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Abstract 
Interconnects for clusters and bladed systems must deliver 
efficient throughput, low latency, low delay variations and 
minimal frame drops. The primary technical issues 
hindering Ethernet adoption for cluster and blade system 
interconnects are the current methods Ethernet switches 
use for dealing with congestion, which can happen 
frequently under cluster and blade system workloads. The 
common response to congestion is to drop frames and the 
common method of avoiding the need to drop frames is to 
utilize very large switch buffers. In this paper, we propose 
the insertion of a simple self-managing congestion control 
protocol into existing communication stacks at the edges 
of layer 2 switched interconnects. We assert that control of 
the traffic flow into the layer 2 subnet is key to controlling 
the characteristics of cluster and blade system 
interconnects. We show simulation results demonstrating 
how the proposed protocol, coupled with a layer 2 ingress 
rate control function,  can dynamically control traffic flow 
so as to maximize the throughput efficiency while 
minimizing the loss, delay, and delay variations.  

1. Introduction 
Although Ethernet is typically used as a local area network 
(LAN) technology, there is substantial interest in utilizing 
Ethernet in cluster and blade system interconnects.  
Ethernet is well-known, widely available, and broadly 
compatible. Unfortunately, the IETF and IEEE standards 
do not currently support the congestion management (CM) 
mechanisms necessary to enable Ethernet based 
interconnects to provide the appropriate characteristics for 
clusters and bladed systems. In our previous paper [1], we 
explored a 3 level architectural approach to CM that was 
designed to leverage existing transport and network layer 
mechanisms at level 3, add layer 2 subnet mechanisms at 
level 2, and leverage existing and/or new link layer 
mechanisms at level 1.  We took this 3 level approach 
because the layer 2 technology of interest was full-duplex 
Ethernet and our primary goal was to get an appropriate 
set of methods and mechanisms supported by the 
standards. To achieve this goal, Ethernet CM would have 
to operate in harmony with existing and future 
mechanisms utilized in the standard networking stacks. It 
would also have to be designed so that it could be 
seamlessly integrated into the existing stacks and, if 
supported by at least some of the layer 2 components, 
show an improvement in the performance characteristics 
(or no difference at a minimum).  

The IEEE 802.1 bridging [2] and 802.3 link layer 
protocols [3] and the IETF network and transport 
protocols (IP, TCP, & UDP) are at the heart of the most 
widely deployed and interoperable communication stacks 
today. Recent studies have sought to reduce TCP/IP 
processing overheads in datacenter environments [4][5].  
Unfortunately, the streamlining and acceleration of the 
upper layer stacks potentially creates even more severe 
and more frequent congestion events in the lower layer 
interconnects (such as short-range 1 & 10 Gbps Ethernet 
subnets).  New upper layer protocols like iSCSI [6] and 
RDMA [7] (for storage and cluster communications over 
TCP/IP) rely on low frame loss rates to achieve low 
processing overheads, high throughput, and low latencies. 
Unfortunately, TCP uses the rate of packet loss to gauge 
the level of congestion along each connection and to 
control transmission rates accordingly. The only standard 
method for Ethernet switches to signal congestion is to 
drop packets.  High loss rates can cause a large percentage 
of traffic to be handled by exception processing, which 
negatively affects processing overheads and delays. 
However, the most significant impact to TCP performance 
is long periods of inactivity due to timeouts resulting from 
packet drops. And long timeouts can easily bring a cluster 
or blade system's performance to its knees. Since many 
target applications of switched Ethernet need to support 
switching of TCP connections where one end or both are 
terminated outside the local vicinity, we can't just shorten 
the timeout times to minimize the impact of drops.  
In this paper, we narrow the focus of the research 

outlined in [1] to the subnet level (level 2) of the 
architecture. We propose a basic protocol for signaling 
layer 2 congestion information (L2CI) to the subnet 
ingresses and to support self-management of ingress rate 
control state. We outline a basic set of functions that can 
be added to the interface between the upper and lower 
layers of the stacks to support the L2CI protocol and the 
use of the congestion information to dynamically control 
the traffic flow into the layer 2 subnet. We use simulation 
results to demonstrate how effectively these functions can 
be utilized to maximize throughput efficiency and 
minimize loss, delay, and delay variations. And, we 
demonstrate how the subnet level mechanisms can operate 
in harmony with existing upper layer mechanisms.  

