
 

  
Abstract: Since at least 1985[1] it has been known that certain 

traffic patterns in multistage interconnection networks, hot spots, can 
cause catastrophic congestion and loss of throughput. No practical 
technique has, until now, been demonstrated to alleviate this prob-
lem, which becomes increasingly severe as network size increases 
and networks are driven closer to saturation. The congestion control 
architecture (CCA) proposed for the InfiniBand™ Architecture was 
alleged to be a solution, but when it was defined it lacked both guid-
ance for setting its parameters and demonstration of its effectiveness. 
At its adoption, it had not even been demonstrated that there were 
any parameter settings that would work at all, avoiding instability or 
oscillations. This paper reports on extensive evaluation of IBA CCA, 
under different scenarios and congestion control parameters that (a) 
delivers the first guidance for setting CCA parameters for IBA; and 
(b) demonstrates that this is the first effective solution to hot spot 
contention published in 20 years. This result expected to be signifi-
cant for standards such as IBA and IEEE 802.1/3, particularly as 
virtualized networks become more common. 

Index Terms— congestion control, interconnection networks, 
InfiniBand, performance evaluation, hot spot contention 
 

I. INTRODUCTION 
Virtually all large computer installations, whether for com-

mercial or technical computing, now consist of computing 
nodes connected by a multistage interconnection network. It 
has, however, been known since at least 1985[1] that all such 
networks, of any topology, are subject to catastrophic loss of 
throughput under traffic patterns containing a hot spot: A spe-
cific destination to which enough traffic is directed from all 
nodes that the destination is overloaded, backing up traffic to 
other nodes. 

The discovery of the effects of such hot spot patterns initi-
ated, within the parallel computing, lossless networking com-
munity, a mini-industry of solution proposals. None of them 
were of practical use since all explicitly or implicitly assumed 
a priori knowledge of where the hot spot was; that is, they 
required use of special operations at the compute nodes issu-
ing the hot spot requests, and/or used special separate net-
works to handle the hot spot traffic.  

These efforts ultimately died out, at least in part because hot 
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spots apparently did not occur in practice. In retrospect, this 
lack of evidence can be explained by two factors: First, par-
ticularly in the commercial processing realm, most intercon-
nection networks have been substantially over-provisioned. It 
is relatively inexpensive, and avoids costly management, to 
simply drown the problem in excess bandwidth. Second, par-
ticularly but not exclusively in the parallel computing realm, 
collections of computing nodes are (perhaps temporarily) 
dedicated to a particular problem. This makes the traffic pat-
terns an intrinsic part of the algorithms used. As a result, con-
gestion and hot spots are treated as performance bugs to be 
analyzed and eliminated.  

Unfortunately, both of those factors may be eliminated in 
the near future. 

Over-provisioning is not a scalable solution. As the number 
of nodes increases, the fraction of each node’s traffic required 
for congestion to form decreases proportionally. Now, as op-
posed to, say, ten years ago, the limits to Moore’s law are be-
ing reached. That implies that computing capacity will be in-
creased only by adding parallelism, and not, as today, having 
increasing node speed to dampen the parallelism increase 
needed. So parallel scaling will increase and potentially over-
whelm affordable over-provisioning. Furthermore, the broad 
move to XML-based messaging for commercial data is esti-
mated to increase bandwidth requirements at least 20X; this is 
already beginning to strain installed communication facilities. 

Algorithmic predictability of network traffic is eliminated 
as virtualization becomes more common. When multiple vir-
tualized networks and nodes simultaneously inhabit the same 
physical hardware, it is no longer the case that any one algo-
rithm controls the traffic pattern; it becomes an overlay of 
several different algorithms’ patterns, varying with the de-
ployment of the virtual resources. Since the virtualization 
managers themselves cannot be expected to understand all 
systems’ traffic, it becomes unpredictable. 

For these reasons, networks adequate to the future demands 
of computing systems must incorporate effective congestion 
control that does not assume a priori knowledge by any com-
ponent of the traffic patterns being imposed.  

