
Solving Hot Spot Contention
Using InfiniBand Architecture
Congestion Control

G. Pfister, M. Gusat, W. Denzel, D. Craddock,
N. Ni, W. Rooney, T. Engbersen, R. Luijten, R.
Krishnamurthy and J. Duato

G. Pfister (pfister@us.ibm.com) and N. Ni are with IBM Systems and
Technology Group, Austin, TX USA. M. Gusat and W. Denzel are with
IBM Research GmbH, Rüschlikon, Switzerland. D. Craddock and W.
Rooney are with IBM Systems and Technology Group, Poughkeepsie, NY
USA. J. Duato is with Technical University of Valencia, Spain.

mailto:pfister@us.ibm.com

Outline
The problem

Demonstrated solution
Why the problem matters
How the solution works

Networks behaving badly
Preliminary guidelines

Conclusions and Future directions

3-Stage 32-Port InfiniBand Fat Tree, Simulated

Drawn unfolded: Up on left, Down on right.
Dashes & dots are shortcut paths within switches

shortcut routes within same SEs

same SEs

port 128

port 4

port 1

port 4

port 1

port 128

HCATx

HCATx

.
.

.
.

.

HCARx

HCARx

.
.

.
.

.

16 8x8

.
.

.
.

.
.

.
.

.

32 4x4

.

.

.

.

32 4x4

.

.

.

.

32 4x4

.

.

.

.

32 4x4

.

.

.

.

Input Traffic Pattern
Run for a bit at 80%
load, with destinations
uniformly distributed
from each source to
each destination.
2 ms. into run, each
input moves 9% of its
load to port 32

Lower uniformly-
distributed load to keep
aggregate load constant.

4 ms. later, go back to
original uniform load.

Uniformly Distributed Offered Load

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10
time (ms)

Input Load Targetted at port 32, per input port

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10

time (ms)

Result: Global Catastrophic Loss of Throughput

Traffic to one port messes up everybody else.

0

.5

1

0 2ms 4ms 6ms 8ms 10ms

Th
ro

ug
hp

ut
 (

fo
r o

ut
pu

ts
 0

..3
1)

Time

start congestion end

hot spot
output

other
outputs

Why: Tree Saturation / Congestion Spreading

Hot output link saturates; link-level FC fills queuing of next stage
Exhausts all storage in switch; backs up to next stage; etc., until all
traffic whacked.

shortcut routes within same SEs

same SEs

port 128

port 4

port 1

port 4

port 1

port 128

HCATx

HCATx

.
.

.
.

.

HCARx

HCARx

.
.

.
.

.

16 8x8

.
.

.
.

.
.

.
.

.

32 4x4

.

.

.

.

32 4x4

.

.

.

.

32 4x4

.

.

.

.

32 4x4

.

.

.

.

Same, With InfiniBand Congestion Control

Throughput drop = reduction in load keeping aggregate load constant.
Simulations modeled product-purposed hardware designs as closely as
possible.

0

.5

1

0 2ms 4ms 6ms 8ms 10ms

Th
ro

ug
hp

ut
 (

fo
r o

ut
pu

ts
 0

..3
1)

Time

start congestion end

0

.5

1

0 2ms 4ms 6ms 8ms 10ms

Th
ro

ug
hp

ut
 (

fo
r o

ut
pu

ts
 0

..3
1)

Time

start congestion end

Same, Without (Repeat)

Why Does This Matter?
Solves a 20-year outstanding problem…

Pfister & Norton, “Hot Spot Contention and Combining in
Multistage Interconnection Networks”, IEEE TC, 10/1985

…for the first time.
not all co-authors agree with this; explanation later.

Original paper spawned a mini-industry of efforts to
solve the problem.

Eventually died out in the parallel arena because it didn’t
seem to occur in practice. Why?

(There are cases where it’s shown up in practice; has been
treated as a bug.)

Why Aren’t Networks Falling Over?

Net: They’ll start falling over pretty soon.

Factor Current / Past Emerging

Over-provisioning
(mainly
commercial)

Single use systems
(mainly HPC)

Must have > 1
message
outstanding

Early system limit;
single use; little
multiprogramming

All CPU chips multithread, multi-
core; multiprogramming must be
used

Drown the problem in
bandwidth; it’s cheap.

Doesn’t scale with # of nodes; node
scaling will be increasingly needed
(Moore’s law freq scaling KO).
Msg sizes rising dramatically (XML)

One problem per
machine →
congestion is a bug

Virtualization on and of clusters, so
communication not algorithmically
predictable

Why Prior Work Doesn’t Fix It
Assumes hot flow pre-identification before running

Divert hot flow to a separate lane, network, queue, or …
Can help, but it’s hard to predict bugs. (ISP xmp)
Also: Predict → rearrange to avoid the problem

Works – if the hot flow stops soon enough
Frantically reorganize switch element buffers to free up space
Only works for a limited time
IBA CC quenches the source.