2. Related Prior Work 
Prior congestion management research for long-range 

networks is reflected in such standards as TCP/IP [8][9], 
ISDN [11], ATM [12], and others. Prior research for short-



                             

range networks is reflected in such standards as Fibre 
Channel [13], Infiniband™ [14], and Advanced Switching 
[15]. Recent research on CM for unreliable datagram 
services are reflected in the IETF draft on DCCP [10]. An 
example of recent research on CM for TCP is reflected in 
FAST TCP [19].  Because the list of references to 
congestion management research over the past 30 years is 
so long, we do not attempt to provide a comprehensive list 
for this paper.  Our research is uniquely focused on 
enhancing short range 1 and 10 Gbps IEEE802.1/802.3 
subnets with only a few hops.  As such, the methods and 
mechanisms we can consider must be able to seamlessly 
integrate into the standard networking stacks.   

3. Review of Our 3 Level Approach 
We broadly classified congestion control mechanisms as 

link level mechanisms, subnet level mechanisms, and end-
to-end mechanisms. Link level mechanisms try to regulate 
the flow of traffic over each link to avoid frame discards 
due to transient congestion. Subnet level mechanisms try 
to optimize traffic flow through a subnet to avoid 
oversubscription of local subnet resources. End-to-end 
mechanisms attempt to take action at the “flow” sources or 
on higher layer “flow-bundles” to avoid oversubscription 
of network resources end-to-end.  
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The strategy for our research was to analyze the issues at 

all 3 levels, and simulate various mechanisms for dealing 
with congestion at each level.  We developed simulation 
models with various independent mechanisms at each 
level so that we could test each by itself, as well as in 
various combinations with mechanisms at other levels. 
Figure 1 shows the coarse structure of typical end-

stations and switches and their relationship to the 3 levels 
of congestion control. They include 1) link level: the 
IEEE802.3 MAC and link layers, plus the MAC Client 
interface; 2) subnet level: the interface between the upper 
layers and lower layers, plus the IEEE802.1 switching 
layer, and 3) end-to-end: the upper layer stacks such as 
those in the operating systems of servers, workstations, 
and routers. The primary methods we've tested to-date are 

some of those currently supported by the IEEE and IETF 
standards (Pause, RED, ECN, & TCP congestion control 
[2][16][17]).  
We tested various new link level mechanisms, but 

ultimately found they were ineffective when used stand-
alone in multi-stage subnets. We did, however, show that 
the link level mechanisms (including the existing Pause 
method supported by IEEE802.3) could be used 
effectively as a fail-safe against packet drops when 
utilized with the higher level mechanisms1. We ultimately 
decided the new level 1 mechanisms provided too little 
additional value to justify expending the efforts to 
standardize them.   
We determined the key set of mechanisms needed for 

effectively controlling the Ethernet subnet characteristics 
were those at level 2.  Support for such mechanisms is also 
conspicuously missing from the IETF and IEEE standards.  
In [1] we showed promising results utilizing an initial 
implementation of a Path Rate Control (PRC) method 
combined with reverse messaging of layer 2 congestion 
information (L2-CI) directly from switches.  With our 
initial PRC and L2-CI implementation we were able to 
achieve ~85% throughput efficiency, but had to utilize 
ECN at level 3 and link level rate control at level 1 to 
prevent the overflowing of NIC and switch queues. Since 
our goal was to support layer 2 congestion management 
with both TCP and UDP, as well as with other transports 
and upper layer protocols, we couldn't very well require 
the use of ECN with PRC. So, the research that followed 
the previous paper focused on refining the PRC and L2-CI 
messaging to improve their combined performance and 
enable them to operate independent of, but harmoniously 
with, existing and future level 1 and 3 mechanisms. 