The question this paper answers, in part, is whether the con-
gestion control architecture proposed for IBA provides this 
capability. We find that IBA CCA can solve the hot spot prob-
lem, which has been outstanding for 20 years, for a fair collec-
tion of traffic patterns and several network topologies, in the 
sense that we are able to find parameter settings that quench 
hot spot congestion while avoiding oscillation and other sta-
bility side-effects.  
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This gives IBA a unique advantage over other contenders 
for interconnection in the data center, such as TCP/IP over 
Ethernet, extensions to PCI Express, RapidIO, HyperTrans-
port, etc.  

The remainder of the paper is organized as follows: In Sec-
tion II we describe congestion in lossless networks and in IB 
in particular. Section II briefly covers related work. Section III 
describes the IBA Congestion Control Architecture. Section V 
introduces our simulation models, networks and traffic pat-
terns. Results, analysis and guidelines follow in Section VI. 
Finally, in Section VII we conclude by discussing the limita-
tions of our current results and outline future work. 

II. HOT SPOT CONTENTION 
Figure 1 below illustrates the hot spot contention problem 
using a lossless three-stage 32 ports, 3-level fat tree using 8x8 
switches, drawn in an unfolded unidirectional representation 
illustrating its 5 actual stages of switching. Corresponding 
“half” switches on the left and right hand side are collocated 
in the same physical switches. 

 
If a sufficient fraction of all the inputs’ traffic targets one of 

the outputs (in the figure, the output labeled 128), that output 
link can become saturated. Should this happen persistently, it 
causes the queues in the switch feeding that link to fill up. If 
the traffic pattern persists indefinitely, then, no matter what 
techniques are used to reassign buffer space, it is all ultimately 
exhausted. This forces that switch’s link-level flow control to 
throttle back all the inputs feeding that switch (since the net-
work is lossless). That in turn ultimately causes the next stage 
of switching to fill its buffer space, and so on back to the net-
work inputs. This has been called tree saturation [1] or, in 
other contexts, congestion spreading.  

Once the tree of saturated switches is fully formed, every 
packet must cross at least one saturated switch. Since the time 
to exit a queue grows exponentially the further a switch is 
from the hot destination, a majority of the delay is incurred 
even if only a single switch must be crossed. Hence the net-
work as a whole suffers a catastrophic loss of throughput: Its 
aggregate throughput is gated by the throughput of the single 
hot output. 

Furthermore, the amount of traffic that must target the hot 
output decreases proportional to network size. For example, in 
an 128-input and -output network like that illustrated, slightly 
more than 1/128 of each input’s injected traffic must target the 
hot output to saturate that output. However, in a 1024-input 
and –output, less than 0.1% of each input’s injected traffic 
must target the hot output for the same problem to arise. 

Finally, saturation spreads very quickly; according to the 
analysis of [28], the tree is filled in less than 10 traversal times 
of the network – far too quickly for software to react in time 
to the problem. Naturally, the problem also dissipates slowly 
since all the queues involved must be emptied. Hence a hard-
ware solution is required that reacts quickly enough to keep 
the tree from growing large.  

From this and the lack of prior solutions it can be counted 
as very fortunate that the factors discussed above have for the 
most part mitigated this problem. It has, however, verifiably 
been encountered in at least one real situation involving cas-
caded IBM zSeries IO channel switches; it was fixed there by 
algorithmic modification. The authors are also aware of simi-
lar problems that appeared in other networks that have not 
been made public. 

Clearly the network topology is irrelevant to this effect; any 
network must contain trees like the above. The problem is a 
form of high-order head-of-line blocking [3, 10]. It can also 
be caused by flow interference [6, p. 112]. 

InfiniBand architecture is no more immune to this kind of 
contention than any other network architecture, despite al-
ready having facilities such as independently-queued virtual 
lanes (VLs) to keep identified flows separate from one another 
(facilities not present in, e.g., normal IP switching and rout-
ing). The issue addressed here, however, is not one of separat-
ing flows or fixing traffic patterns that one knows about in 
advance; that can always be done, using VLs or other means. 
The issue, rather, is avoiding the problem when it has not been 
predicted, but rather is caused unpredictably by unfortunate 
workload patterns, program bugs1 or even attacks. It is par-
ticularly necessary to solve this in installations running multi-
ple applications simultaneously, since its effects can seriously 
harm traffic that has nothing to do with the flows containing 
the hot traffic. 

