
Abstract— Switches are often known to be a perfomance 
bottleneck in a  distributed computing environment that require 
transfer of high-speed, high-volume data. This is primarily due to 
buffer overflow in the switches that result in loss of packets. Loss 
of packets require retransmission of higher layer protocol data 
segments which floods the network with redundant packets only 
to be dropped by the TCP layer of the end systems. The 
redundant packets in the retransmitted segments clog the 
network switches and thus exagerating the congestion and 
further packet loss. In distributed computing environment that 
involves high-volume data transfers, it is very important to 
minimize packet loss at intermediate switches/routers by 
maximizing the utilization of memory resources deployed at the 
switch. Switches deploying shared memory resources are known 
to incur lowest packet loss compared to other memory allocation 
schemes. However, the memory being inherently slow, it becomes 
difficult for a large number of high-speed links to share the 
common memory space deployed in a shared-memory switch. 
There have been several attempts made to overcome the 
memory-speed limit that prevent a shared memory switch from 
scaling to a larger size. In this paper, we discuss architectures 
that deploy parallel memory modules to enhance the overall 
capacity of the shared-memory based switches. We also present 
performance comparison in terms of memory-speed requirement 
& packet loss ratio. 
 
Keywords: Distributed Computing, High-Volume Data 
transfer, Performance evaluation, Shared multibuffer switch, 
Sliding-window packet switch. 
 

I. INTRODUCTION 
 
High-performance, distributed computing applications in high-
energy physics, climate modeling, medical imaging, and 
earthquake engineering require efficient transfer of data in 
wide area network environment [1]. Switches deployed in data 
networks are often known to be a perfomance bottleneck in a 
distributed computing environment that requires transfer of 
high-speed, high-volume data. This is primarily due to buffer 
overflow in the switches that result in loss of packets [2]. 
There are two obvious options to solve this problem. First is to 
deploy extremly large amount of dedicated buffers at each 
ports of the switch to minimize the loss of data packets. 
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Second is to use sharing of memory resources in the switch to 
minimize the loss of data packets at the switches. There are 
three different strategies commonly used for buffer allocation 
for switches, namely the dedicated buffers at the input ports, 
dedicated buffers at the output ports, and shared buffers shared 
by all the input and output ports. Dedicated buffers are usually 
very large in size in high-speed switches to keep the packet 
loss requirements low [2], and they have difficulty in being 
properly utilized, as at times some ports may be active causing 
buffer overflow, while others ports may remain idle and 
underutilized. Furthermore, the dedicated large amount of 
memory at each port of a high-capacity switch consumes 
significant amount of circuit space and power. Due to low 
utilization of dedicated buffers, the concept of sharing the 
memory resource among all ports of a switch becomes quite 
attractive. Sharing of memory resources among the ports of a 
switch architecture is known to provide best utilization of a 
given memory resource deployed in a switch [3-4]. The 
measurement results in [3] show the comparative performance 
of three different types of memory allocations in switches. It is 
shown in Table-1 that for a given load of 85%, the class of 
shared memory based switches require the least amount of 
buffer compared to other dedicated buffer allocation strategies 
such as input buffer and output buffer to provide a loss of 10-9.  
Table-1 presents the buffer size required (in ATM cells) to 
achieve a cell-loss rate of 10-9 under 85% traffic load for 
different size switches with different buffer allocation 
schemes. 
 

Table-1: Buffer size required for a traffic load of 85% and 
cell-loss-rate of 10 –9 [3] 

 
Type Switch Size 

 
16x16 

 
32x32 

 
Shared Buffer 113 199 
Input Buffer 320 640 

Output Buffer 896 1824 
 
 
Despite the best memory utilization, the shared memory 
switches are limited in the number of high-speed links it can 
support. This is due to the physical limitations imposed on the 

SANJEEV KUMAR, SENIOR MEMBER, IEEE   AND   ALVARO MUNOZ, STUDENT MEMBER, IEEE  % 
Networking Research Lab, Department of Electrical Engineering 
The University of Texas-Pan American, Edinburg, Texas-78541 

Ph: 956-381-2401; Email: sanjeevk@utpa.edu  

Switch Architecture for Efficient Transfer of 
High-Volume Data in Distributed Computing 

Environment 



memory speed, which in turn limits the scalability of the 
shared-memory based switches.  In order to overcome the 
limitations imposed by the memory-speed, some architectures 
deploy parallel memory modules that can be physically 
separate but logically connected [5-7]. In this paper, we call 
such architecture to deploy shareable parallel memory 
modules. 
 
