

Congestion Control for Switched Ethernet
Gary McAlpine - Intel Corporation

gary.l.mcalpine@intel.com

Abstract
Interconnects for clusters and bladed systems must deliver
efficient throughput, low latency, low delay variations and
minimal frame drops. The primary technical issues
hindering Ethernet adoption for cluster and blade system
interconnects are the current methods Ethernet switches
use for dealing with congestion, which can happen
frequently under cluster and blade system workloads. The
common response to congestion is to drop frames and the
common method of avoiding the need to drop frames is to
utilize very large switch buffers. In this paper, we propose
the insertion of a simple self-managing congestion control
protocol into existing communication stacks at the edges
of layer 2 switched interconnects. We assert that control of
the traffic flow into the layer 2 subnet is key to controlling
the characteristics of cluster and blade system
interconnects. We show simulation results demonstrating
how the proposed protocol, coupled with a layer 2 ingress
rate control function, can dynamically control traffic flow
so as to maximize the throughput efficiency while
minimizing the loss, delay, and delay variations.

1. Introduction
Although Ethernet is typically used as a local area network
(LAN) technology, there is substantial interest in utilizing
Ethernet in cluster and blade system interconnects.
Ethernet is well-known, widely available, and broadly
compatible. Unfortunately, the IETF and IEEE standards
do not currently support the congestion management (CM)
mechanisms necessary to enable Ethernet based
interconnects to provide the appropriate characteristics for
clusters and bladed systems. In our previous paper [1], we
explored a 3 level architectural approach to CM that was
designed to leverage existing transport and network layer
mechanisms at level 3, add layer 2 subnet mechanisms at
level 2, and leverage existing and/or new link layer
mechanisms at level 1. We took this 3 level approach
because the layer 2 technology of interest was full-duplex
Ethernet and our primary goal was to get an appropriate
set of methods and mechanisms supported by the
standards. To achieve this goal, Ethernet CM would have
to operate in harmony with existing and future
mechanisms utilized in the standard networking stacks. It
would also have to be designed so that it could be
seamlessly integrated into the existing stacks and, if
supported by at least some of the layer 2 components,
show an improvement in the performance characteristics
(or no difference at a minimum).

The IEEE 802.1 bridging [2] and 802.3 link layer
protocols [3] and the IETF network and transport
protocols (IP, TCP, & UDP) are at the heart of the most
widely deployed and interoperable communication stacks
today. Recent studies have sought to reduce TCP/IP
processing overheads in datacenter environments [4][5].
Unfortunately, the streamlining and acceleration of the
upper layer stacks potentially creates even more severe
and more frequent congestion events in the lower layer
interconnects (such as short-range 1 & 10 Gbps Ethernet
subnets). New upper layer protocols like iSCSI [6] and
RDMA [7] (for storage and cluster communications over
TCP/IP) rely on low frame loss rates to achieve low
processing overheads, high throughput, and low latencies.
Unfortunately, TCP uses the rate of packet loss to gauge
the level of congestion along each connection and to
control transmission rates accordingly. The only standard
method for Ethernet switches to signal congestion is to
drop packets. High loss rates can cause a large percentage
of traffic to be handled by exception processing, which
negatively affects processing overheads and delays.
However, the most significant impact to TCP performance
is long periods of inactivity due to timeouts resulting from
packet drops. And long timeouts can easily bring a cluster
or blade system's performance to its knees. Since many
target applications of switched Ethernet need to support
switching of TCP connections where one end or both are
terminated outside the local vicinity, we can't just shorten
the timeout times to minimize the impact of drops.
In this paper, we narrow the focus of the research

outlined in [1] to the subnet level (level 2) of the
architecture. We propose a basic protocol for signaling
layer 2 congestion information (L2CI) to the subnet
ingresses and to support self-management of ingress rate
control state. We outline a basic set of functions that can
be added to the interface between the upper and lower
layers of the stacks to support the L2CI protocol and the
use of the congestion information to dynamically control
the traffic flow into the layer 2 subnet. We use simulation
results to demonstrate how effectively these functions can
be utilized to maximize throughput efficiency and
minimize loss, delay, and delay variations. And, we
demonstrate how the subnet level mechanisms can operate
in harmony with existing upper layer mechanisms.

2. Related Prior Work
Prior congestion management research for long-range

networks is reflected in such standards as TCP/IP [8][9],
ISDN [11], ATM [12], and others. Prior research for short-

range networks is reflected in such standards as Fibre
Channel [13], Infiniband™ [14], and Advanced Switching
[15]. Recent research on CM for unreliable datagram
services are reflected in the IETF draft on DCCP [10]. An
example of recent research on CM for TCP is reflected in
FAST TCP [19]. Because the list of references to
congestion management research over the past 30 years is
so long, we do not attempt to provide a comprehensive list
for this paper. Our research is uniquely focused on
enhancing short range 1 and 10 Gbps IEEE802.1/802.3
subnets with only a few hops. As such, the methods and
mechanisms we can consider must be able to seamlessly
integrate into the standard networking stacks.