Some recently proposed techniques have been touted in the 
industry press as “solving” the hot spot problem, when in fact 
they only mitigate it if the hot spot lasts a sufficiently short 
time [27]. The techniques discussed here can cope with hot 
spots lasting for an indefinite period. 

III. RELATED WORK  
There is a body of research in flow and congestion control 

of both lossy (Ethernet, IP, ATM) and lossless networks. We 
concentrate here on the lossless case for reasons explained at 
the end of this section.  
 

1 Such as the recent distribution, to several hundred thousand clients of a 
large broadband service, of an update that inadvertently caused each client to 
check a central server for updates once every 2 minutes instead of once every 
2 weeks. 
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Figure 1.  Illustration of Hot Spot Contention 



 

Broadcast congestion notification combined with source 
quenching is used in [2]. This has limited scalability due to 
notification overhead, and exhibits instability introduced by 
the source response upon receiving an (un)quench when link 
delay increases. 

The impact of congestion in Quadrics networks under sev-
eral bit reversal patterns is shown to be significant in [10]. The 
authors also introduce the notion of a congestion matrix to 
describe the spatial distribution of congestion, a method we 
found particularly useful when preparing our hotspot traffic 
experiments. 

Simplified Packet Pair (SPP) and the Alternating Static 
Window (ASW) flow control protocols are investigated in [9]; 
these are based on earlier Static Window and Packet Pair pro-
tocols. The authors show that if high throughput is desired, 
ASW controls average latency well; but if low throughput is 
acceptable, SPP can be used to maintain low latencies. Our 
work controls both throughput and latency under high load. 

A number of IBA congestion control proposals are made in 
[7] but it is primarily restricted by an idealized network of 
only two simple switches, essentially eliminating the higher-
order effects of tree saturation. Finally, the closely related [29] 
presents a particular subset of the work, which here will be 
extended to cover more networks and and traffic cases. 

Congestion in lossy networks, e.g., IP or ATM, is very dis-
similar from hotspot phenomena [1, 2, 3, 9, 10], generally 
precluding the transfer of IP [13, 18-21] or ATM [8, 15] 
mechanisms. Key differences are: 
• Most lossless network implementations have round-trip 

times orders of magnitude lower than lossy networks, re-
quiring far faster response times to congestion events. 

• Lossless network traffic injection is usually done with 
little policing or traffic shaping.  

• Edge links commonly have the same rate as internal links, 
so there is no statistical multiplexing to smooth hot spot 
events. 

• Critically: lossless networks, in order to maintain their 
lossless property, use fast, hardware-implemented link-
level flow-control. This is the cause of the speed and exis-
tence of tree saturation [1]. 

At present there is broad industry debate about whether 
lossy networks in general, and TCP/IP in particular, can sub-
stitute in all cases for the lossless networks now in use. We 
will not enter that debate here. 

IV. CONGESTION CONTROL FACILITIES IN IBA 
This section overviews the mechanisms defined for IBA 

CCA, and then discusses some key properties. 

A. IBA CCA Mechanism 
Figure 2 illustrates how the IBA Congestion Control Archi-

tecture (CCA) operates. In overview, discussed in more detail 
below, this is a three-stage process: When congestion is de-
tected in a switch (position 1 in the figure), the switch turns on 
a bit in packets called Forward Explicit Congestion Notifica-
tion (FECN). When the packet arrives at the destination 
adapter, it responds (position 2) to the source with packets 
having a different bit set called Backward Explicit Congestion 

Notification (BECN). When an adapter receives a BECN (po-
sition 4), it responds by throttling back its injection of packets. 
This reduces congestion. Over time, the source gradually re-
duces its throttling, which may again cause congestion to be 
detected. If all parameters – such as the rates of throttling and 
reduction in throttling over time – are appropriately set, the 
network should settle into a stable state with just enough con-
gestion to keep the sources quenched. The setting of such pa-
rameters is under control of a Congestion Control Manager 
(CCM), which establishes their values. It may adjust them 
over time, but they must be set appropriately to quench con-
gestion quickly; software intervention by the CCM is too slow 
to avoid the problem. 

 
In more detail: 
Congestion Marking Function: InfiniBand switches de-

tect congestion on a Virtual Lane (VL) for a given port when 
a relative threshold set by the CCM has been exceeded. The 
threshold is specified per port between 0 and 15; 0 indicates 
that the switch is not to mark any packets on this port, 15 
specifies a very aggressive threshold. Since the switch archi-
tecture affects how the level of congestion should be deter-
mined, the exact meaning of a particular threshold setting is 
left to the switch manufacturer. 