4. Path Rate Control (PRC) Interface 
Path Rate Control adds 3 basic functions to the interface 

between the higher layers and lower layers (figure 2): 1) A 
L2CI Protocol Function for generating and receiving path 
discovery and congestion feedback messages and for 
maintaining path congestion and state tables; 2) Path 
Congestion and State Tables for interfacing path specific 
information to a PRC function; and 3) A PRC function 
that supports dynamic scheduling of higher layer flows or 
flow bundles into the lower layer transmit queue(s), based 
on path specific congestion levels. The PRC interface is 
structured to support implementations where the layer 2 
side may be implemented primarily in hardware and the 
higher layer side may be implemented in hardware, 
firmware, or driver level software. It assumes the higher 
layer side can utilize existing address translation tables to 
associate flows with paths. (In our simulations, a path is 

                                                 
1 Note that RED and Pause are not very compatible in that RED drops 
packets to signal congestion and Pause tries to prevent packet drops. 



                             

defined by a destination MAC address from a given source 
MAC perspective.)  
In this concept, the L2CI Protocol Function supplies 

congestion and rate control information to the higher layer 
PRC function through a set of state tables (e.g. Path & 
Congestion State Tables). This information enables the 
PRC function to dynamically rate control higher layer 
flows or flow bundles into the Transmit Queues in order to 
avoid oversubscription of lower layer resources. It enables 
the Higher Layer Interface to discriminate between 
congested and non-congested paths and invoke higher 
layer end-to-end congestion control (using ECN, RED, 
stack flow control, etc.).  
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Ingress rate control and flow optimization (e.g. PRC) local 
to layer 2 enables utilizing the buffers above layer 2 
(which are generally much larger) to absorb large burst 
collisions, insulating the layer 2 components from much of 
that burden. In cases where the higher layer stack at a 
layer 2 endpoint is a router function, any backlog caused 
by PRC enables the higher layers to perform dropping or 
marking of packets above layer 2. In cases where the 
upper layer stack sources the traffic, any backlog caused 
by PRC enables backpressure up the stack to the flow 
sources. Thus, the PRC function was designed to operate 
harmoniously with the operation of the upper layer stacks 
while dynamically optimizing the traffic flow through the 
layer 2 subnet. 

5. Layer 2 Congestion Information Protocol 
The L2CI Protocol provides the functionality for 

collecting congestion information from the layer 2 subnet 
and conveying it to the edges of the subnet. It provides the 
information necessary to support the PRC functionality.  
At the time we wrote the previous paper [1], we had 

implemented 2 methods of conveying layer 2 congestion 
information and anticipated various others. Unfortunately, 
the research that followed exposed significant issues with 
each of those methods, causing us to develop a method we 
hadn't previously anticipated. In the following paragraphs, 

we summarize each of the methods tested and some of the 
insights we gained from them.  
Method 1: The first method selectively marked Ethernet 

frames passing through congestion in switches (using a 
random early detection algorithm). At the layer 2 egresses, 
the frame marks were transferred to the congestion 
experienced (CE) bit in the IP headers and forwarded on to 
the TCP egress to trigger ECN feedback. This method had 
several issues: 1) ECN doesn't work for all ULPs; 2) There 
are no unused bits available in the Ethernet frame header 
for layer 2 marking (requiring a change to the frame 
format); 3) To support PRC, we needed the congestion 
information at the layer 2 ingresses. Since not all protocols 
guarantee there will be reverse traffic to carry this 
information, it required the addition of a messaging 
protocol to get the congestion information back to the 
layer 2 ingress (requiring a new messaging protocol);  4) 
Severe congestion can cause almost all frames to be 
marked, which made it very difficult to control the BW 
consumed by the resulting reverse messaging; 5) One bit 
of congestion information proved insufficient to enable 
effective layer 2 ingress rate control. 
Method 2: The second method selectively generated 