3. Review of Our 3 Level Approach
We broadly classified congestion control mechanisms as

link level mechanisms, subnet level mechanisms, and end-
to-end mechanisms. Link level mechanisms try to regulate
the flow of traffic over each link to avoid frame discards
due to transient congestion. Subnet level mechanisms try
to optimize traffic flow through a subnet to avoid
oversubscription of local subnet resources. End-to-end
mechanisms attempt to take action at the “flow” sources or
on higher layer “flow-bundles” to avoid oversubscription
of network resources end-to-end.

Level 3
(Upper
Layer
Stacks)

Level 2
(I/F &
Switch)

Level 1
(MACs
& Links)

802.3 link 802.3 link

802.1 Bridge
(MAC Client)

802.3
MAC

OS

NIC & Driver
(MAC Client)

802.3
MAC

Apps

End Station

OS

NIC & Driver
(MAC Client)

802.3
MAC

Apps

End Station

Switch

Fig. 1
ULP CC,

RED,
ECN,
etc.

PRC,
L2CI

Pause

The strategy for our research was to analyze the issues at

all 3 levels, and simulate various mechanisms for dealing
with congestion at each level. We developed simulation
models with various independent mechanisms at each
level so that we could test each by itself, as well as in
various combinations with mechanisms at other levels.
Figure 1 shows the coarse structure of typical end-

stations and switches and their relationship to the 3 levels
of congestion control. They include 1) link level: the
IEEE802.3 MAC and link layers, plus the MAC Client
interface; 2) subnet level: the interface between the upper
layers and lower layers, plus the IEEE802.1 switching
layer, and 3) end-to-end: the upper layer stacks such as
those in the operating systems of servers, workstations,
and routers. The primary methods we've tested to-date are

some of those currently supported by the IEEE and IETF
standards (Pause, RED, ECN, & TCP congestion control
[2][16][17]).
We tested various new link level mechanisms, but

ultimately found they were ineffective when used stand-
alone in multi-stage subnets. We did, however, show that
the link level mechanisms (including the existing Pause
method supported by IEEE802.3) could be used
effectively as a fail-safe against packet drops when
utilized with the higher level mechanisms1. We ultimately
decided the new level 1 mechanisms provided too little
additional value to justify expending the efforts to
standardize them.
We determined the key set of mechanisms needed for

effectively controlling the Ethernet subnet characteristics
were those at level 2. Support for such mechanisms is also
conspicuously missing from the IETF and IEEE standards.
In [1] we showed promising results utilizing an initial
implementation of a Path Rate Control (PRC) method
combined with reverse messaging of layer 2 congestion
information (L2-CI) directly from switches. With our
initial PRC and L2-CI implementation we were able to
achieve ~85% throughput efficiency, but had to utilize
ECN at level 3 and link level rate control at level 1 to
prevent the overflowing of NIC and switch queues. Since
our goal was to support layer 2 congestion management
with both TCP and UDP, as well as with other transports
and upper layer protocols, we couldn't very well require
the use of ECN with PRC. So, the research that followed
the previous paper focused on refining the PRC and L2-CI
messaging to improve their combined performance and
enable them to operate independent of, but harmoniously
with, existing and future level 1 and 3 mechanisms.

4. Path Rate Control (PRC) Interface
Path Rate Control adds 3 basic functions to the interface

between the higher layers and lower layers (figure 2): 1) A
L2CI Protocol Function for generating and receiving path
discovery and congestion feedback messages and for
maintaining path congestion and state tables; 2) Path
Congestion and State Tables for interfacing path specific
information to a PRC function; and 3) A PRC function
that supports dynamic scheduling of higher layer flows or
flow bundles into the lower layer transmit queue(s), based
on path specific congestion levels. The PRC interface is
structured to support implementations where the layer 2
side may be implemented primarily in hardware and the
higher layer side may be implemented in hardware,
firmware, or driver level software. It assumes the higher
layer side can utilize existing address translation tables to
associate flows with paths. (In our simulations, a path is

1 Note that RED and Pause are not very compatible in that RED drops
packets to signal congestion and Pause tries to prevent packet drops.

defined by a destination MAC address from a given source
MAC perspective.)
In this concept, the L2CI Protocol Function supplies

congestion and rate control information to the higher layer
PRC function through a set of state tables (e.g. Path &
Congestion State Tables). This information enables the
PRC function to dynamically rate control higher layer
flows or flow bundles into the Transmit Queues in order to
avoid oversubscription of lower layer resources. It enables
the Higher Layer Interface to discriminate between
congested and non-congested paths and invoke higher
layer end-to-end congestion control (using ECN, RED,
stack flow control, etc.).