The switch may also be configured to only mark packets 
identified as the “root of congestion.”  A packet is a root of 
congestion when the output VL has exceeded the threshold, 
and there are credits available. In contrast, victim (not root) 
congestion occurs when the output VL has exceeded the 
threshold and there are no credits. Packets smaller than a con-
figurable packet size are not marked to allow vendors to avoid 
performance issues in switch designs and avoid marking ac-
knowledgements (ACK) and congestion notifications (CN). 
Finally, the marking rate is also configurable.  

When congestion is detected by the switch, it informs the 
destination node by setting the Forward Explicit Congestion 
Notification (FECN) bit of the Base Transport Header (BTH) 
[24] present in every IBA packet. FECN bits are passed 
through unchanged by all switches. 

Congestion information is passed forward, and not directly 
back to the source, for two reasons: First, in no case do IBA 
switches source packets (except for management functions); it 
was desired to maintain this property. Second, the intent is to 
target the specific InfiniBand queue pair(s) in the source 
adapter, that is, the specific traffic flows from the adapter, that 
are the source of the congestion, throttling only those and not 
the entire adapter. Queue pair information is contained in a 
level of header that IBA switches do not parse or process. 

Congestion Signaling: Upon receipt of a packet with the 
FECN bit set (position 2) the destination adapter – a “Host 
Channel Adapter” in IBA parlance – responds back to the 
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Figure 2.  Technique of InfiniBand Congestion Control  



 

source of the packet with Backwards Explicit Congestion No-
tification (BECN) (3) that returns back to the specific queue 
pair that was the source of congestion. This may be piggy-
backed on normal ACK traffic for connected communication, 
or may be in a special congestion notification (CN) packet for 
unconnected service. The HCA does necessarily process 
Queue Pair information, and is the source of packets in normal 
operation, so this is natural to its function. 

Injection Rate Reduction: When the source receives a 
packet with the BECN bit set (4) the injection rate of the flow 
is reduced. The reduction can be applied either to the specific 
queue pair sourcing the flow, or to all QPs on the port using a 
particular service level (which maps to a virtual lane). The 
amount of reduction is controlled by a table associated with 
the HCA, called the Congestion Control Table (CCT), whose 
content is loaded by the Congestion Control Manager. Each 
time a BECN is received, an index into the table is incre-
mented (position 5). The amount of the increment is the 
CCTI_Increase value, also set by the CCM. Each entry in the 
CCT defines an Inter-Packet Delay value that is inserted by 
the HCA between packets. As BECNs are received, the index 
is repeatedly incremented, indexing further into the CCT 
where it will usually encounter larger and larger delay values 
set by the manager.  

Injection Rate Recovery: Each HCA contains a timer; 
each time it expires, a duration set by the CCM, the index into 
the CCT is reduced by an amount also set by the CCM. This 
causes use of values lower in the CCT as Inter-Packet Delays. 
Again, presumably the CCM has set the CCT tables so that 
this reduces the added inter-packet delay. Eventually, if no 
more BECNs are received, the index reaches zero and no de-
lays are inserted.  

B. IBA CCA Characteristics 
Congestion control in IB is a closed-loop control system: 

congestion events affect the source injection rate, which af-
fects the congestion. The control loop back to the injection 
source is required to avoid hot spots that persist over time; 
network buffer reallocation cannot win against persistent host 
injection. 

However, the loop’s inclusion of the destination reduces its 
response time significantly. This was done for reasons of cost 
and simplicity, since it eliminates the need for switches to 
inject packets or to examine higher levels of the communica-
tion stack, and reuses facilities already present in adapters 
which do those things. 

Unfortunately, this is probably the cause of undesirable ef-
fects immediately observed in early experiments:  unstable 
behavior, oscillations (Fig. 5b) and even throughput collapse 
(Fig. 5c). Particularly disturbing was the ‘stiffness’ of the con-
trol loop, manifested as sensitivity of the marking and source 
response functions to the CCA parameters.  

