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 CS267-Lecture 1  2 

The Multicore Revolution: why Concurrency has become 
critical for Mainstream Computing 
  Chip density is 

continuing to increase 
~2x every 2 years 
  Clock speed is not 
  Number of 

processor cores is 
doubling instead 

  There is little or no 
hidden parallelism (ILP) 
to be found 

  Parallelism must be 
exposed to and 
managed by software 

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond) 



3 

Parallel Software Challenge & Inverted Pyramid of 
Parallel Programming Skills 

Mainstream  
Parallelism-Oblivious  

Developers 

Parallelism–Aware 
Developers 

Concurrency Experts 

(Doug) 

(Stephanie) 

(Joe) 

Joe needs high level 
Programming Models 

designed for Domain Experts  

Stephanie needs simple 
Parallel Programming Models 

with safety nets 

Focus of today’s Parallel 
Programming Models 

Focus of Habanero 
Project 
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Habanero Project Overview (habanero.rice.edu) 

Parallel Applications 
(Seismic analysis, Medical imaging, Finite Element Methods, …) 

Multicore Platforms 
(Cell, Clearspeed, Cyclops, GeForce, Niagara, Opteron, Power, Xeon, …) 

1) Habanero 
Programming 

Languages 

Foreign Code 
(Matlab, Java, C, C++, 

Fortran, CUDA) 

Foreign 
Function 
Interface 

2) Habanero 
Static Compiler & 

Parallel 
Intermediate 

Representation 

3) Habanero 
Runtime & 
Dynamic 
Compiler 

Two-level programming model 

Implicitly Parallel Coordination 
Language for Joe,  

CnC (Intel Concurrent Collections)  
+  

Explicitly Parallel Programming 
Languages for Stephanie,  

Habanero-Java (from X10 v1.5)  
and Habanero-C 

Challenge: Develop new
 programming technologies and
 pedagogical foundations for
 portable parallelism on future
 multicore hardware 
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Habanero Static Parallelizing & Optimizing Compiler 

Front End 

IRGen 

AST 

C / Fortran 
(restricted code regions 

for targeting accelerators  
& high-end computing) 

Interprocedural 
Analysis 

Parallel Intermediate Representation (PIR) 

Annotated 
Classfiles 

PIR 
Analysis & 

Optimization 

Portable Managed Runtime 

Platform-specific static compiler 

Partitioned 
Code 

Sequential C, 
Fortran, Java, 

… 

Foreign 
Function 
Interface 

Habanero 
Languages 

Classfile 
Transformations 
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Outline 

  Intel Concurrent Collections Coordination Language 
and Implementation Challenges 

  X10 + Habanero Execution Model and Implementation 
Challenges 
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The problem for Joe 
 Most serial languages over-constrain orderings 

 Require arbitrary serialization 
 Allow for overwriting of data 
  The decision of if and when to execute are bound together 
  This makes parallel programming hard 

 Most parallel programming languages are embedded within serial 
languages  
  Inherit problems of serial languages 
  Too specific w.r.t. type of parallelism in the application and wrt the 

type target architecture 

 Concurrent Collections Approach: introduce a coordination language 
that 
 Systematically eliminate over-constraints 
 Explicitly specify required constraints 
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Exploit parallelism across and within steps 
 Locality 
 Overhead  
 Load balancing 
 Distribution among processors 
 Scheduling within a processor 
 Platform-aware optimizations 

Decomposition into Steps 
Single-Assignment Collections as interfaces between steps 
Inter-step data flow = put/get operations on Item Collections 
Inter-step control flow = put operations on Tagged Collections to 

create (prescribe) new steps 

Tuning Expert: (person, 
runtime,  compiler) 
No domain knowledge 
Only tuning knowledge 

“Stephanie” 

Domain Expert: (person) 
Only domain knowledge 
No tuning knowledge 

“Joe” 

Concurrent Collections Program 

Explicit parallel program (Intel TBB or Habanero/X10) 