reverse messages (minimum sized Ethernet frames) 
directly from points of congestion in switches and egress 
endpoints. This eliminated the issue of frame format 
changes. It also enabled sending all the information 
needed by PRC for performing effective ingress rate 
control. In this method, we used a rate-limited random 
early detection algorithm to select the frames to which we 
responded. We used the source address of each selected 
frame to identify the ingress to which a congestion 
message would be sent.  The congestion message indicated 
the destination address (or Path) of the selected frame and 
the level of congestion encountered at that point in the 
path. The congestion level was specified as a percent of 
the per-port buffer space consumed by traffic utilizing the 
congested port (this number could be > 100% due to 
buffer sharing). This is the method that was used to 
generate the data for the Path Rate Control scenarios in the 
previous paper [1]. This method enabled fairly effective 
ingress rate control but suffered from a basic issue: In a 
multi-stage interconnect, conflicting messages could be 
received from multiple points of congestion along a path. 
This issue confounded our efforts to deterministically 
control the traffic flow through the subnet. It also led to 
the basic insight that we needed an aggregated view of the 
congestion along each path in order to effectively rate 
control the traffic into the subnet at the ingresses. 
Method 3: In the previous methods we utilized explicit 

congestion information directly from the points of 
congestion. For the third method, we considered a couple 
different ways of implicitly deriving congestion levels 
from delay incurred by traffic passing through the layer 2 
subnet: 1) delay dispersion between pairs of frames caused 



                             

by the frames passing through congestion [18]; and 2) the 
round-trip time (RTT) of probe messages injected into the 
traffic streams. We abandoned the dispersion method 
rather quickly because it would require both a frame 
format change and a new messaging protocol. We 
implemented the RTT method because it would only 
require the addition of a simple messaging protocol. In 
addition, the same protocol could include a simple 
discovery phase for learning the number of hops, the speed 
of the slowest link, and the minimum RTT along each path 
utilized.  
For the RTT method, we inject a discover message in 

front of the first packet to use a given path. The discover 
message is sent at the highest priority to minimize its 
round-trip delay. It collects the hop count and the speed of 
the slowest link in the path in the forward direction, and 
gets immediately echoed by the layer 2 egress endpoint. 
The RTT of the discover packet is measured to derive a 
minimum RTT value. The minimum RTT, hop count, and 
path speed provide the initial state for that path and are 
used by the PRC algorithm to control the traffic flow into 
the ingress of the path. After discovery, probe messages 
are periodically injected into the path at a fraction of the 
rate of normal traffic utilizing the path (similar to resource 
management cells in ATM). Probe messages are simply 
forwarded by switches and echoed by layer 2 egress 
endpoints. Each probe is sent at the lowest priority of 
traffic sent on that path since the previous probe to ensure 
it follows all the previous traffic. A probe is echoed by the 
L2 egress at the highest priority. This ensures the probe's 
delay in the forward direction will account for most of its 
RTT.  The main concern with this method was in keeping 
the probe rate frequent enough to provide effective 
feedback while ensuring the bandwidth consumed by the 
probe traffic was negligible. 
With a single priority workload we were able to achieve 

extremely good results with this method while consuming 
as low as 1.5% of the total bandwidth on probe messaging.  
Unfortunately, testing with multiple priorities of traffic 
exposed a significant issue with this method.  The problem 
is similar to the conflicting feedback problem encountered 
with Method 2. In this case, the conflicting feedback 
occurs between probes sent at different priorities (thus 
following different queuing paths with different delays).  
We also found that low priority probes could be almost 
completely stalled by higher priority traffic, even when 
congestion was fairly light. The basic insight derived from 
this exercise was that we could not deterministically 
imply, from delay information, the congestion level for an 
aggregate of flows of more than one priority. Again, we 
needed an aggregated view of the congestion along each 
path. (We could have increased the path granularity by a 
factor of N for N priorities, but that would have introduced 
other negative ramifications). Since only the switches have 