We also suspected, and verified, that appropriate parame-
ters vary depending on network size and topology; other pa-
rameters may also play a role. This makes it difficult for sys-
tem designers and/or administrators to select a suitable set of 
CCA parameters. Our paper addresses this challenge. After 
carefully evaluating the CCA mechanisms under different 

scenarios and networks, this paper delivers a guideline for the 
IBTA members, OEMs and for the IB community by provid-
ing recommendations to properly tune IB congestion control. 
Our results may be of broader use because IBA CCA scheme 
is representative of a wide class of networks that rely on simi-
lar types of facilities: congestion marking in the switch/router, 
explicit congestion signaling, and source response function to 
adjust the injection rate. This is E.g., TCP/IP [18-21], 
RapidIO [22], PCI-AS [23]. 

We are in particular searching for parameter settings which 
are sufficient, meaning that the settings are effective, fair, and 
stable, meaning: 
• Effective: able to avoid, prevent, or recover from through-

put collapse due to the formation of saturation trees; 
• Fair: does no harm to innocents, fairly treating hot and 

cold flows as described below;  
• Stable: dampens oscillations. 

V. EXPERIMENTS WITH IB CCA: MODELS AND TRAFFIC 
Our aim was to simulate networks that are as realistic as 

feasible.  
We use stochastic system level simulations with synthetic 

traffic and carefully selected congestion scenarios. Actual 
application traces, or even execution-driven simulations, could 
increase accuracy. But their size and runtime limitations 
would preclude doing the large number of simulations needed 
to explore the parameter and network space. Hence we sys-
tematically pruned and explored a large simulation space with 
a moderate level of confidence.  

In this study we considered a single VL and service level 
(SL), although our simulation model supports multiple VLs 
and SLs. This is not a significant limitation; different VLs do 
not interact directly in congestion in IBA because each is re-
quired to have independent buffering. 

To this end, the simulation is no lower than packet-level 
and abstract many, potentially relevant, application-level de-
tails. We have simulated using both CSIM and OMNeT++ 
with different levels of accuracy of the HCA, Switch Element 
(SE), network topology and link-level models.  

A.  Simulation Models 
1) Host Channel Adapter (HCA) 

We model IBA’s logically separate queues for each flow; 
each is a queue pair (QP), a send and a receive queue. When a 
source process is ready to send data, it posts a work queue 
element (WQE) to the send queue of a QP, and the HCA is 
notified of work to do.  The QP then waits for its turn to be 
served by the HCA; the HCA’s virtual lane arbitration is re-
sponsible for choosing the next QP to service. When a QP is 
picked, the data pointed to from the WQE is read from system 
memory into a buffer inside the HCA and sent. At the destina-
tion HCA, an incoming data packet is saved in a receive 
buffer and later forwarded to a system memory location speci-
fied by a receive WQE posted to the destination QP’s receive 
queue. 

2) Switch Element (SE) 
Our SE model is based on a generic IB switch with shared 

input buffers and virtual output queuing per shared buffer. 



 

This conceptually models commercial IB switching chips. The 
buffer size is chosen to be 36 maximum transmission units 
(MTU) per input. The output queue scheduler performs round-
robin service across all the SEs. The links, between SEs or 
between HCAs and SEs, are intentionally short, with a round 
trip time normalized to ¼ MTU, in order to avoid the addi-
tional constrains of switch work conservation with long RTTs 
[12, 26]. 

3) Network Topology 
Our model for multistage interconnection networks (MIN) 

supports multistage folded bidirectional k-ary n-fly topologies 
– such as Omega, Benes, fat-tree [16], and Banyan – built 
from NxN SEs as described above.  

We have simulated the following IB networks, in the order 
listed. 
• 8 nodes/ports, 3-stage, 2x2 SE: our initial trials 
• 32 nodes/ports, 3-stage/2-level, 8x8 SE: chosen since 8x8 

switches are more realistic; this is the network of Figure 
1. 

• 128 nodes/ports, 3-stage/2-level, 16x16 SE, and 128 
nodes/ports, 5-stage/3-level, 8x8 SE: used to verify the 
results from the prior two cases, but with different con-
figurations 

• 432 nodes/ports, 5-stage/3-level, 12x12 SE, and 256 and 
512 nodes/ports, with simpler SEs, our final cases. 