The application problem 

Example of a Coordination Language for Domain Experts: 
Intel Concurrent Collections (CnC), f.k.a. TStreams 

Source: Kathleen Knobe 
http://softwarecommunity.intel.com/articles/eng/3862.htm 
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Notation 

(   ) 

<   > 

[   ] 

Computation Step 

Data Item 

Control Tag 
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Producer 
Step 

Item  
Collection 

Consumer 
Step 

put(tag, item) get(tag) 

  Tag can be any hashable value (numeric, string, …) that supports equality comparison 
  We will restrict our attention to integer tuple tags in this talk 

  Item can be any immutable data structure 
  Two get’s with the same tag must return identical items 

  Single assignment rule 
  At most one put permitted with a given tag value; an exception is thrown if a 
second put is attempted with the same tag value 

  Blocking get’s 
  A get operation blocks if no item is present with the given tag, and is unblocked 
when a matching put is performed 

Producer-Consumer Relationship in CnC 
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put(tag) 

  Tag collection 
  Role of tag collection is to prescribe (create) new steps 

  Tag can be any hashable value (numeric, string, …) that supports equality 
comparison 

  We will restrict our attention to integer tuple tags in this talk 
  Single assignment rule 

  At most one put permitted with a given tag value; an exception is thrown if a 
second put is attempted with the same tag value 

  Step prescription 
  Runtime system guarantees that prescribe operation is performed eventually 
on child step for each tag in tag collection 

Parent  
Step 

Tag 
Collection 

Child 
Step 

prescribe(tag) 

Creating new steps in CnC 
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Domain Expert’s view of Concurrent Collections 

  No thinking about parallelism 
  Only domain knowledge 

  No overwriting  
  Single assignment collections 

  Can be extended with fetch-and-op & reduce operations 
  No arbitrary serialization  

  only constraints on ordering via tagged puts and gets 
  Result is:  

  Deterministic 
  Race-free 
  Fault-tolerant 
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CnC Compile and Execute Model for Habanero-Java 

Includes  
code to invoke the graph 
the code for steps 

User specified 

Concurrent Collections components 

Concurrent 
Collections 

Textual 
Graph  

Translator 

HJ Classes for 
constructing 
collections + 
step interfaces 

implements 
HJ Compiler 
& Optimizer 

Class 
Files 

Java Virtual Machine 

HJ Concurrent  
Collections  

Library 

HJ 
Source 

File  
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CnC Implementation Challenges 
  Scalable runtime implementation for multicore parallelism 

  “Multicore Implementations of the Concurrent Collections Programming Model”, Zoran 
Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek 
Sarkar, Leo Treggiari, CPC 2009 workshop 

  Garbage collection of dead items 
  “Declarative Aspects of Memory Management in the Concurrent Collections Parallel 

Programming Model”, Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, 
Geoff Lowney, Vivek Sarkar, Leo Treggiari, DAMP 2009 workshop 

  Extending CnC with hierarchical (modular) structure (in progress) 
  Copy avoidance and update-in-place optimizations (in progress) 
  Scheduling optimizations for parallelism and locality 
  CnC extensions for domain-specific languages and runtimes 
  Upcoming Tutorial at PLDI 2009 

  “The Concurrent Collections Parallel Programming Model --- Foundations and 
Implementation Challenges”, K.Knobe, V.Sarkar 
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Example: Memory Requirements for 2000x2000 Cholesky 
Factorization w/ and w/o Garbage Collection of Dead Items 

Cholesky Factorization (N = 2000)

Block Size

0 500 1000 1500 2000

B
y
te

s

0

1e+8

2e+8

3e+8

4e+8

5e+8

No Memory Management

Memory Management using slicing annotation 

“Declarative Aspects of Memory Management in the Concurrent Collections Parallel Programming Model”, Zoran Budimlic, 
Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek Sarkar, Leo Treggiari, DAMP 2009 workshop 
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Outline 

  Intel Concurrent Collections Coordination Language 
and Implementation Challenges 

  X10 + Habanero Execution Model and Implementation 
Challenges 
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The problem for Stephanie 
 Stephanie needs to map & tune Joe’s CnC model (graph + steps) onto 

parallel systems 
 Exploit parallelism across and within steps 
 Optimize Locality, Data Movement, Load balancing, Scheduling, .. 