Fig. 2

Transmit
Queue(s)

Flow
Queues

Flow
Queues

Higher
Layer

Queues

L2CI
Messaging

Tx Link

Rx Link

Layer 2 Endpoint

Path &
Congestion

State
Tables

Flow to
Path

Association

Transmit
Interface

Higher Layer to L2 I/F L2 to Higher Layer I/F

L2CI
Protocol
Function

Receive
Queue(s)

Transmit
Scheduling

Path
Rate

Control

Receive
Interface

Higher
Layer

I/F

Ingress rate control and flow optimization (e.g. PRC) local
to layer 2 enables utilizing the buffers above layer 2
(which are generally much larger) to absorb large burst
collisions, insulating the layer 2 components from much of
that burden. In cases where the higher layer stack at a
layer 2 endpoint is a router function, any backlog caused
by PRC enables the higher layers to perform dropping or
marking of packets above layer 2. In cases where the
upper layer stack sources the traffic, any backlog caused
by PRC enables backpressure up the stack to the flow
sources. Thus, the PRC function was designed to operate
harmoniously with the operation of the upper layer stacks
while dynamically optimizing the traffic flow through the
layer 2 subnet.

5. Layer 2 Congestion Information Protocol
The L2CI Protocol provides the functionality for

collecting congestion information from the layer 2 subnet
and conveying it to the edges of the subnet. It provides the
information necessary to support the PRC functionality.
At the time we wrote the previous paper [1], we had

implemented 2 methods of conveying layer 2 congestion
information and anticipated various others. Unfortunately,
the research that followed exposed significant issues with
each of those methods, causing us to develop a method we
hadn't previously anticipated. In the following paragraphs,

we summarize each of the methods tested and some of the
insights we gained from them.
Method 1: The first method selectively marked Ethernet

frames passing through congestion in switches (using a
random early detection algorithm). At the layer 2 egresses,
the frame marks were transferred to the congestion
experienced (CE) bit in the IP headers and forwarded on to
the TCP egress to trigger ECN feedback. This method had
several issues: 1) ECN doesn't work for all ULPs; 2) There
are no unused bits available in the Ethernet frame header
for layer 2 marking (requiring a change to the frame
format); 3) To support PRC, we needed the congestion
information at the layer 2 ingresses. Since not all protocols
guarantee there will be reverse traffic to carry this
information, it required the addition of a messaging
protocol to get the congestion information back to the
layer 2 ingress (requiring a new messaging protocol); 4)
Severe congestion can cause almost all frames to be
marked, which made it very difficult to control the BW
consumed by the resulting reverse messaging; 5) One bit
of congestion information proved insufficient to enable
effective layer 2 ingress rate control.
Method 2: The second method selectively generated

reverse messages (minimum sized Ethernet frames)
directly from points of congestion in switches and egress
endpoints. This eliminated the issue of frame format
changes. It also enabled sending all the information
needed by PRC for performing effective ingress rate
control. In this method, we used a rate-limited random
early detection algorithm to select the frames to which we
responded. We used the source address of each selected
frame to identify the ingress to which a congestion
message would be sent. The congestion message indicated
the destination address (or Path) of the selected frame and
the level of congestion encountered at that point in the
path. The congestion level was specified as a percent of
the per-port buffer space consumed by traffic utilizing the
congested port (this number could be > 100% due to
buffer sharing). This is the method that was used to
generate the data for the Path Rate Control scenarios in the
previous paper [1]. This method enabled fairly effective
ingress rate control but suffered from a basic issue: In a
multi-stage interconnect, conflicting messages could be
received from multiple points of congestion along a path.
This issue confounded our efforts to deterministically
control the traffic flow through the subnet. It also led to
the basic insight that we needed an aggregated view of the
congestion along each path in order to effectively rate
control the traffic into the subnet at the ingresses.
Method 3: In the previous methods we utilized explicit

congestion information directly from the points of
congestion. For the third method, we considered a couple
different ways of implicitly deriving congestion levels
from delay incurred by traffic passing through the layer 2
subnet: 1) delay dispersion between pairs of frames caused

by the frames passing through congestion [18]; and 2) the
round-trip time (RTT) of probe messages injected into the
traffic streams. We abandoned the dispersion method
rather quickly because it would require both a frame
format change and a new messaging protocol. We
implemented the RTT method because it would only
require the addition of a simple messaging protocol. In
addition, the same protocol could include a simple
discovery phase for learning the number of hops, the speed
of the slowest link, and the minimum RTT along each path
utilized.
For the RTT method, we inject a discover message in