Fig. 2 shows a 5-stage network based on 8x8 SEs, drawn in 
an unfolded unidirectional representation. The corresponding 
“half SEs” on the left and right hand side are collocated in the 
same physical SEs. Hence connections to nearby ports on the 
same SE can take shortcut routes (dashed in Fig. 2) within the 
same SE and do not need to traverse the middle stage(s). Simi-
lar topologies are used in commercial InfiniBand switch sys-
tems. 

Here we report only a few representative simulations. 
 

B. Traffic 
The traffic injected by each source HCA has two compo-

nents: uniformly distributed background traffic, also referred 
to as cold traffic; and hot traffic. During a defined congestion 
period, a predetermined fraction of the HCAs all divert a fixed 
portion of their traffic to a defined hot port (in the following, 
port 31). Traffic is injected into the system as packets of fixed 
MTUs equal to 2KB, except for the ACK and ECN packets 
that are used to measure the impact of shorter packets. In the 
absence of congestion the inter-packet time is negative-
exponentially distributed. 

This pattern is representative of a large class of commercial 
and HPC applications that use collective and synchronization 
operations, or which frequently exercise reliable multicast 
transmissions. 

To describe the traffic patterns we use the following terms:  
• Hotspot Degree (HSD) is the number of sources that con-

tribute to the hotspot.  
• Hotspot Severity (HSV) is the total amount of resource 

oversubscription at the hot destination, caused by both the 
hot and the background traffic. 

• Offered Load: The total load, hot spot plus background 
traffic, sent to the network. 

For each IB network topology of size N we show the results 
of the four cases listed in Table 1. All have HSV of 300%, 
with varying HSD.and total offered load. based on the combi-
nations of medium and high background loads (0.5 and 0.9) 
and small and large HSD for a given HSV of 300%: (We have 
simulated other cases which confirm the analysis given here, 
to be presented in a forthcoming more comprehensive paper ). 

Table 1 

TRAFFIC CASE 1. 2. 3. 4. 
Offered load 0.5  0.5  0.9  0.9  
Hotspot degree 
(HSD) 

3 N (all 
sources) 

3 N (all 
sources) 

In addition, for each of the considered IB networks topolo-
gies and each of the four traffic cases we perform a sensitivity 
analysis by varying certain parameters from a starting point as 
follows: 

Table 2 
Parameter Starting Point 
a.  Switch output queue 

threshold  (sw_th) 
90% of the SE input buffer size (shared input 
buffer) 

b.  Maximum IPD  (max_ipd) 
Worst case round-robin fairness:  the IPD 
must be large enough to allow all the other 
inputs to inject one MTU each. 

c.  IPD table index increment  
(ipd_idx_incr) 

1 ... 128. 

d.  IPD recovery timer  
(rec_time) 

Derived from the measured BECN inter-
arrival times at source nodes. 

VI. SIMULATION RESULTS 

A. Input-generated hotspots in a 32-port 3-stage fat-tree 
network 
Fig. 3 shows the simulation results obtained for the four 

cases considered in Table 1 for a network size of 32. The first 
row shows the throughput of the first 32 output ports (i.e. all 
nodes) normalized over the simulation time, without conges-
tion control. The second row shows the same with congestion 
control. The third row shows the resulting IPDs.  

The following congestion control parameters were used, as 
derived from a comprehensive parameter sensitivity analysis: 
switch output queue threshold sw_th = 90% of switch input 
buffer size; maximum IPD table entry max_ipd = 21µs; IPD 
table index increment ipd_idx_incr = 5; IPD recovery time 
rec_time = 10.5µs. 

Without congestion control, the top row, the throughput of 
the hotspot port (#31) saturates during the congestion period, 
while the throughput for all other output ports drops. Obvi-
ously a congestion tree has built up that hurts all the flows, hot 
or cold. After the hotspot period the aggregate throughput 
recovers slowly because all the queues in the system are still 
backlogged and must be emptied to the prior level.  

With congestion control, the middle row, the throughput 
collapse problem is effectively solved. The slightly reduced 
throughput observed during the congestion period is correctly 
attributed to the portion of the offered load that is being re-
directed to the hotspot.  



 

The IPD charts, the bottom row, show that under conges-
tion control only the hot flows reach high IPD values. 