 Most parallel programming languages are tied to specific parallel 
architecture models 

 X10/Habanero Approach: support a portable abstract execution model 
that supports high performance with high productivity  
1.  Lightweight dynamic task creation & termination 
2.  Locality control --- task and data distributions 
3.  Mutual exclusion and isolation 
4.  Collective and point-to-point synchronization  
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X10 Background 
  Developed at IBM since 2004 as part of DARPA HPCS program 

  DARPA’s goal: increase development productivity by 10x from 2002 to 2010 
  Productivity approach: 

  High Level Language designed for portability and safety 
  Unified abstractions of asynchrony and concurrency for Multi-core & Cluster Parallelism 
  Subsumes threads, shared memory, message-passing, active messages 

  Performance transparency – don’t lock out the performance expert! 
  Expert programmer should have controls to tune deployments of portable code 

  X10 programming model can be used to extend any sequential language 
  X10 v1.5 language is based on a sequential subset of Java 
  Reference: “X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”, 

P.Charles et al, OOPSLA 2005 Onward! Track. 
  Open source SMP reference implementation for X10 v1.5: x10.sf.net 
  X10 v1.7 has adopted Scala-like syntax and richer type system (http://x10-lang.org/) 

  Habanero approach: address implementation challenges for X10 v1.5 on multicore, with 
programming model extensions as needed 
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1.  “Type Inference for Locality Analysis of Distributed Data Structures”, 

PPoPP 2008.  
2.  “Deadlock-free scheduling of X10 Computations with bounded resources”, 

SPAA 2007  
3.  “A Theory of Memory Models”, PPoPP 2007. 
4.  “May-Happen-in-Parallel Analysis of X10 Programs”, PPoPP 2007. 
5.  “An annotation and compiler plug-in system for X10”, IBM Technical 

Report, Feb 2007. 
6.  “Experiences with an SMP Implementation for X10 based on the Java 

Concurrency Utilities” Workshop on Programming Models for Ubiquitous 
Parallelism (PMUP), September 2006. 

7.  "An Experiment in Measuring the Productivity of Three Parallel 
Programming Languages”, P-PHEC workshop, February 2006. 

8.  "X10: An Object-Oriented Approach to Non-Uniform Cluster Computing", 
OOPSLA conference, October 2005. 
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Nathaniel Nystrom, Igor Peshansky, Vijay 
Saraswat, Pradeep Varma, Sayantan Sur, 
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Jose Castanos, Ankur Narang, Komondoor 
Raghavan 

  X10 Tools 
  Philippe Charles, Robert Fuhrer  

  Emeritus 
  Kemal Ebcioglu, Christian Grothoff, Vincent 

Cave, Lex Spoon, Christoph von Praun, 
Rajkishore Barik, Chris Donawa, Allan 
Kielstra 

  Research colleagues 
  Vivek Sarkar, Rice U 
  Satish Chandra,Guojing Cong 
  Ras Bodik, Guang Gao, Radha Jagadeesan, 

Jens Palsberg, Rodric Rabbah, Jan Vitek 
  Vinod Tipparaju, Jarek Nieplocha (PNNL) 
  Kathy Yelick, Dan Bonachea (Berkeley) 
  Several others at IBM 
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X10 + Habanero Execution Model: Portable Parallelism 
in Four Dimensions 

1.  Lightweight dynamic task creation & termination 
•   async, finish (from X10) 

2.  Locality control --- task and data distributions 
•  places (from X10) 

3.  Mutual exclusion 
•  isolated (from Habanero --- extension of X10 atomic) 

4.  Collective and point-to-point synchronization  
•  phasers (from Habanero --- extension of X10 clocks) 
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Async and Finish 

async  S  
  Creates a new child activity that 

executes statement S  
  Returns immediately 
  S may reference final variables in 

enclosing blocks 
  Activities cannot be named 
  Activity cannot be aborted or 

cancelled 

Stmt  ::=  async  Stmt 

finish S   
  Execute S, but wait until all 

(transitively) spawned asyncs have 
terminated.  

