
Abstract— Switches are often known to be a perfomance
bottleneck in a distributed computing environment that require
transfer of high-speed, high-volume data. This is primarily due to
buffer overflow in the switches that result in loss of packets. Loss
of packets require retransmission of higher layer protocol data
segments which floods the network with redundant packets only
to be dropped by the TCP layer of the end systems. The
redundant packets in the retransmitted segments clog the
network switches and thus exagerating the congestion and
further packet loss. In distributed computing environment that
involves high-volume data transfers, it is very important to
minimize packet loss at intermediate switches/routers by
maximizing the utilization of memory resources deployed at the
switch. Switches deploying shared memory resources are known
to incur lowest packet loss compared to other memory allocation
schemes. However, the memory being inherently slow, it becomes
difficult for a large number of high-speed links to share the
common memory space deployed in a shared-memory switch.
There have been several attempts made to overcome the
memory-speed limit that prevent a shared memory switch from
scaling to a larger size. In this paper, we discuss architectures
that deploy parallel memory modules to enhance the overall
capacity of the shared-memory based switches. We also present
performance comparison in terms of memory-speed requirement
& packet loss ratio.

Keywords: Distributed Computing, High-Volume Data
transfer, Performance evaluation, Shared multibuffer switch,
Sliding-window packet switch.

I. INTRODUCTION

High-performance, distributed computing applications in high-
energy physics, climate modeling, medical imaging, and
earthquake engineering require efficient transfer of data in
wide area network environment [1]. Switches deployed in data
networks are often known to be a perfomance bottleneck in a
distributed computing environment that requires transfer of
high-speed, high-volume data. This is primarily due to buffer
overflow in the switches that result in loss of packets [2].
There are two obvious options to solve this problem. First is to
deploy extremly large amount of dedicated buffers at each
ports of the switch to minimize the loss of data packets.

% Authors are with Networking Research Lab (NRL) in the Electrical

Engineering department of UTPA. Work of Dr. Kumar is supported in part by
funding from FRC, FDC, CITeC, OBRR/NIH, and digital-X.

Second is to use sharing of memory resources in the switch to
minimize the loss of data packets at the switches. There are
three different strategies commonly used for buffer allocation
for switches, namely the dedicated buffers at the input ports,
dedicated buffers at the output ports, and shared buffers shared
by all the input and output ports. Dedicated buffers are usually
very large in size in high-speed switches to keep the packet
loss requirements low [2], and they have difficulty in being
properly utilized, as at times some ports may be active causing
buffer overflow, while others ports may remain idle and
underutilized. Furthermore, the dedicated large amount of
memory at each port of a high-capacity switch consumes
significant amount of circuit space and power. Due to low
utilization of dedicated buffers, the concept of sharing the
memory resource among all ports of a switch becomes quite
attractive. Sharing of memory resources among the ports of a
switch architecture is known to provide best utilization of a
given memory resource deployed in a switch [3-4]. The
measurement results in [3] show the comparative performance
of three different types of memory allocations in switches. It is
shown in Table-1 that for a given load of 85%, the class of
shared memory based switches require the least amount of
buffer compared to other dedicated buffer allocation strategies
such as input buffer and output buffer to provide a loss of 10-9.
Table-1 presents the buffer size required (in ATM cells) to
achieve a cell-loss rate of 10-9 under 85% traffic load for
different size switches with different buffer allocation
schemes.

Table-1: Buffer size required for a traffic load of 85% and
cell-loss-rate of 10 –9 [3]

Type Switch Size

16x16

32x32

Shared Buffer 113 199
Input Buffer 320 640

Output Buffer 896 1824

Despite the best memory utilization, the shared memory
switches are limited in the number of high-speed links it can
support. This is due to the physical limitations imposed on the

SANJEEV KUMAR, SENIOR MEMBER, IEEE AND ALVARO MUNOZ, STUDENT MEMBER, IEEE %
Networking Research Lab, Department of Electrical Engineering
The University of Texas-Pan American, Edinburg, Texas-78541

Ph: 956-381-2401; Email: sanjeevk@utpa.edu

Switch Architecture for Efficient Transfer of
High-Volume Data in Distributed Computing

Environment

memory speed, which in turn limits the scalability of the
shared-memory based switches. In order to overcome the
limitations imposed by the memory-speed, some architectures
deploy parallel memory modules that can be physically
separate but logically connected [5-7]. In this paper, we call
such architecture to deploy shareable parallel memory
modules.