Switching Architectures deploying shareable parallel memory 
modules are quite versatile in their ability to scale to higher 
capacity while retaining the advantage of sharing its entire 
memory resource among all input and output ports. There are 
only two main classes of such architectures, namely the 
Shared Multibuffer (SMB) based switch [5-6] and the Sliding-
Window (SW) based packet switch [7], that deploy parallel 
shareable memory modules. Despite their similarity in regards 
to using shareable parallel memory modules, they differ in 
switching control & scheduling of packets to parallel memory 
modules. SMB switch uses centralized control where as the 
SW switch uses a decentralized control for switching 
operations. However, in this paper, we discuss operation of 
packet-scheduling schemes used in these switches. In this 
paper, we propose a new scheme for assignment of parallel 
memory modules for the SW-switch, and compare its 
performance with the scheme used for packet scheduling in  
the SMB switch (Fig.1) under conditions of identical resource 
and traffic type.   
 
The performance of these two classes of switching systems is 
compared in terms of memory-speed required by these 
systems and the packet loss incurred for a given memory 
speed. In order to assign incoming packets to parallel memory 
modules, there are more than one scheme that can be used for 
Sliding-Window switch [7-8]. In this paper, we use a new 
memory assignment scheme for the Sliding-Window (SW) 
switch for assigning packets to parallel memory modules that 
maximizes the parallel storage of packets to multiple memory 
modules. The flow-chart for this assignment scheme is shown 
in Fig.3. We compare the performance of a sliding-window 
switch deploying this memory assignment scheme (Fig.3) with 
that of a SMB switch architecture under conditions of identical 
traffic type and memory resources deployed.  Section II of this 
paper presents the switching scheme for the class of shared 
multi-buffer (SMB) switch architecture [5-6], which is used 
primarily for comparison purposes. The sliding-window 
switch architecture [7] with a new memory assignment 
scheme is presented in section III. Section IV presents the 
bursty traffic model that can be used to depict high-volume, 
data-intensive traffic. A bursty traffic of average burst 
length=8 is used to evaluate the performance of the sliding-
window switch and that of SMB switch. Performance results 
are discussed in Section V, and Section VI concludes the 
paper. 
 

II.  THE SHARED MULTI-BUFFER (SMB) SWITCH 
 

The Shared-Multibuffer (SMB) switch architecture is 
discussed in detail in [5-6]. Multiple memory-modules are 
shared among all the input/output ports through cross-point 

switches. The control for the SMB-based switching system is 
centralized and maintains a buffer address queue for each 
output port and the idle-addresses pool to store the vacant 
addresses. For complete sharing of memory-modules, the idle 
buffer and the address-queue for each output port in SMB 
switch need to be as large as the total memory space. The 
centralized controller is responsible for coordinating all the 
switching functions for the SMB switching system, which in 
turn limits the scalability of this architecture.  
 
 

 
Fig.1: Shared-Multi Buffer (SMB) switch architecture [5-6]. 

 
 
In SMB architecture [3-4], an incoming packet is assigned to 
the least occupied memory-module first. The least occupied 
memory-module is given highest priority for an incoming 
packet to be written to. Based on the occupancy of the 
memory modules, it is possible to assign different memory 
modules to different packets input in a given switch cycle. 
This results in multiple packets stored in different memory 
modules in parallel, and hence requiring no increase in the 
memory bandwidth during the WRITE cycle. However, during 
the READ cycle, it is possible for multiple packets of the same 
memory module to be scheduled to go to different output ports 
during the same switch cycle. This requires multiple packets 
to be read out of the same memory modules in the same 
switch cycle, and hence this increases the memory-bandwidth 
requirement of the SMB switch during the READ cycle. Since 
memory speed-up is required only during the READ cycle, the 
memory-bandwidth requirement for a SMB switch can be 
defined as the number of memory READ cycles needed per 
switch cycle to output the scheduled packets from the memory 
modules. 