In order to find the good parameter settings, we systemati-
cally varied the relevant parameters for each case during a few 
hundreds of simulation runs. Fig. 4 shows the throughput re-
sults for the most critical case of high load and large HSD 
when the IPD index step is too low or high; or and the IPD 
recovery timer is too low or high.  

If the IPD index step is too low or too high there are oscil-
lations (4a, 4b). This means that one cannot, for example, 

simply set the index step to a high (or low) value and be sure 
that hot spots are all appropriately quenched. 

If the IPD recovery timer is too low, there is throughput 
collapse (4c). If it is too high, the hot flows show an unneces-
sary loss of throughput (4d).  

B.  Input-generated hotspots in a larger 128-port 5-stage 
fat-tree network 
Fig. 5 shows simulation results from a 128-port 5-stage fat-

tree network, with he same data display as used above, except 

Traffic case 1
medium load: 0.5
small hotspot degree: 3
hotspot severity: 300%

Traffic case 3
high load: 0.9
small hotspot degree: 3
hotspot severity: 300%

Traffic case 2
medium load: 0.5
large hotspot degree: 32
hotspot severity: 300%

Traffic case 4
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%
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Figure 3.  Simulation results for 4 cases of input-generated hotspots in a 32-port 3-stage fat-tree network 

Traffic case 4  (a)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%

IPD index step too low (=2)

Traffic case 4  (c)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%

IPD recovery timer too fast (=2.6us)

Traffic case 4  (b)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%

IPD index step too high (=40)

Traffic case 4  (d)
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%

IPD recovery timer too slow (=84us)
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Figure 4.  Simulation result examples for out-of-range parameters 



 

that  only the first 32 (of the possible 128) curves are shown. 
The following congestion control parameters resulted as the 
best compromise for the network size of 128: switch output 
queue threshold sw_th = 90% of switch input buffer size; 
maximum IPD table entry max_ipd = 84µs; IPD table index 
increment ipd_idx_incr = 20; IPD recovery time rec_time = 
10.5µs. (Note: Both the maximum IPD table entry and the IPD 
table index increment are now four times larger than in 5.1.) 

The results are qualitatively similar to the 32-node case, 
with a few exceptions: Without CCA, the hotspot port (#31) 
throughput drops below the offered load, and the aggregate  

throughput recovers slower since the larger fabric has sig-
nificantly more buffering capacity. With CCA, the throughput 
breakdown problem is again largely solved.  

However, the parameters’ ranges of stable control operation 
are narrower than in the smaller network. In case of the large 
hotspot degree of 128 we are reaching the operational limits of 
our parameter range, beyond which the controlled system is 
temporary unstable, yet in Fig. 5 (case 4, middle row) still 
convergent. Under high-load we also observe extended IPD 
activity beyond the duration of the hotspot period; this may 
introduce loss of work-conservation [11] and of throughput. 

 

C. Parameter Setting: A Preliminary Guideline 
For the studied types of traffic, congestion marking by SEs 

can be based on a simple output queue threshold with hystere-
sis, assuming the SE buffering capacity was correctly dimen-
sioned for stability [11] for a given link length and number of 
VLs. This partially validates the CCA marking specification, 
which is simpler than the proposal in [7]. 

An IPD table of 128 entries is sufficient.  
The maximum IPD parameter is determined by the worst-

case hotspot degree HSD times the average packet duration. If 
the maximum HSD is not known, the worst case of HSD=N, 
meaning all nodes, has to be assumed. If a value HSD<N can 
be derived from the application or measurements, we can set 
the maximum IPD accordingly lower. Higher maximum IPD 
values cause excessive recovery periods after the end of con-
gestion, whereas lower values can not fully protect against 
collapse due to the saturation of the source response function. 

The IPD table index increment parameter is the most criti-
cal parameter. It is dependent on both the network size N as 
well as the worst-case HSD. For networks up to 128 ports, 1/6 
of the network size appears to be a conservative value. For 
larger networks, if the worst-case HSD is significantly smaller 
than the network size, a lower value seems advisable, such as 
1/2 of the number of hotspot-contributing flows. These heuris-
tics will be discussed in detail in a forthcoming paper.  