Switching Architectures deploying shareable parallel memory
modules are quite versatile in their ability to scale to higher
capacity while retaining the advantage of sharing its entire
memory resource among all input and output ports. There are
only two main classes of such architectures, namely the
Shared Multibuffer (SMB) based switch [5-6] and the Sliding-
Window (SW) based packet switch [7], that deploy parallel
shareable memory modules. Despite their similarity in regards
to using shareable parallel memory modules, they differ in
switching control & scheduling of packets to parallel memory
modules. SMB switch uses centralized control where as the
SW switch uses a decentralized control for switching
operations. However, in this paper, we discuss operation of
packet-scheduling schemes used in these switches. In this
paper, we propose a new scheme for assignment of parallel
memory modules for the SW-switch, and compare its
performance with the scheme used for packet scheduling in
the SMB switch (Fig.1) under conditions of identical resource
and traffic type.

The performance of these two classes of switching systems is
compared in terms of memory-speed required by these
systems and the packet loss incurred for a given memory
speed. In order to assign incoming packets to parallel memory
modules, there are more than one scheme that can be used for
Sliding-Window switch [7-8]. In this paper, we use a new
memory assignment scheme for the Sliding-Window (SW)
switch for assigning packets to parallel memory modules that
maximizes the parallel storage of packets to multiple memory
modules. The flow-chart for this assignment scheme is shown
in Fig.3. We compare the performance of a sliding-window
switch deploying this memory assignment scheme (Fig.3) with
that of a SMB switch architecture under conditions of identical
traffic type and memory resources deployed. Section II of this
paper presents the switching scheme for the class of shared
multi-buffer (SMB) switch architecture [5-6], which is used
primarily for comparison purposes. The sliding-window
switch architecture [7] with a new memory assignment
scheme is presented in section III. Section IV presents the
bursty traffic model that can be used to depict high-volume,
data-intensive traffic. A bursty traffic of average burst
length=8 is used to evaluate the performance of the sliding-
window switch and that of SMB switch. Performance results
are discussed in Section V, and Section VI concludes the
paper.

II. THE SHARED MULTI-BUFFER (SMB) SWITCH

The Shared-Multibuffer (SMB) switch architecture is
discussed in detail in [5-6]. Multiple memory-modules are
shared among all the input/output ports through cross-point

switches. The control for the SMB-based switching system is
centralized and maintains a buffer address queue for each
output port and the idle-addresses pool to store the vacant
addresses. For complete sharing of memory-modules, the idle
buffer and the address-queue for each output port in SMB
switch need to be as large as the total memory space. The
centralized controller is responsible for coordinating all the
switching functions for the SMB switching system, which in
turn limits the scalability of this architecture.

Fig.1: Shared-Multi Buffer (SMB) switch architecture [5-6].

In SMB architecture [3-4], an incoming packet is assigned to
the least occupied memory-module first. The least occupied
memory-module is given highest priority for an incoming
packet to be written to. Based on the occupancy of the
memory modules, it is possible to assign different memory
modules to different packets input in a given switch cycle.
This results in multiple packets stored in different memory
modules in parallel, and hence requiring no increase in the
memory bandwidth during the WRITE cycle. However, during
the READ cycle, it is possible for multiple packets of the same
memory module to be scheduled to go to different output ports
during the same switch cycle. This requires multiple packets
to be read out of the same memory modules in the same
switch cycle, and hence this increases the memory-bandwidth
requirement of the SMB switch during the READ cycle. Since
memory speed-up is required only during the READ cycle, the
memory-bandwidth requirement for a SMB switch can be
defined as the number of memory READ cycles needed per
switch cycle to output the scheduled packets from the memory
modules.

III. THE SLIDING-WINDOW (SW) SWITCH

The class of sliding-window (SW) switch is discussed in detail
in [7]. The class of the sliding-window switch is characterized
by parallel memory modules and decentralized control. The
self-routing parameter assignment circuit computes the self-
routing parameters (i,j,k) to be attached to the incoming
packets. The parameter j in the self-routing tag designates the
jth output slot vector (OSV), which represents a packet’s
location in ith memory module, and parameter k value
determines a packets turn to go out. The parameter assignment
circuit first determines the j and k parameters, and then uses
the j and k values to determine the value of the ith parameter
i.e. the memory module (i) where an incoming packet is stored
[7].