 
III.  THE SLIDING-WINDOW (SW) SWITCH 

 
The class of sliding-window (SW) switch is discussed in detail 
in [7]. The class of the sliding-window switch is characterized 
by parallel memory modules and decentralized control. The 
self-routing parameter assignment circuit computes the self-
routing parameters (i,j,k) to be attached to the incoming 
packets. The parameter j in the self-routing tag designates the 
jth output slot vector (OSV), which represents a packet’s 
location in ith memory module, and parameter k value 
determines a packets turn to go out. The parameter assignment 
circuit first determines the j and k parameters, and then uses 
the j and k values to determine the value of the ith parameter 
i.e. the memory module (i) where an incoming packet is stored 
[7].  
 
 

 
Fig.2: A 4x4 Sliding-Window switch architecture [7]. 

 
 
The packets input in the same switch cycle are assigned 
different values of i (i.e. the ith memory module) in an 
increasing order.  However, in the switching scheme given in 
[7], it is possible for two or more incoming packets of a switch 
cycle belonging to different OSVs(j) to be scheduled to be 
written to same memory module. This requires the switching 
scheme in [7] to speed-up the memory-modules to enable 
multiple-write operations in a given switch cycle. This in turn 
requires an increase in the memory-bandwidth requirement of 
a SW-switch during the WRITE cycle. The read operation of 
the SW-switch is such [7] that no more than one packet is 
output from one memory module, each output ports gets a 
packet each switch cycle (if available in the memory) and re-
ordering of packets is not required. This results in only one 
read operation per memory module per switch cycle. Hence in 
the sliding-window switch architecture, the memory speed-up 
is needed only during the WRITE cycle but not during the 
READ cycle. The memory-bandwidth requirement for a 
sliding-window switch is simply the number of memory 
WRITE cycles needed per switch cycle to store incoming 
packets to memory modules.  
 
Due to physical limitations, the speed of memory modules can 
be increased only so far. It is important to design a memory 
assignment scheme that maximizes the parallel write of 

packets to different memory modules in a given switch cycle 
without requiring an increase in memory speed-up. 
 
A. A New Memory Assignment Scheme for SW switch 
 
There are more than one ways for the packets of a switch 
cycle to be assigned parallel memory modules in the sliding-
window switch [7-8]. A new scheme for memory-assignment 
in SW-switch is presented in this section. The main goal of a 
memory assignment scheme is to maximize the parallel write 
of packets to multiple memory modules so that the speed-up 
requirement of memory modules can be reduced. According to 
this scheme (Fig.3), an additional array is used called Temp[i] 
for i=1 to m, where m is the number of memory modules 
deployed in the switch. The Temp[i] is used to keep track of 
the assignment of memory-modules in a given switch cycle 
(Fig.4). Each switch cycle, the Temp array is initialized to 0 to 
indicate availability of all memory modules for packet 
assignment. According to this scheme, first the best option is 
considered i.e. a packet is assigned to a memory module i if 
the ith slot is available in both the jth OSV as well as the 
Temp[i]. This condition is depicted by steps 306 and 308 of 
the flow-chart in Fig.3. Availability of ith slot in both arrays, 
OSV-j (i.e. jth OSV column in the scan-table, ST(i,j) in [7]) 
and the Temp [i] is to allow the packets of a switch cycle to be 
assigned to different memory modules and hence maximize 
the parallel write of packets to different memory modules.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: An assignment scheme for parallel memory modules in 
sliding-window switch architecture 
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Fig.4: Use of Temp-Array in assignment of memory modules. 
 