front of the first packet to use a given path. The discover
message is sent at the highest priority to minimize its
round-trip delay. It collects the hop count and the speed of
the slowest link in the path in the forward direction, and
gets immediately echoed by the layer 2 egress endpoint.
The RTT of the discover packet is measured to derive a
minimum RTT value. The minimum RTT, hop count, and
path speed provide the initial state for that path and are
used by the PRC algorithm to control the traffic flow into
the ingress of the path. After discovery, probe messages
are periodically injected into the path at a fraction of the
rate of normal traffic utilizing the path (similar to resource
management cells in ATM). Probe messages are simply
forwarded by switches and echoed by layer 2 egress
endpoints. Each probe is sent at the lowest priority of
traffic sent on that path since the previous probe to ensure
it follows all the previous traffic. A probe is echoed by the
L2 egress at the highest priority. This ensures the probe's
delay in the forward direction will account for most of its
RTT. The main concern with this method was in keeping
the probe rate frequent enough to provide effective
feedback while ensuring the bandwidth consumed by the
probe traffic was negligible.
With a single priority workload we were able to achieve

extremely good results with this method while consuming
as low as 1.5% of the total bandwidth on probe messaging.
Unfortunately, testing with multiple priorities of traffic
exposed a significant issue with this method. The problem
is similar to the conflicting feedback problem encountered
with Method 2. In this case, the conflicting feedback
occurs between probes sent at different priorities (thus
following different queuing paths with different delays).
We also found that low priority probes could be almost
completely stalled by higher priority traffic, even when
congestion was fairly light. The basic insight derived from
this exercise was that we could not deterministically
imply, from delay information, the congestion level for an
aggregate of flows of more than one priority. Again, we
needed an aggregated view of the congestion along each
path. (We could have increased the path granularity by a
factor of N for N priorities, but that would have introduced
other negative ramifications). Since only the switches have

an aggregated view of their local congestion, we needed to
get that information explicitly from the switches.
Method 4: The L2CI method we used for the PRC

simulations discussed below is illustrated in figure 3. This
method also includes the same discover phase as Method 3
to initialize the PRC state for each path utilized. Once a
path is initialized, layer 2 egresses periodically send
feedback messages that traverse the subnet along the same
path as the forward traffic, but in the opposite direction.

Higher
Layer
Flows

Switch

NIC

Congestion

PRC

Aggregated
Congestion
Feedback

PRC

PRC

NIC

L2CI

NIC

Higher
Layer
Flows

FIG. 3

Periodic
Feedback
Messages

L2CI NIC

L2CI

L2CI
NIC

 Each message starts out containing the congestion level

at the L2 egress (specified as a percent of receive buffer
currently used). As a feedback message passes through
each switch, if the local congestion level for the specified
path is greater than the level contained in the message, the
switch replaces the congestion level in the message with
the local congestion level. Thus, each feedback message
received by an ingress L2CI Protocol Function contains
the congestion level at the most severely congested point
along the path it represents. Each feedback message is
then used to update the state to reflect the current
congestion level. We were able to achieve extremely good
result on all workloads with this method, while consuming
~1% of the total bandwidth on feedback messaging.
An alternative version of this method could periodically

insert probe messages into the forward traffic to collect the
peak congestion levels along paths in the forward direction
(similar to Method 3 but with explicit congestion
information). Both probes and probe echoes would be sent
at the highest priority to minimize collection time. This
method might be used in an interconnect where the
forward and reverse traffic follows different paths.

6. Review of Modeling Environment
We used the Opnet Modeler discrete event simulation

package for our modeling environment. Our Ethernet
switch models are based on a typical shared memory
switch with a virtual output queue (VOQ) architecture.
Switching is performed according to the IEEE802.1
standards. The switches were modeled to have wire-speed
switching capacity (for up to 16 ports with up to 10 Gbs

per port, yielding a maximum of 160 Gbps throughput per
switch). A standard IEEE802.3 MAC is used for each
switch port. We added support for Pause based link level
flow control. We expanded the functionality of the switch
and MAC models to support the new mechanisms
described above. We also added a new NIC model to end
stations to implement the special interfacing functions.
The upper layer stacks for the end stations used to model

the client and server nodes include application and TCP/IP
layer models. We set the stack parameters to simulate the
packet processing rates of an accelerated stack running on
a 3.5 GHz Intel processor. We specified 64KB socket
buffers between the applications and the transport layer.
TCP Reno with Selective Acknowledgements (SACK)
was enabled. Although our current test configuration only
includes short range connections, we used a TCP window
size of 64KB to ensure TCP would generate large bursts.
We let the TCP timers run at the default granularity of 500
ms to simulate the typical configuration. Since we are only
simulating a 1/10th second congestion event, timed-out
connections will not recover during the simulation.
For the base workload, the client application simulates

database entry and query transactions. Clients either send
(entry) data to the servers or request (query) data from the
servers. There are a total of 48 DB Access connections (6
clients and 2 connections per client to each of 4 servers).
Each client attempts to consume the full bandwidth of its
link in both directions (grossly oversubscribing the
interconnect).
To test congestion management with mixed priorities of

traffic, we support 2 additional workloads that can be ran
simultaneously with the base workload2: 1) we can
simulate inter-processor communication (IPC) traffic
between all the servers (a total of 12 TCP connections)
and 2) we can simulate a video conferencing session
between each client/server pair (a total of 24 full-duplex
UDP sessions). Since we didn't have a model for a typical
IPC transport, we utilized "FTP Puts" to generate the IPC
traffic. The DiffServ code points we used mapped the DB
access traffic to priority 2, the IPC traffic to priority 3, and
the video conferencing traffic to priority 5.