Fig.2: A 4x4 Sliding-Window switch architecture [7].

The packets input in the same switch cycle are assigned
different values of i (i.e. the ith memory module) in an
increasing order. However, in the switching scheme given in
[7], it is possible for two or more incoming packets of a switch
cycle belonging to different OSVs(j) to be scheduled to be
written to same memory module. This requires the switching
scheme in [7] to speed-up the memory-modules to enable
multiple-write operations in a given switch cycle. This in turn
requires an increase in the memory-bandwidth requirement of
a SW-switch during the WRITE cycle. The read operation of
the SW-switch is such [7] that no more than one packet is
output from one memory module, each output ports gets a
packet each switch cycle (if available in the memory) and re-
ordering of packets is not required. This results in only one
read operation per memory module per switch cycle. Hence in
the sliding-window switch architecture, the memory speed-up
is needed only during the WRITE cycle but not during the
READ cycle. The memory-bandwidth requirement for a
sliding-window switch is simply the number of memory
WRITE cycles needed per switch cycle to store incoming
packets to memory modules.

Due to physical limitations, the speed of memory modules can
be increased only so far. It is important to design a memory
assignment scheme that maximizes the parallel write of

packets to different memory modules in a given switch cycle
without requiring an increase in memory speed-up.

A. A New Memory Assignment Scheme for SW switch

There are more than one ways for the packets of a switch
cycle to be assigned parallel memory modules in the sliding-
window switch [7-8]. A new scheme for memory-assignment
in SW-switch is presented in this section. The main goal of a
memory assignment scheme is to maximize the parallel write
of packets to multiple memory modules so that the speed-up
requirement of memory modules can be reduced. According to
this scheme (Fig.3), an additional array is used called Temp[i]
for i=1 to m, where m is the number of memory modules
deployed in the switch. The Temp[i] is used to keep track of
the assignment of memory-modules in a given switch cycle
(Fig.4). Each switch cycle, the Temp array is initialized to 0 to
indicate availability of all memory modules for packet
assignment. According to this scheme, first the best option is
considered i.e. a packet is assigned to a memory module i if
the ith slot is available in both the jth OSV as well as the
Temp[i]. This condition is depicted by steps 306 and 308 of
the flow-chart in Fig.3. Availability of ith slot in both arrays,
OSV-j (i.e. jth OSV column in the scan-table, ST(i,j) in [7])
and the Temp [i] is to allow the packets of a switch cycle to be
assigned to different memory modules and hence maximize
the parallel write of packets to different memory modules.

Fig.3: An assignment scheme for parallel memory modules in
sliding-window switch architecture

H
ea

de
r P

ro
ce

ss
in

g
C

irc
ui

t
&

Pa

ra
m

et
er

 A
ss

ig
nm

en
t C

ir
cu

it

Pipeline Stage - 1:
Assign (i,j,k) to

incoming packets

Pipeline Stage - 2 :
Route packets to
memory modules

Pipeline Stage - 3:
WRITE packets to
memory modules

Pipeline Stage - 5:
Route packets to destined

output lines ‘d’.

Pipeline Stage - 4:
READ packets from

memory modules.

self-routing Parameters
Assignment Circuit

output-interconnection
network

3x4 4x2

3x4 4x2

shared parallel
memory modules������������������

��
������������������
������������������������������������
������������������������������������
������������������

m1
m2
m3

m4
m5
m6

input-interconnection
network

2x4 4x3

2x4 4x3

output-interconnection
network

3x4 4x2

3x4 4x2

3x4 4x2

3x4 4x2

shared parallel
memory modules������������������

��
������������������
������������������������������������
������������������������������������
������������������

m1
m2
m3

m4
m5
m6

������������������
��
������������������
������������������������������������
������������������������������������
������������������

m1
m2
m3

m4
m5
m6

input-interconnection
network

2x4 4x3

2x4 4x3

306

Yes

Yes

302

300 i = parameter assigned to
the last packet accepted

y = 0

304

No
ST(i, j) = 0 ?

i = (i mod m) + 1
y = y + 1

Parameter i
Temp(i)=1

ST(i,j) = kd

308
No

Temp(i) = 0 ?

