination IP

Flow Source Port

Flow Destination Port

Flow Protocol Number Pedigree Tag Type

Tag Size

List of Taints

Design Decisions

o Specify and enforce policy in the network (not at
the host).

e Taint files and processes.
* Implement tagger as a kernel module.

e Use a separate control channel to associate tags
with network connections.

Transferring Taints

e System calls (e.g., read,
write) intercepted, used

to track taints

o Sets of taints stored Iin
separate “tag store”

— Mounted on separate
device

 Implementation: Linux
Security Modules

Resource Interaction

Update Operation

(Procass)

replaced by~ .

Rs

(Procass)

Sp,=Sg US,

Ry By

read REI:'
(ProcassFilk! Sockat)
Wrile RE S -S US
2 ‘Rg'=‘ﬂgl"‘m
(ProcassFilk! Sockat)
creale ¢ Fs C Rg = C Ry
. R = Ky
(ProcasaFik! Sockat)
execnie Fs SRE:= SRE s R,
itf Fy passed
argume nks o E&xec)
Cr,=Cry
S R =5 Ao

Assumptions and Trust Model

 Network elements don’'t modify tags

 End host has a trusted component
— Privileged process
— Kernel module
— Hypervisor
— Qutside the host

Scenario: Exfiltration Prevention

e Users can use a tainting service to assign
security classes to files.

File-tainting —

service N
Upload Add secret
Browser —| taint
/—tl—\ T

/@

concerns

 Performance Overhead
— Connection setup overhead
— System call overhead
— Storage overhead
e Overflow of taint set
— Size of taint set could become quite large

 How to identify taints that reflect a certain
class of traffic?

Connection Setup

Transfer Time (s)

I

0.9

0.8

0.7

0.6

Without Pedigree -+
With Pedigree

1 MB TCP Transfers:

< 30% Overhead for < 10
concurrent connection
Initiations.

2 3 - 5 6 7 8

Number of concurrent transfer mitiations

10

System Call Overhead

Kernel-mode I
200 F User-mode D _
Wall-clock
Z 150 | i
g 18-30% overhead on read-
2 intensive processes
5 100]
ﬁ
N .I 1
0 m
ff"' ff"' Céji (e
R"\@. R\uﬂd J_;,-j" ;
"5‘@%

How Many Talnts’P

24000

22000
20000
18000
16000
14000
12000
10000
8000 r
6000

Number of taints

Total
Unmue

4000 L

2000

3

0

"

4

6
Machine ID

8

10

12

e Our research group: 15,000 unique binaries

« Ways to deal with large sets of taints
— Compression (Bloom filter)

— Aggregation (Second-level taints)

— “Bottom” security level

Summary

* Enterprises need to control information flow
within their networks
— Data leak/loss prevention
— Malware containment

e |dea: Track information flow across processes.
Implement control in network.

	Securing Enterprise Networks�with Traffic Tainting
	Motivation
	Scenario #1: Confidential Documents
	Existing Approaches
	Scenario #2: Malware Spreading
	Pedigree Design
	Tag Structure and Function
	Design Decisions
	Transferring Taints
	Assumptions and Trust Model
	Scenario: Exfiltration Prevention
	Concerns
	Connection Setup
	System Call Overhead
	How Many Taints?
	Summary