an aggregated view of their local congestion, we needed to 
get that information explicitly from the switches.  
Method 4: The L2CI method we used for the PRC 

simulations discussed below is illustrated in figure 3. This 
method also includes the same discover phase as Method 3 
to initialize the PRC state for each path utilized. Once a 
path is initialized, layer 2 egresses periodically send 
feedback messages that traverse the subnet along the same 
path as the forward traffic, but in the opposite direction.  
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 Each message starts out containing the congestion level 

at the L2 egress (specified as a percent of receive buffer 
currently used). As a feedback message passes through 
each switch, if the local congestion level for the specified 
path is greater than the level contained in the message, the 
switch replaces the congestion level in the message with 
the local congestion level. Thus, each feedback message 
received by an ingress L2CI Protocol Function contains 
the congestion level at the most severely congested point 
along the path it represents. Each feedback message is 
then used to update the state to reflect the current 
congestion level. We were able to achieve extremely good 
result on all workloads with this method, while consuming 
~1% of the total bandwidth on feedback messaging.  
An alternative version of this method could periodically 

insert probe messages into the forward traffic to collect the 
peak congestion levels along paths in the forward direction 
(similar to Method 3 but with explicit congestion 
information). Both probes and probe echoes would be sent 
at the highest priority to minimize collection time. This 
method might be used in an interconnect where the 
forward and reverse traffic follows different paths. 

6. Review of Modeling Environment 
We used the Opnet Modeler discrete event simulation 

package for our modeling environment. Our Ethernet 
switch models are based on a typical shared memory 
switch with a virtual output queue (VOQ) architecture. 
Switching is performed according to the IEEE802.1 
standards. The switches were modeled to have wire-speed 
switching capacity (for up to 16 ports with up to 10 Gbs 



                             

per port, yielding a maximum of 160 Gbps throughput per 
switch). A standard IEEE802.3 MAC is used for each 
switch port. We added support for Pause based link level 
flow control. We expanded the functionality of the switch 
and MAC models to support the new mechanisms 
described above. We also added a new NIC model to end 
stations to implement the special interfacing functions. 
The upper layer stacks for the end stations used to model 

the client and server nodes include application and TCP/IP 
layer models. We set the stack parameters to simulate the 
packet processing rates of an accelerated stack running on 
a 3.5 GHz Intel processor. We specified 64KB socket 
buffers between the applications and the transport layer. 
TCP Reno with Selective Acknowledgements (SACK) 
was enabled. Although our current test configuration only 
includes short range connections, we used a TCP window 
size of 64KB to ensure TCP would generate large bursts. 
We let the TCP timers run at the default granularity of 500 
ms to simulate the typical configuration. Since we are only 
simulating a 1/10th second congestion event, timed-out 
connections will not recover during the simulation.  
For the base workload, the client application simulates 

database entry and query transactions. Clients either send 
(entry) data to the servers or request (query) data from the 
servers. There are a total of 48 DB Access connections (6 
clients and 2 connections per client to each of  4 servers). 
Each client attempts to consume the full bandwidth of its 
link in both directions (grossly oversubscribing the 
interconnect).  
To test congestion management with mixed priorities of 

traffic, we support 2 additional workloads that can be ran 
simultaneously with the base workload2: 1) we can 
simulate inter-processor communication (IPC) traffic 
between all the servers (a total of 12 TCP connections) 
and 2) we can simulate a video conferencing session 
between each client/server pair (a total of 24 full-duplex 
UDP sessions). Since we didn't have a model for a typical 
IPC transport, we utilized "FTP Puts" to generate the IPC 
traffic. The DiffServ code points we used mapped the DB 
access traffic to priority 2, the IPC traffic to priority 3, and 
the video conferencing traffic to priority 5. 