No

Yes

310

y > m

i = the first available slot
found in OSV-j;

If no slots available then
drop packet

306

Yes

Yes

302

300 i = parameter assigned to
the last packet accepted

y = 0

304

No
ST(i, j) = 0 ?

i = (i mod m) + 1
y = y + 1

Parameter i
Temp(i)=1

ST(i,j) = kd

308
No

Temp(i) = 0 ?

No

Yes

310

y > m

i = the first available slot
found in OSV-j;

If no slots available then
drop packet

Fig.4: Use of Temp-Array in assignment of memory modules.

Secondly, if an ith slot is available only in OSV-j but not
available in the Temp Array then the search defaults to step
310 (Fig.3) that assigns an available space in OSV-j, and
ignores the temp array. It can be noticed that first the attempt
is made to find the best slot that is available in both the OSV-j
and the Temp Array. When that is not possible, then the
scheme tries to find the slot only in OSV-j, which is same as
the scheme used in [7]. The packet is dropped only when there
are no slots available in OSV-j. This means that in a given
switch cycle there may be more than one incoming packets
that might need to be written to the same memory module.
Under this situation, the memory speed will need to be
increased compared to the line-speed, for the memory modules
to accommodate multiple memory access for writing multiple
packets of a switch cycle. According to this scheme, the
memory speed-up is needed only at the memory-write but not
during the memory-read phase of the switching. In the section
below, we perform simulations to compare the memory-speed
requirement and Packet-loss performance of the SMB switch
and the Sliding-Window switch.

IV. PERFORMANCE EVALUATION

A. Bursty Traffic model

Bulk-data transfer applications transmit data in bursts. To
study comparative performance of these switching systems, a
bursty traffic is generated using a two state ON-OFF model
i.e. by alternating, a geometrically distributed period during
which no arrivals occur (idle period), by a geometrically
distributed period during which arrivals occur (active period)
in a Bernoulli fashion (Fig. 2) [7].

Active Idle

p

(1-p)

r

(1-r)

Fig. 5. A two-state ON-OFF model.

According to traffic model used in [7], if p and r characterize
the duration of the active and idle period respectively, then the
offered load L is given by

L =
EB i[]

EI i[]+ EB j[]() =
r

r + p − rp .

B. Simulation Setup
The measures of interest considered in the simulation studies
are the offered load for a bursty traffic of a given average
burst length (ABL), number of memory-cycles needed per
switch cycle in the worst-case traffic load of 100%, and
packet-loss ratio (PLR) of the switch. The simulation
experiment started out with empty memory modules and the
incoming bursts of packets were uniformly distributed to the
output ports. Depending on the offered load, a maximum of 32
million packets were generated for evaluation of performance
parameters of 32x32 SMB and Sliding-Window switches.
Bulk data transfer applications usually have higher burst
length at the source, however, by the time multiple source
traffic are multiplexed and rate controlled on a given high
speed line, its burst-length might become smaller when it
reaches the switch ports. In this paper, we consider a bursty
traffic with an average burst length (ABL) of 8 packets just for
comparative evaluation of two architectures, even though bulk
data transfer in cluster interconnects may have an ABL greater
than 8 packets.

C. Switch configuration for SMB and SW Switch
Both switches were configured for comparison study under
conditions of identical resources and traffic type. The switch
size of 32x32 was considered for both the SMB switch and the
SW switch for comparative evaluation. The total shared-
memory deployed in both the switches = 2048 packets, the
minimum number of memory modules required according to
requirements given in [7] = m = 2N = 64, and the packet-size
of a memory module = σ = 32 packets. For efficient sharing
of common memory space among the output ports of these
switches, the dynamic threshold scheme is used as given in [9]
with α = 1.