 
Secondly, if an ith slot is available only in OSV-j but not 
available in the Temp Array then the search defaults to step 
310 (Fig.3) that assigns an available space in OSV-j, and 
ignores the temp array. It can be noticed that first the attempt 
is made to find the best slot that is available in both the OSV-j 
and the Temp Array. When that is not possible, then the 
scheme tries to find the slot only in OSV-j, which is same as 
the scheme used in [7]. The packet is dropped only when there 
are no slots available in OSV-j. This means that in a given 
switch cycle there may be more than one incoming packets 
that might need to be written to the same memory module. 
Under this situation, the memory speed will need to be 
increased compared to the line-speed, for the memory modules 
to accommodate multiple memory access for writing multiple 
packets of a switch cycle. According to this scheme, the 
memory speed-up is needed only at the memory-write but not 
during the memory-read phase of the switching. In the section 
below, we perform simulations to compare the memory-speed 
requirement and Packet-loss performance of the SMB switch 
and the Sliding-Window switch.  
 

IV. PERFORMANCE EVALUATION 
 
A.  Bursty Traffic model 
 
Bulk-data transfer applications transmit data in bursts. To 
study comparative performance of these switching systems, a 
bursty traffic is generated using a two state ON-OFF model 
i.e. by alternating, a geometrically distributed period during 
which no arrivals occur (idle period), by a geometrically 
distributed period during which arrivals occur (active period) 
in a Bernoulli fashion (Fig. 2) [7]. 
 

Active Idle

p

(1-p)

r

(1-r)

 
 

Fig. 5.  A two-state ON-OFF model.  

 
According to traffic model used in [7], if p and r characterize 
the duration of the active and idle period respectively, then the 
offered load L is given by  
 

L =
EB i[ ]

EI i[ ]+ EB j[ ]( ) =
r

r + p − rp .      
 
B. Simulation Setup  
The measures of interest considered in the simulation studies 
are the offered load for a bursty traffic of a given average 
burst length (ABL), number of memory-cycles needed per 
switch cycle in the worst-case traffic load of 100%, and 
packet-loss ratio (PLR) of the switch. The simulation 
experiment started out with empty memory modules and the 
incoming bursts of packets were uniformly distributed to the 
output ports. Depending on the offered load, a maximum of 32 
million packets were generated for evaluation of performance 
parameters of 32x32 SMB and Sliding-Window switches. 
Bulk data transfer applications usually have higher burst 
length at the source, however, by the time multiple source 
traffic are multiplexed and rate controlled on a given high 
speed line, its burst-length might become smaller when it 
reaches the switch ports. In this paper, we consider a bursty 
traffic with an average burst length (ABL) of 8 packets just for 
comparative evaluation of two architectures, even though bulk 
data transfer in cluster interconnects may have an ABL greater 
than 8 packets.  
 
C. Switch configuration for SMB and SW Switch 
Both switches were configured for comparison study under 
conditions of identical resources and traffic type. The switch 
size of 32x32 was considered for both the SMB switch and the 
SW switch for comparative evaluation. The total shared-
memory deployed in both the switches = 2048 packets, the 
minimum number of memory modules required according to 
requirements given in [7] = m = 2N = 64, and the packet-size 
of a memory module = σ = 32 packets.  For efficient sharing 
of common memory space among the output ports of these 
switches, the dynamic threshold scheme is used as given in [9] 
with α = 1.  
 
 

V. PERFORMANCE RESULTS & DISCUSSION 
 
In this paper, we measure the worst-case memory-bandwidth 
requirement, and packet loss ratio (PLR) for the same-size 
SMB based switch and sliding-window based switch. It is 
observed in Table-2, the worst-case memory bandwidth 
requirement in terms of the memory-cycles required to 
write/read packets to/from the memory in a given switch 
cycle. The first column of the Table-2 shows the number of 
memory-cycles used for READ/WRITE operations for packets 
belonging to a given switch cycle. The second column of the 
Table-2 shows the percentage of the switch cycles that need a 
given number of memory-cycles (indicated in the first column 
of the table) for READ/WRITE operations. It is observed that 
for the given switch-size of 32x32 used in this simulation, the 
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SMB switch required a maximum (worst case) of 7 memory-
cycles per switch cycle. On the other hand, the sliding-window 
switch with identical resource and the switching scheme of 
Fig.3 required a maximum (worst case) of 2 memory-cycles 
per switch cycle for READ/WRITE operations for packets 
input in a given switch cycle. 