7. Test System Configuration 
Figure 6 shows the system configuration we used for the 

simulations. For all the test scenarios used to collect the 
data charted below, all the client and server switches in the 
system configuration experienced heavy congestion on the 
links to the shelf switch. We put server 3 on a 1 Gbps link 
to create congestion on that link of server switch 2 and on 
the shelf switch link to server switch 2. This creates 3 

                                                 
2 Note: The test system configuration and workloads were not designed 
to represent a realistic scenario, but were designed to expose congestion 
management weaknesses under the conditions of a severe congestion 
event. 

simultaneous points of congestion along some paths and 
provides a good test for congestion spreading affects.  
We first ran just the DB access and IPC traffic together. 

The maximum total throughput possible for the DB access 
traffic is ~4.3 GB/s (2.16 GB/s in each direction) due to 
the protocol and packet overheads. We also ran a total of 
~85 MB/s of IPC traffic between the servers. We did this 
to test the IPC latency through layer 2 during heavy 
congestion. (We are not currently simulating the 
dependency between the DB access traffic and IPC traffic 
inherent in a DB cluster). Re-transmissions are properly 
simulated on all the traffic. 
To test mixed TCP and UDP traffic and the maximum 

delay variation induced into video streams by the 
congestion traffic, we add a total of ~170 MB/s of 
simulated video conferencing traffic. 
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We simulate a 1/10th second period of severe congestion 

and compare the throughput and responsiveness of various 
methods of congestion control. The scenario labeled 
"RED_only" models only the use of Random Early 
Discard (which is the typical method used in Ethernet 
switches today). The "PAUSE_only" scenario utilizes 
standard IEEE802.3 link level pause messages to rate 
control the traffic over each link and prevent frame drops. 
The "ECN_PAUSE" scenario utilizes random early 
detection in switches to forward mark packets for ECN. It 
also uses Pause rate control of links to prevent frame 
drops. The "PRC_only" scenario utilizes the L2CI 
Protocol (Method 4 above) and path rate control. The 
"PRC_ECN" scenario adds forward ECN marking of IP 
packets at the layer 2 ingresses. The test simulations 
utilized switch buffers sized at 64KB per port. They 
utilized a USED_PORTS mode, which scales the total 
switch buffer size to the number of connected ports on the 
switch (e.g. 4 X 64K for a switch with 4 connected ports). 

8. Simulation Results 
Figures 5 and 6 compare the database access throughput 

and response times for each of the 5 scenarios. For the 
"RED_only" scenario, a total of 42 of the 48 DB Access 



                             

connections went into a timeout wait state during the 
simulation. The packet drop count was ~1500 packets. The 
throughput leveled off at ~2.3 GB/s (~54% efficient), 
indicating this is about the maximum capacity one can 
count on (for this configuration and workload), regardless 
of the number of connections it takes to achieve it. With 
only 6 connections still transferring by the end of the 
simulation, the packet drop rate went down to 0 and the 
response times on the 6 connections got down to ~160 µs. 
The "PAUSE_only" scenario had very poor throughput 

and response times, demonstrating the results of 
congestion spreading. The results reflect the blocking that 
starts at the 1 Gbps link and spreads back through the 
interconnect. Although frame drops were eliminated, the 
mean throughput was ~1.6 GB/s (~38% efficient) and the 
mean response times were over 4 ms.  
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FIG. 6  
The "ECN_PAUSE" scenario demonstrates how ECN 

can be utilized with link level flow control to back-off the 
TCP sources from oversubscription. Using ECN with 
Pause eliminated much of the congestion spreading. 
However, this method is only valid for short range TCP 
connections. It doesn't support all transports and, if there is 
too much RTT between the TCP endpoints, the reaction to 
ECN marked packets will be too slow to prevent the 