A summary of the recommended congestion control pa-
rameters appears below. (N = number of network ports, H = 
HSD (H≤N): 

Traffic case 1
medium load: 0.5
small hotspot degree: 3
hotspot severity: 300%

Traffic case 3
high load: 0.9
small hotspot degree: 3
hotspot severity: 300%

Traffic case 2
medium load: 0.5
large hotspot degree: 32
hotspot severity: 300%

Traffic case 4
high load: 0.9
large hotspot degree: 32
hotspot severity: 300%
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Figure 5.  Simulation results for 4 cases of input-generated hotspots in an 128-port 5-stage fat-tree network 



 

• sw_th ≈ 90% of switch input buffer size 
• max_ipd ≈ 2/3 · H µs 
• ipd_idx_incr ≈ min( 1/6 · N, 1/2 · H ) 
• rec_time ≈ 10 µs 

VII. CONCLUSIONS, OUTLOOK AND FUTURE WORK 
The answer to the two questions in II.B is positive: for the 

cases investigated here, the CCA is sufficient if and only if the 
parameters are properly set. By systematic explorations of the 
IB CCA scheme implemented in realistic simulation models of 
InfiniBand HCAs and SEs, we have derived a parameter set 
that works for a wide range of input-generated hotspot scenar-
ios, also independent of the background load. To the best of 
our knowledge this is the first in-depth simulation study of the 
IB congestion control mechanism. 

However, although based on extensive work (over 1000 
simulation runs on tens of fabrics), the results presented here 
may not apply to all types of IBA networks, sizes and applica-
tions. We have also detected a number of traffic patterns that 
require special settings beyond the scope of this paper.  

 

A. Outlook: Future Applications’ Impact on Congestion 
A number of key application characteristics in next-generation 
distributed applications can become a source of congestion in 
server clusters. 
 First, application dynamics create traffic unpredictability 
owing to dynamically varying streaming input datasets that 
lead to non-uniform load distribution and bursty flows be-
tween servers. Adaptive applications [31] replicate a given 
stage in an application pipeline to handle the extra computa-
tions, when required. This stage is commonly assigned to the 
least utilized processors, disregarding the network load.  
 Second, resilient self-healing systems running mission-
critical applications [32] may give rise to congestion. The dan-
ger is that a naïve process migration algorithm can move a 
crashing node’s process set to node that is free or redundant, 
but has saturated links. Even if a smart migration algorithm 
were written to estimate link utilization, unpredictability in 
application processing can still congest links that sink into a 
compute node. If switches in a self-healing system fail then 
the adaptive algorithm that routes traffic around failed links 
can easily add to congestion spread. Current adaptive routing 
algorithms have difficulty looking deep across switch levels to 
determine the onset or state of a congestion saturation tree [6].  
 Third, communication resources may be pushed to the limit 
by “extreme-middleware” or bandwidth-bound applications 
[30], making congestion more likely. These transfer large data 
volumes and can reserve bandwidth paths using diffserv, 
RSVP or other end-to-end bandwidth reservation schemes. 
Because of unfair service to unreserved flows deliberately 
provided by the bandwidth reservation scheme, bandwidth-
reserved flows to a single server will easily congest other 
flows that seek the same server resource. Also, “Extreme-
Middleware”-type applications [30] will speculatively pre-
fetch data-sets adding to network load in an unpredictable 
manner. Such unpredictability favors saturation trees.  

 Fourth, many peer-to-peer distributed application protocols 
make resource rebalancing difficult, making congestion more 
likely. In a client-server scheme, in contrast, server resources 
can be replicated to load balance traffic flows to a popular 
resource. To achieve the same result in peer-to-peer protocols, 
every node would have to be able to be replicated; this can be 
prohibitive in terms of cost and electrical power.  
 In summary, (i) Application dynamics, (ii) lack of support 
to gather and distribute global network state, (iii) lack of hard-
ware support for low-perturbation network utilization estima-
tion, and (iv) bandwidth-bound application operation will 
make congestion avoidance for next-generation applications 
more difficult. Dynamic on-line congestion management is 
needed to provide reliable and available network service. 

 

B.  Future work 
We plan to experiment with more extreme traffic scenarios, 

hot spots created by output throttling, higher congestion sever-
ity, more refined packet marking and multiple hot spots. Also 
we will test adaptive methods using the online performance 
counters. 
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