7. Test System Configuration
Figure 6 shows the system configuration we used for the

simulations. For all the test scenarios used to collect the
data charted below, all the client and server switches in the
system configuration experienced heavy congestion on the
links to the shelf switch. We put server 3 on a 1 Gbps link
to create congestion on that link of server switch 2 and on
the shelf switch link to server switch 2. This creates 3

2 Note: The test system configuration and workloads were not designed
to represent a realistic scenario, but were designed to expose congestion
management weaknesses under the conditions of a severe congestion
event.

simultaneous points of congestion along some paths and
provides a good test for congestion spreading affects.
We first ran just the DB access and IPC traffic together.

The maximum total throughput possible for the DB access
traffic is ~4.3 GB/s (2.16 GB/s in each direction) due to
the protocol and packet overheads. We also ran a total of
~85 MB/s of IPC traffic between the servers. We did this
to test the IPC latency through layer 2 during heavy
congestion. (We are not currently simulating the
dependency between the DB access traffic and IPC traffic
inherent in a DB cluster). Re-transmissions are properly
simulated on all the traffic.
To test mixed TCP and UDP traffic and the maximum

delay variation induced into video streams by the
congestion traffic, we add a total of ~170 MB/s of
simulated video conferencing traffic.

Fig. 4

All Links except one =
10 Gbs

Application = Database
Access

Peak Tput possible =
~2.16 GB/S DB Entry +
~2.16 GB/S DB Query

Workload distribution =
Exponential (8000)

ULP Packet Sizes =
1 Byte to ~85KB

TCP Window size = 64KB

All clients sending
DB access requests
to all servers

IPC Workload = ~85
MB/Sec

IPC Dist. = Exponential
(256) = 1 to ~2500 bytes

Server 1

Client 1

Server 2

Server 3

Server 4

Client 2

Client 3

Client
Switch 1

Client
Switch 2

Shelf
Switch

Server
Switch 1

Server
Switch 2

Client 4

Client 5

Client 6

1 Gbs
Link

We simulate a 1/10th second period of severe congestion

and compare the throughput and responsiveness of various
methods of congestion control. The scenario labeled
"RED_only" models only the use of Random Early
Discard (which is the typical method used in Ethernet
switches today). The "PAUSE_only" scenario utilizes
standard IEEE802.3 link level pause messages to rate
control the traffic over each link and prevent frame drops.
The "ECN_PAUSE" scenario utilizes random early
detection in switches to forward mark packets for ECN. It
also uses Pause rate control of links to prevent frame
drops. The "PRC_only" scenario utilizes the L2CI
Protocol (Method 4 above) and path rate control. The
"PRC_ECN" scenario adds forward ECN marking of IP
packets at the layer 2 ingresses. The test simulations
utilized switch buffers sized at 64KB per port. They
utilized a USED_PORTS mode, which scales the total
switch buffer size to the number of connected ports on the
switch (e.g. 4 X 64K for a switch with 4 connected ports).

8. Simulation Results
Figures 5 and 6 compare the database access throughput

and response times for each of the 5 scenarios. For the
"RED_only" scenario, a total of 42 of the 48 DB Access

connections went into a timeout wait state during the
simulation. The packet drop count was ~1500 packets. The
throughput leveled off at ~2.3 GB/s (~54% efficient),
indicating this is about the maximum capacity one can
count on (for this configuration and workload), regardless
of the number of connections it takes to achieve it. With
only 6 connections still transferring by the end of the
simulation, the packet drop rate went down to 0 and the
response times on the 6 connections got down to ~160 µs.
The "PAUSE_only" scenario had very poor throughput

and response times, demonstrating the results of
congestion spreading. The results reflect the blocking that
starts at the 1 Gbps link and spreads back through the
interconnect. Although frame drops were eliminated, the
mean throughput was ~1.6 GB/s (~38% efficient) and the
mean response times were over 4 ms.