Shuts down entire offending port
May be many virtual systems behind one physical port.
IBA CC just targets the hot flow(s) of a port

Targets lossy networks
Large amount of work on IP networks has little applicability:
no link-level flow control (also other issues, like speed)

Not that these techniques aren’t useful and good; they just aren’t
sufficient to solve this particular problem.
(Detailed references given in the printed paper.)

How It Works (1)

1) Detect congestion
Queue for VL > threshold
Optional: Mark only if root = output credits available

2) Propagate out: set Forward Explicit Congestion Notification
bit on all packets as long as congestion exists

3) Propagate back: receive FECN, respond with Backward
Explicit Congestion Notification bit

Part of normal response, or congestion notification packet
Sent back to source Queue Pair

threshold

Source HCA
Switch

4

21

5

Timer

Index

FECN

BECN

CCT
Destination

HCA

BECN 3

How It Works (2): Responding

4) Determine Added Delay: Whenever receive a BECN for QP,
increment index into Inter-Packet Delay Table

One index per QP
5) Apply Delay: When sending, wait for the Inter-Packet Delay

specified in IPD Table entry
6) Decay the Delay: Whenever a timer pops, decrement all IPD

Table indices on CA.

threshold

Source HCA
Switch

4

21

5

Timer

Index

FECN

BECN

IPD_T
Destination

HCA

BECN 3

See IB Architecture Vol. 1 Rel 1.2 for details.

But Does That Really Work?
Many parameters need to be chosen:

Length of IPD Table
IPD Table entry values
Timer period
Detection threshold
IPD Table index increment

This is a feedback system with delay
Worse because of forward/back propagation, chosen to
keep switches simple while targeting only the hot flows

Can you get bad behavior?
Yes.

Networks Behaving Badly

Cannot chose value at one end of the scale; either
end produces bad behavior.

Traffic case 4 (a)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%
IPD index step too low (=2)

Traffic case 4 (b)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%
IPD index step too high (=40)

.5

1

0 2ms 4ms 6ms 8ms 10ms
Time

start congestion end
0

.5

1

0 2ms 4ms 6ms 8ms 10ms
Time

start congestion end

Networks Behaving Badly, 2

Recovery timer can’t be pushed to an extreme, either

Traffic case 4 (c)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%

IPD recovery timer too fast (=2.6us)

Traffic case 4 (d)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%

IPD recovery timer too slow (=84us)

0

.5

1

0 2ms 4ms 6ms 8ms 10ms
Time

start congestion end
0

.5

1

0 2ms 4ms 6ms 8ms 10ms
Time

start congestion end

But It Appears Tunable
We have run literally 100s of simulation cases

Networks: 8, 32, 128, 432, 256, 512 ports; 2x2, 8x8, 16x16
switches; 2, 3, 8 stages of switching; fat tree and Omega
(Banyan) network.
Traffic & hot-spot cases:

50%-90% base background rate
All nodes contribute to hot spot, or just 3 (fire hose effect)
Hot spot very severe (300% link capacity) or just enough to
cause trouble (100%+ε).

Have always managed to find a set of parameters
that squelch the problem.

Preliminary Guidelines
N = network size, i.e., number of ports
H = maximum hot spot degree

Worst case = N, but can be less if system partitioning known.
Absolute time (µsec) values are referenced to simulated RTTs
of 2-20 µsec. without congestion.

Item Value
IPD Table size 128
Switch threshold for
detection

90% of queue capacity, with
some hysteresis (not critical)

IPD table index increment Min(1/6•N, 1/2•H)
Max IPD value 2/3 H µsec.
Recovery timer 10 µsec.

Conclusions & Future Work
The 20-year-old problem of tree saturation (congestion spreading) is
reappearing.
Automatic congestion control is necessary; congestion avoidance
becoming difficult or impossible

cannot assume pre-knowledge or congestion time limits
application dynamics create traffic unpredictability
resilient self-healing systems running mission-critical applications –
application migration, virtualization, etc.
peer-to-peer protocols increase difficulty rebalancing
Bugs!

InfiniBand’s Congestion Control offers a solution, which we have
verified in a wide variety of cases.
But it is a feedback system that can behave badly.
We’ve offered preliminary guidelines for parameter setting
Future:

More detailed guidelines
Other cases: output throttling, multiple hot spots
Investigate other marking and throttling mechanisms.

	Solving Hot Spot Contention Using InfiniBand Architecture Congestion Control
	Outline
	3-Stage 32-Port InfiniBand Fat Tree, Simulated
	Input Traffic Pattern
	Result: Global Catastrophic Loss of Throughput
	Why: Tree Saturation / Congestion Spreading
	Same, With InfiniBand Congestion Control
	Same, Without (Repeat)
	Why Does This Matter?
	Why Aren’t Networks Falling Over?
	Why Prior Work Doesn’t Fix It
	How It Works (1)
	How It Works (2): Responding
	But Does That Really Work?
	Networks Behaving Badly
	Networks Behaving Badly, 2
	But It Appears Tunable
	Preliminary Guidelines
	Conclusions & Future Work