V. PERFORMANCE RESULTS & DISCUSSION

In this paper, we measure the worst-case memory-bandwidth
requirement, and packet loss ratio (PLR) for the same-size
SMB based switch and sliding-window based switch. It is
observed in Table-2, the worst-case memory bandwidth
requirement in terms of the memory-cycles required to
write/read packets to/from the memory in a given switch
cycle. The first column of the Table-2 shows the number of
memory-cycles used for READ/WRITE operations for packets
belonging to a given switch cycle. The second column of the
Table-2 shows the percentage of the switch cycles that need a
given number of memory-cycles (indicated in the first column
of the table) for READ/WRITE operations. It is observed that
for the given switch-size of 32x32 used in this simulation, the

0

1

0

1

2

0

0

1

0

1

2

0

i=m

i=4

i=3

i=2

i=1

i=m

i=4

i=3

i=2

i=1

OSV-j

Available
Slot in
OSV j

0

0

0

1

0

1

0

0

0

1

0

1

Temp

Available Slot
in Temp

.

.

.

Search

0

1

0

1

2

0

0

1

0

1

2

0

i=m

i=4

i=3

i=2

i=1

i=m

i=4

i=3

i=2

i=1

OSV-j

Available
Slot in
OSV j

0

0

0

1

0

1

0

0

0

1

0

1

Temp

Available Slot
in Temp

.

.

.

Search

SMB switch required a maximum (worst case) of 7 memory-
cycles per switch cycle. On the other hand, the sliding-window
switch with identical resource and the switching scheme of
Fig.3 required a maximum (worst case) of 2 memory-cycles
per switch cycle for READ/WRITE operations for packets
input in a given switch cycle.

Table-2: Worst-case scenario for # of memory-cycles required per

switch cycle for packets’ READ/WRITE memory operations in
SMB, and SW switch with the memory assignment scheme of Fig.3.

Number of
Memory-Cycles

used for
READ/WRITE

operations.

Number of Switch
cycles in Shared

Multibuffer
(SMB) based

Switch [2]

Number of
Switch cycles in
Sliding-Window

(SW) Switch
with new scheme

1 Cycle 63.65900% 99.99993%
2 Cycles 29.16323% 0.00007%
3 Cycles 6.25252% 0%
4 Cycles 0.84300% 0%
5 Cycles 0.07670% 0%
6 Cycles 0.00543% 0%
7 Cycles 0.00012% 0%

As the size of the switch increases, the memory-bandwidth
requirement will also increase, which in turn imposes a
physical limitation on the switch’s scalability. Since the
memory bandwidth can’t be increased beyond a certain point,
the switches will have to operate with a fixed memory speed.
Since the memory-bandwidth is usually fixed due to physical
constraints, the performance of the SW switch with switching
scheme of Fig.3 is compared with that of SMB switch under
conditions of a fixed memory bandwidth. For comparison, we
limit the switches’ memory-bandwidth to one (i.e. the
memory-speed = line speed). We then compare the packet loss
ratio (Fig.6) for the SW switch with an assignment scheme
given in Fig.3, and the SMB switch under condition of a fixed
memory bandwidth (MB) =1 (i.e. without any memory speed-
up)

Fig.6. Packet-loss ratio for SMB switch, and SW switch with the

assignment scheme of Fig.3, and with memory-bandwidth (MB) = 1

Fig.6 shows the steady-state packet loss ratio (PLR) of the
sliding-window switch with switching scheme of Fig.3 to be
much reduced compared to that of the same size SMB-switch
under conditions of identical memory size, memory bandwidth
and the traffic type.

Smaller packet loss for the sliding-window switch means there
will be a reduced number of end-to-end retransmission of TCP
layer payload data in the network. Use of the sliding window
switch can directly lead to a faster end-to-end transfer of high-
volume application data in distributed computing and cluster
interconnect environment.