Database Access Throughput
Switch Buff = 64KB / port, Socket Buffer = 64KB, TCP Rx Buff = 64KB

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 7 9 11 13 15 18 20 22 24 26 29 31 33 35 37 40 42 44 46 48 51 53 55 57 59 62 64 66 68 70 73 75 77 79 81 84 86 88 90 92 95 97

Time (milliseconds)

Th
ro

ug
hp

ut
 (G

by
te

s/
Se

c)

RED_only PAUSE_only ECN_PAUSE PRC_only PRC_ECN

Zero Drops - All 48 DB Access
Connections Stayed Alive

for the Full Simulation

~1500 Drops – 42 of 48 DB Access
Connections went into Timeout Wait

during the Simulation

Total Throughput Efficiency:
PRC_only = ~95%
PRC_ECN = ~93%
ECN_PAUSE = ~82%
RED_only = ~54%
PAUSE_only = ~38%

FIG. 5
Database Access Response

Switch Buff = 64KB / port, Socket Buffer = 64KB, TCP Rx Buff = 64KB

0

1

2

3

4

5

6

7

0 2 4 7 9 11 13 15 18 20 22 24 26 29 31 33 35 37 40 42 44 46 48 51 53 55 57 59 62 64 66 68 70 73 75 77 79 81 84 86 88 90 92 95 97

Time (milliseconds)

R
es

po
ns

e
Ti

m
e

(m
s)

RED_only PAUSE_only ECN_PAUSE PRC_only PRC_ECN

Only 6 of 48 DB Access
Connections Still

Transferring

All 48 DB Access
Connections Stayed Alive

for the Full Simulation

FIG. 6
The "ECN_PAUSE" scenario demonstrates how ECN

can be utilized with link level flow control to back-off the
TCP sources from oversubscription. Using ECN with
Pause eliminated much of the congestion spreading.
However, this method is only valid for short range TCP
connections. It doesn't support all transports and, if there is
too much RTT between the TCP endpoints, the reaction to
ECN marked packets will be too slow to prevent the

congestion from spreading. In our configuration, it
achieved ~82% throughput efficiency.
The "PRC_only" and "PRC_ECN" scenarios demonstrate

the effectiveness of optimizing the traffic flow into the
layer 2 subnet based the current congestion levels along
each path. They show a total throughput efficiency of
~95% and ~93%, respectively. Since all the TCP
endpoints are local to the layer 2 subnet in our test
configuration, the backlogs caused by PRC create
backpressure up the stacks to flow control the sources.
However, RED is still enabled in all the switches, so if any
switch queue reaches a dropping threshold, packets will
get dropped. The ~95% throughput efficiency coupled
with no packets drops demonstrates the effectiveness of
the feedback and rate control algorithms at maintaining
layer 2 queue depths around a point of equilibrium while
keeping them below the drop thresholds.

DB Access Mean Ethernet Delay

0

20

40

60

80

100

120

140

160

180

200

0 2 4 7 9 11 13 15 18 20 22 24 26 29 31 33 35 37 40 42 44 46 48 51 53 55 57 59 62 64 66 68 70 73 75 77 79 81 84 86 88 90 92 95 97
Time (milliseconds)

Et
he

rn
et

 D
el

ay
 (m

ic
ro

se
co

nd
s)

RED_only PAUSE_only ECN_PAUSE PRC_only PRC_ECN

PAUSE_only
Mean = ~360 µs

ECN_PAUSE
Mean = ~32 µsRED_only

Mean = ~60 µs

PRC_only &
PRC_ECN
Mean = ~21 µs

FIG. 7

Figure 7 also illustrates how effectively the algorithms
maintain layer 2 queue depths significantly below that
experienced by the other scenarios, even though the
throughput is significantly higher. This is a result of a rate
control algorithm that reacts quickly enough to changes in
congestion to maintain low switch queue depths without
causing them to frequently empty. The algorithm allows us
to set a queue depth target for equilibrium. Setting it
higher increases the layer 2 latency, but setting it lower
may decrease the throughput efficiency due to the queues
going empty more frequently.
Figure 8 shows the mean Ethernet delay for the IPC

traffic. For the "RED_only" scenario it starts at ~9 µs and
goes down to ~5 µs as more and more connections go into
timeout wait. For "PAUSE_only", it is much higher and
much more erratic. For "ECN_PAUSE" it averages ~10
µs. For the PRC scenarios, it stays pretty steady at around
6 µs. Since these means include the delays across the 1
Gbps link, we also ran a test with the link to Server 3 set to
10 Gbps. This dropped the mean IPC delay to ~3.5 µs.
Figure 9 compares the IPC response times for the 5

scenarios. It charts the mean of the time to complete IPC

transactions at the application (across all the IPC
transaction). We can estimate the IEEE802.1/802.3
contributions to these times by multiplying the Ethernet
delay times (in figure 8) by a factor of 2. Since most of the
IPC transactions fit into one Ethernet frame, most the IPC
response times include only one round trip (i.e. send 1
frame, receive 1 response). We can estimate the total end-
station contribution to the response times by subtracting
the IEEE802.1/802.3 contribution.