 
Table-2: Worst-case scenario for # of memory-cycles required per 

switch cycle for packets’ READ/WRITE memory operations in 
SMB, and SW switch with the memory assignment scheme of Fig.3. 
 

Number of 
Memory-Cycles 

used for 
READ/WRITE 

operations. 

Number of Switch 
cycles in Shared 

Multibuffer 
(SMB) based 

Switch [2] 

Number of 
Switch cycles in 
Sliding-Window 

(SW) Switch 
with new scheme 

1 Cycle 63.65900% 99.99993% 
2 Cycles 29.16323% 0.00007% 
3 Cycles 6.25252% 0% 
4 Cycles 0.84300% 0% 
5 Cycles 0.07670% 0% 
6 Cycles 0.00543% 0% 
7 Cycles 0.00012% 0% 

 
As the size of the switch increases, the memory-bandwidth 
requirement will also increase, which in turn imposes a 
physical limitation on the switch’s scalability. Since the 
memory bandwidth can’t be increased beyond a certain point, 
the switches will have to operate with a fixed memory speed. 
Since the memory-bandwidth is usually fixed due to physical 
constraints, the performance of the SW switch with switching 
scheme of Fig.3 is compared with that of SMB switch under 
conditions of a fixed memory bandwidth. For comparison, we 
limit the switches’ memory-bandwidth to one (i.e. the 
memory-speed = line speed). We then compare the packet loss 
ratio (Fig.6) for the SW switch with an assignment scheme 
given in Fig.3, and the SMB switch under condition of a fixed 
memory bandwidth (MB) =1 (i.e. without any memory speed-
up) 
 

 
Fig.6. Packet-loss ratio for SMB switch, and SW switch with the 

assignment scheme of Fig.3, and with memory-bandwidth (MB) = 1 

Fig.6 shows the steady-state packet loss ratio (PLR) of the 
sliding-window switch with switching scheme of Fig.3 to be 
much reduced compared to that of the same size SMB-switch 
under conditions of identical memory size, memory bandwidth 
and the traffic type. 
 
Smaller packet loss for the sliding-window switch means there 
will be a reduced number of end-to-end retransmission of TCP 
layer payload data in the network. Use of the sliding window 
switch can directly lead to a faster end-to-end transfer of high-
volume application data in distributed computing and cluster 
interconnect environment. 
 
 

VI. CONCLUSION 
 
In this paper, we present a class of switch architecture with 
parallel and shareable memory modules that can be used for 
efficient transfer of high-volume data in distributed computing 
and cluster interconnect environment. There are two known 
switches that belong to this type of architecture, namely the 
shared multi-buffer (SMB) switch and the sliding-window 
(SW) switch. In this paper, we propose a new packet-
scheduling scheme for the sliding-window (SW) switch 
architecture and compare its performance with that of the 
packet-scheduling scheme of another well-known switch 
architecture namely the SMB switch. Performance and 
scalability of these switches are constrained due to the limited 
memory-speed of the memory modules. Hence, it is very 
important to have a switch architecture that provides high 
performance with limited memory-bandwidth. We measure 
the worst-case memory-bandwidth requirement and packet-
loss performance of the sliding-window (SW) switch (using 
the proposed memory assignment scheme) against the SMB 
switch under conditions of identical switch size, memory size, 
memory-speed and traffic type. It is observed that under 
conditions of identical memory-resource and traffic type, the 
class of sliding-window (SW) switch with its new packet-
scheduling scheme, has much reduced memory-bandwidth 
requirement compared to that of its SMB-based switch 
counterpart. Furthermore, for a fixed value of memory-
bandwidth and memory-resource deployed in the switch, the 
class of the sliding-window switch achieves smaller packet-
loss when compared with that of a same size SMB-based 
switch. Smaller packet loss incurred by the sliding-window 
(SW) switch can directly lead to a faster end-to-end transfer of 
high-volume application data in a distributed computing and 
cluster interconnect environment. 
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