congestion from spreading. In our configuration, it 
achieved ~82% throughput efficiency.  
The "PRC_only" and "PRC_ECN" scenarios demonstrate 

the effectiveness of optimizing the traffic flow into the 
layer 2 subnet based the current congestion levels along 
each path. They show a total throughput efficiency of 
~95% and ~93%, respectively. Since all the TCP 
endpoints are local to the layer 2 subnet in our test 
configuration, the backlogs caused by PRC create 
backpressure up the stacks to flow control the sources. 
However, RED is still enabled in all the switches, so if any 
switch queue reaches a dropping threshold, packets will 
get dropped. The ~95% throughput efficiency coupled 
with no packets drops demonstrates the effectiveness of 
the feedback and rate control algorithms at maintaining 
layer 2 queue depths around a point of equilibrium while 
keeping them below the drop thresholds. 
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Figure 7 also illustrates how effectively the algorithms 
maintain layer 2 queue depths significantly below that 
experienced by the other scenarios, even though the 
throughput is significantly higher. This is a result of a rate 
control algorithm that reacts quickly enough to changes in 
congestion to maintain low switch queue depths without 
causing them to frequently empty. The algorithm allows us 
to set a queue depth target for equilibrium. Setting it 
higher increases the layer 2 latency, but setting it lower 
may decrease the throughput efficiency due to the queues 
going empty more frequently. 
Figure 8 shows the mean Ethernet delay for the IPC 

traffic. For the "RED_only" scenario it starts at ~9 µs and 
goes down to ~5 µs as more and more connections go into 
timeout wait. For "PAUSE_only", it is much higher and 
much more erratic. For "ECN_PAUSE" it averages ~10 
µs. For the PRC scenarios, it stays pretty steady at around 
6 µs. Since these means include the delays across the 1 
Gbps link, we also ran a test with the link to Server 3 set to 
10 Gbps. This dropped the mean IPC delay to ~3.5 µs.  
Figure 9 compares the IPC response times for the 5 

scenarios. It charts the mean of the time to complete IPC 



                            

transactions at the application (across all the IPC 
transaction). We can estimate the IEEE802.1/802.3 
contributions to these times by multiplying the Ethernet 
delay times (in figure 8) by a factor of 2. Since most of the 
IPC transactions fit into one Ethernet frame, most the IPC 
response times include only one round trip (i.e. send 1 
frame, receive 1 response). We can estimate the total end-
station contribution to the response times by subtracting 
the IEEE802.1/802.3 contribution. 
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RED_only  Mean = ~120 µs, eventually
decreasing to ~30 µs as DB Access conns timeout

PRC_only &
PRC_ECN
Mean = ~50 µs

PAUSE_only
Mean = ~1700 µs

ECN_PAUSE
Mean = ~130 µs

 

Thus, given the ~50 µs response times for the PRC 
scenarios, the Ethernet contribution equals ~12 µs and the 
end-station contribution equals ~38 µs (including the 
application, ULP stack, and ULP stack interface to the 
endpoint MACs on both ends). Note that these response 
times are measured on a fully saturated interconnect. Since 
IPC latencies are most often quoted from measurements 
taken on a lightly loaded one stage interconnect with 
minimum sized packets, we collected comparable data by 
running a test on the "PRC_only" scenario with minimum 
sized IPC transactions. We disabled all the connections 
except those for the IPC between servers 1 and 2. The test 
showed the Ethernet delay through one stage of switching 
was ~1 µs (including an arbitrarily select minimum switch 
delay of 450 ns plus two store-n-forward delays plus two 

10 Gbps hops of ~20 meters each). We measured the mean 
IPC response times at ~7.2 µs, which is comparable to 
times quoted for Infiniband™ and other proprietary 
products today.  
To test the 5 scenarios for their ability to support non-