IPC Mean Ethernet Delay

0

5

10

15

20

0 2 4 7 9 11 13 15 18 20 22 24 26 29 31 33 35 37 40 42 44 46 48 51 53 55 57 59 62 64 66 68 70 73 75 77 79 81 84 86 88 90 92 95 97
Time (milliseconds)

Et
he

rn
et

 D
el

ay
 (m

ic
ro

se
co

nd
s)

RED_only PAUSE_only ECN_PAUSE PRC_only PRC_ECN

FIG. 8

PAUSE_only
Mean = ~19 µs

ECN_PAUSE
Mean = ~10 µs

PRC_only &
PRC_ECN
Mean = ~6 µs

RED_only Mean = ~9 µs, eventually
decreasing to ~5 µs as DB Access conns timeout

IPC Mean Response Time (using FTP Puts)

0

20

40

60

80

100

120

140

160

180

200

0 2 4 7 9 11 13 15 18 20 22 24 26 29 31 33 35 37 40 42 44 46 48 51 53 55 57 59 62 64 66 68 70 73 75 77 79 81 84 86 88 90 92 95 97
Time (milliseconds)

IP
C

 R
es

po
ns

e
Ti

m
e

(m
ic

ro
se

co
nd

s)

RED_only PAUSE_only ECN_PAUSE PRC_only PRC_ECN

FIG. 9

RED_only Mean = ~120 µs, eventually
decreasing to ~30 µs as DB Access conns timeout

PRC_only &
PRC_ECN
Mean = ~50 µs

PAUSE_only
Mean = ~1700 µs

ECN_PAUSE
Mean = ~130 µs

Thus, given the ~50 µs response times for the PRC
scenarios, the Ethernet contribution equals ~12 µs and the
end-station contribution equals ~38 µs (including the
application, ULP stack, and ULP stack interface to the
endpoint MACs on both ends). Note that these response
times are measured on a fully saturated interconnect. Since
IPC latencies are most often quoted from measurements
taken on a lightly loaded one stage interconnect with
minimum sized packets, we collected comparable data by
running a test on the "PRC_only" scenario with minimum
sized IPC transactions. We disabled all the connections
except those for the IPC between servers 1 and 2. The test
showed the Ethernet delay through one stage of switching
was ~1 µs (including an arbitrarily select minimum switch
delay of 450 ns plus two store-n-forward delays plus two

10 Gbps hops of ~20 meters each). We measured the mean
IPC response times at ~7.2 µs, which is comparable to
times quoted for Infiniband™ and other proprietary
products today.
To test the 5 scenarios for their ability to support non-

TCP transports, as well as support delay variation sensitive
traffic, we added the video conferencing workload on top
of the database and IPC workloads. Since the video and
IPC traffic together only total 255 MB/s, all of this traffic
gets through the interconnect in all 5 scenarios. Adding the
video workload changed the total throughput efficiencies
on the 5 scenarios as follows: "RED_only" = ~42%;
"PAUSE_only" = ~16%; "ECN_PAUSE" = ~82%;
"PRC_only" = ~95%; and "PRC_ECN" = ~93%. These
results indicate the higher priority video traffic caused
even more severe congestion spreading with
"PAUSE_only". But for the other scenarios, the video and
IPC traffic cleanly stole bandwidth from the DB traffic.

Video Conferencing Max Delay Deviation from Mean

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

44 46 48 51 53 55 57 59 62 64 66 68 70 73 75 77 79 81 84
Time (milliseconds)

D
ev

ia
tio

n
(m

ic
ro

se
co

nd
s)

RED_only PAUSE_only ECN_PAUSE PRC_only PRC_ECN

FIG. 10

PAUSE_only = 418 µsRED_only = 106 µs ECN_PAUSE = 131 µs

PRC_ECN = 82 µs
PRC_only = 46 µs

Figure 10 compares the maximum deviation from a
running mean delay for each of the video streams. We use
this as an indication of the worst case contribution to delay
variation. The chart plots the maximums for each scenario
across all the video streams for each sample period (at the
application). For the "RED_only" case, most of the DB
Access connections went into timeout wait but all the
video streams and IPC connections continued to transfer.
The peak deviations on this test were as follows3:
"RED_only" = ~106 µs; "PAUSE_only" = ~418 µs;
"ECN_PAUSE" = ~131 µs; "PRC_only" = ~46 µs;
"PRC_ECN" = ~82 µs.

9. Conclusion
To meet the cluster and blade system interconnect

requirements of efficient throughput, low latency, low
delay variations, and minimal loss, we propose a simple

3 Note: We included only the samples from 44 ms to 84 ms of the
simulation in order to make the chart readable. This window of time
contained the peaks for each scenario.