VI. CONCLUSION

In this paper, we present a class of switch architecture with
parallel and shareable memory modules that can be used for
efficient transfer of high-volume data in distributed computing
and cluster interconnect environment. There are two known
switches that belong to this type of architecture, namely the
shared multi-buffer (SMB) switch and the sliding-window
(SW) switch. In this paper, we propose a new packet-
scheduling scheme for the sliding-window (SW) switch
architecture and compare its performance with that of the
packet-scheduling scheme of another well-known switch
architecture namely the SMB switch. Performance and
scalability of these switches are constrained due to the limited
memory-speed of the memory modules. Hence, it is very
important to have a switch architecture that provides high
performance with limited memory-bandwidth. We measure
the worst-case memory-bandwidth requirement and packet-
loss performance of the sliding-window (SW) switch (using
the proposed memory assignment scheme) against the SMB
switch under conditions of identical switch size, memory size,
memory-speed and traffic type. It is observed that under
conditions of identical memory-resource and traffic type, the
class of sliding-window (SW) switch with its new packet-
scheduling scheme, has much reduced memory-bandwidth
requirement compared to that of its SMB-based switch
counterpart. Furthermore, for a fixed value of memory-
bandwidth and memory-resource deployed in the switch, the
class of the sliding-window switch achieves smaller packet-
loss when compared with that of a same size SMB-based
switch. Smaller packet loss incurred by the sliding-window
(SW) switch can directly lead to a faster end-to-end transfer of
high-volume application data in a distributed computing and
cluster interconnect environment.

ACKNOWLEDGEMENT

Work of Dr. Kumar is supported in part by funding from
Faculty Research Council, FDC, CITeC, OBRR/NIH, digital-x
Inc.

Authors would like to thank all anonymous reviewers for their
useful comments regarding bulk data transfer applications in
cluster interconnect environment.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Effective Load

Pa
ck

et
-L

os
s

R
at

io
 (P

LR
)

Shared Multibuffer (SMB) Switch
Sliding-Window (SW) Switch

Memory Bandwidth MB = 1
Switch Size NxN = 32x32
Total Memory = 2048 packets
m = 64 = 32
p = 32 = 1
ABL = 8 packets

σ
α

Memory Bandwidth MB = 1

Packet loss in
SMB- Switch

Packet loss in
SW- Switch

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Effective Load

Pa
ck

et
-L

os
s

R
at

io
 (P

LR
)

Shared Multibuffer (SMB) Switch
Sliding-Window (SW) Switch

Memory Bandwidth MB = 1
Switch Size NxN = 32x32
Total Memory = 2048 packets
m = 64 = 32
p = 32 = 1
ABL = 8 packets

σ
α

Memory Bandwidth MB = 1

Packet loss in
SMB- Switch

Packet loss in
SW- Switch

REFERENCES

[1] B. Allcock et al “Secure, Efficient Data Transport and
Replica Management for High-Performance Data-Intensive
Computing,” www.isi.edu/~annc/papers/msc01paperann.pdf

[2] B.L. Tierney, “Distributed Storage Caches and Distributed
System Performance Analysis Tools,” Supercomputing’98
Distributed Storage Caches and Distributed System
Performance Analysis Tools Data Intensive Computing
Tutorial

[3] K. A. Lutz, "Considerations on ATM Switching
Techniques," International Journal of Digital and Analog
Cabled Systems, vol. 1, no. 4, October 1988, pp. 237-243.

[4] M. I. Irland, “Buffer management in a packet switch,”
IEEE Transactions of Communications, vol.26, pp. 328-337,
1978.

[5] K. Oshima, H. Yamanaka, H. Saito, H. Yamada, S.
Kohama, H. Kondoh, and Y. Matsuda, “A new ATM switch
architecture based on STS-type shared buffering and its
implementation,” in Proc. XIV Int. Switching Symp. (ISS’92),
vol. 1, Oct. 1992, pp. 359–363.

[6] H. Yamanaka et al, “Scalable Shared-Buffering ATM
Switch with a Versatile Searchable Queue,” IEEE Journal on
Selected Areas in Communications, vol. 15, no. 5, pp. 773-
784, June 1997.

[7] S. Kumar, “The Sliding-Window Packet Switch: A new
class of packet switch architecture with plural memory
modules and decentralized control,” IEEE Journal on Selected
Areas in Communications, vol. 21, No. 4, pp. 656-673, May
2003.

[8] S. Kumar and T. Doganer, “Memory-Bandwidth
Performance of the Sliding-Window based Internet
Routers/Switches,” IEEE Workshop on Local and
Metropolitan Area Networks, San Francisco, CA, April 2004,
pp. 205-210.

[9] Choudhury, A.K. and Hahne, E.L., “Dynamic queue length
thresholds for shared-memory packet switches,” IEEE/ACM
Transactions of Networking, vol.6, no.2, pp.130-140, 1998.