TCP transports, as well as support delay variation sensitive 
traffic, we added the video conferencing workload on top 
of the database and IPC workloads. Since the video and 
IPC traffic together only total 255 MB/s, all of this traffic 
gets through the interconnect in all 5 scenarios. Adding the 
video workload changed the total throughput efficiencies 
on the 5 scenarios as follows: "RED_only" = ~42%; 
"PAUSE_only" = ~16%; "ECN_PAUSE" = ~82%; 
"PRC_only" = ~95%; and "PRC_ECN" = ~93%. These 
results indicate the higher priority video traffic caused 
even more severe congestion spreading with 
"PAUSE_only". But for the other scenarios, the video and 
IPC traffic cleanly stole bandwidth from the DB traffic. 
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PAUSE_only = 418 µsRED_only = 106 µs ECN_PAUSE = 131 µs

PRC_ECN = 82 µs
PRC_only = 46 µs

 

Figure 10 compares the maximum deviation from a 
running mean delay for each of the video streams. We use 
this as an indication of the worst case contribution to delay 
variation. The chart plots the maximums for each scenario 
across all the video streams for each sample period (at the 
application). For the "RED_only" case, most of the DB 
Access connections went into timeout wait but all the 
video streams and IPC connections continued to transfer. 
The peak deviations on this test were as follows3: 
"RED_only" = ~106 µs; "PAUSE_only" = ~418 µs; 
"ECN_PAUSE" = ~131 µs; "PRC_only" = ~46 µs; 
"PRC_ECN" = ~82 µs. 

9. Conclusion 
To meet the cluster and blade system interconnect 

requirements of efficient throughput, low latency, low 
delay variations, and minimal loss, we propose a simple 

                                                 
3 Note: We included only the samples from 44 ms to 84 ms of the 
simulation in order to make the chart readable. This window of time 
contained the peaks for each scenario. 



                             

self-managing congestion information protocol inserted 
into the standard IETF/IEEE stacks. We demonstrated 
how effectively one version of the protocol, along with a 
set of layer 2 ingress rate control mechanisms (PRC), 
could dynamically control the traffic characteristics in a 
multi-stage switched Ethernet interconnect. The layer 2 
mechanisms and methods tested  can be seamlessly 
integrated into the standard stacks and meet the 
requirements of various short range layer 2 interconnects 
(including those for clusters, SANs, and datacenter LANs, 
as well as those for bladed server, storage, telecom, and 
datacom systems). We demonstrated how these subnet 
level mechanisms can operate in harmony with existing 
end-to-end and link level mechanisms to provide 
significant improvements. The proposed protocol:  1) 
performs self discovery and maintenance of key control 
and state information about each layer 2 path utilized; 2) 
provides an aggregated view of the congestion level along 
each path to enable deterministic maintenance of path 
states; 3) supports effective rate control at layer 2 
ingresses to control the characteristics in the subnet, 4) 
avoids requiring new IEEE frame format changes (and 
dealing with the associated interoperability issues); and 5) 
enables effective layer 2 congestion management for a 
mixture of upper layer transports.    Our simulation results 
demonstrate the ability to achieve ~95% throughput 
efficiency, with zero dropped frames, while maintaining 
(on latency sensitive traffic) mean Ethernet delays of 5 to 
6 microseconds and worst case delay variations of less 
than 50 microseconds.  

10. Future Steps 
Our research is still a work-in-progress. Unfortunately, 

we could not cover the details of the algorithms used for 
controlling the feedback messaging and the dynamic 
ingress rate control. We plan to cover these in a future 
article. We also plan interoperability testing on layer 2 
configurations with some components that do not support 
the L2CI Protocol and PRC. 
We are currently in the process of developing models of 

larger cluster and blade system configurations, as well as 
the integration of such systems into long-range networks. 
This will allow us to test the congestion management 
methods on short-range interconnects with many 
endpoints that are required to switch both long-range and 
short-range communications. We also plan to run the 
simulations with transport layer CM methods (such as 
DCCP [10] and FAST TCP [19]).  
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