self-managing congestion information protocol inserted
into the standard IETF/IEEE stacks. We demonstrated
how effectively one version of the protocol, along with a
set of layer 2 ingress rate control mechanisms (PRC),
could dynamically control the traffic characteristics in a
multi-stage switched Ethernet interconnect. The layer 2
mechanisms and methods tested can be seamlessly
integrated into the standard stacks and meet the
requirements of various short range layer 2 interconnects
(including those for clusters, SANs, and datacenter LANs,
as well as those for bladed server, storage, telecom, and
datacom systems). We demonstrated how these subnet
level mechanisms can operate in harmony with existing
end-to-end and link level mechanisms to provide
significant improvements. The proposed protocol: 1)
performs self discovery and maintenance of key control
and state information about each layer 2 path utilized; 2)
provides an aggregated view of the congestion level along
each path to enable deterministic maintenance of path
states; 3) supports effective rate control at layer 2
ingresses to control the characteristics in the subnet, 4)
avoids requiring new IEEE frame format changes (and
dealing with the associated interoperability issues); and 5)
enables effective layer 2 congestion management for a
mixture of upper layer transports. Our simulation results
demonstrate the ability to achieve ~95% throughput
efficiency, with zero dropped frames, while maintaining
(on latency sensitive traffic) mean Ethernet delays of 5 to
6 microseconds and worst case delay variations of less
than 50 microseconds.

10. Future Steps
Our research is still a work-in-progress. Unfortunately,

we could not cover the details of the algorithms used for
controlling the feedback messaging and the dynamic
ingress rate control. We plan to cover these in a future
article. We also plan interoperability testing on layer 2
configurations with some components that do not support
the L2CI Protocol and PRC.
We are currently in the process of developing models of

larger cluster and blade system configurations, as well as
the integration of such systems into long-range networks.
This will allow us to test the congestion management
methods on short-range interconnects with many
endpoints that are required to switch both long-range and
short-range communications. We also plan to run the
simulations with transport layer CM methods (such as
DCCP [10] and FAST TCP [19]).

11. References
[1] An Architecture for Congestion Management in Ethernet
Clusters, IPDPS 2005 - CAC05 Workshop - April '05, Gary
McAlpine, Tanmay Gupta, Manoj Wadekar.

[2] ANSI/IEEE Std 802.1D, 1998 Edition, Part 3: Media Access
Control (MAC) Bridges and ANSI/IEEE Std 802.1Q-1998,
Virtual Bridged Local Area Networks.
[3] IEEE802.3™-2002, Part 3 Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical
layer specification
 [4] ETA: Experience with an Intel Xeon Processor as a Segment
Processing Engine, IEEE Micro - Jan./Feb. 2004, Greg Regnier,
Gary McAlpine, Dave Minturn, Vikram Saletore, Annie Foong
 [5] “TCP Onloading for Data Center Servers”, Greg Regnier,
Srihari Makineni, Ramesh Illikkal, Ravi Iyer, Dave Minturn,
Ram Huggahalli, Don Newell, Linda Cline, Annie Foong,
November 2004 issue of IEEE Computer magazine).
[6] IETF iSCSI RFC3720:
ftp://ftp.rfc-editor.org/in-notes/rfc3720.txt
[7] IETF RDDP Working Group website:
http://ietf.org/ html.charters/rddp-charter.html
[8] TCP and Explicit Congestion Notification, S. Floyd, ACM
Computer Communication Review, Volume 24, Number 5,
October 1995.
[9] RFC 2581 - TCP Congestion Control, RFC 2914 Congestion
Control Principles, RFC 3168 – The Addition of Explicit
Congestion Notification (ECN) to IP.
[10] IETF draft - Datagram Congestion Control Protocol (DCCP)
- Eddie Kohler, Mark Handley, Sally Floyd - 10 March 2005
[11] ITU-T I.370 Congestion Management for the ISDN Frame
Relaying Bearer Service.
[12] ATM Traffic Management Specification, Version 4.1.
[13] ANSI T11.3 Fibre Channel Specifications and:
http://www. recoverdata.com/fc_tutorial.htm
[14] Infiniband™ Architecture Specification and:
End-to-end Congestion Control for Infiniband™, Jose Renato
Santos, Yoshio Turner, G. (John) Janakiriman - INFOCOM 2003
http://www.ieee-infocom.org/2003/papers/28_01.PDF
 [15] Advanced Switching Specifications and:
A Localized Congestion Control Mechanism for PCI Express
Advanced Switching Fabrics, Venkata Krishnan, Dave Mayhew -
Hot Interconnects 2004
 [16]K. Jeffay et al, The Effects of Active Queue Management on
Web Performance, SIGCOMM, Aug. 2003.
[17] Random Early Detection gateways for Congestion
Avoidance, Floyd, S., Jacobson, V., IEEE/ACM Transactions on
Networking, V.1 N.4, August 1993, p. 397-413. For more
information, see Sally Floyd’s RED website at
http://www.icir.org/floyd/red.html
 [18] What do packet dispersion techniques measure?
Constantinos Dovrolis, University of Wisconsin;
Paramaeswaran Ramanathan, University of Wisconsin; David
Moore, CAIDA - Infocom 2001.
[19] FAST TCP: Motivation, Architecture, Algorithms,
Performance. Cheng Jin, David X. Wei, Steven H. Low,
Engineering and Applied Science, Caltech. IEEE Infocom 2004.