  Rooted exception model 
  Trap all exceptions thrown by 

spawned activities.  
  Throw an (aggregate) exception 

if any spawned async terminates 
abruptly. 

  implicit finish between start and end 
of main program 

Stmt ::= finish Stmt 
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Activity A4 

Activity A0 (Part 3) Activity A0 (Part 2) 

Work Stealing for Terminally Strict Computations 

Start- 
finish 

Activity A0 (Part 1) 

Activity A1 

Activity A2 
// X10 pseudo code 
main(){ // implicit finish 
  Activity A0 (Part 1); 
  async {A1; async A2;} 
  try {  
    finish { 
      Activity A0 (Part 2); 
      async A3; 
      async A4; 
    } 
  catch (…) { … } 
  Activity A0 (Part 3); 
} 

Activity A3 

Start- 
finish 

End- 
finish 

End- 
finish 

Spawn edge 

Continue edge 

Dependence edge 

“Deadlock-Free Scheduling of X10 Computations with 
Bounded Resources”, S.Agarwal et al, SPAA 2007. 
Theorem 2.6: A work-stealing execution of a terminally strict 
multithreaded computation with finish & async constructs on 
P processor uses at most S1*P space in its dequeue's, where 
S1 is the maximum stack depth in a sequential execution of 
the program. 
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Loop Parallelism with Finish and Async:  
One-Dimensional Iterative Averaging Example 

int iters = 0; delta = epsilon+1;

while ( delta > epsilon ) {

  finish {

    for ( jj = 1 ; jj <= n ; jj++ ) {

      final int j = jj;

      async { // for-async can be replaced by foreach

        newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;

        diff[j] = Math.abs(newA[j]-oldA[j]);

      } // async

    } // for

  } // finish (join)

  delta = diff.sum(); iters++; 

  temp = newA; newA = oldA; oldA = temp;

}

System.out.println("Iterations: " + iters);
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Recursive Parallelism with Finish and Async 

From “What’s in it for the Users? Looking Toward the HPCS Languages and Beyond”,  
D. Bernholdt, W.R. Elwasif, Robert J. Harrison, PGAS 2006 

. . .

// Main program

. . . 

finish refine(root, 1, nmax);
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“Work-First and Help-First 
Scheduling Policies for Terminally 
Strict Parallel Programs”, Yi Guo, 
Rajkishore Barik, Raghavan 
Raman, Vivek Sarkar (to appear 
in IPDPS 2009) 

Front-end 

Work-Stealing 
Code Gen for 

Work-First policy 

Work-Stealing 
Code Gen for Help-

First policy 

Terminally Strict 
Parallel Program 

Habanero Work-
Stealing Runtime 

with Work-First policy 

Habanero Work-
Stealing Runtime with 

Help-First policy 

Work-Sharing Runtime with 
Single Queue (j.u.c. 

ThreadPoolExecutor) 

Transformed 
Program with 

Runtime calls for 
Async/Finish 

Habanero 
Framework for 
Work-Stealing 
Schedulers 

  Work-First Policy: worker 
executes child task and leaves 
continuation to be stolen 
  Help-First Policy: worker 
executes continuation and 
leaves async to be stolen 
  Additional X10 requirements 
 - Escaping Asyncs 
 - Sequential and parallel    
   invocations of same code 
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Work-First Policy is better than Help-First Policy for 
Recursive Divide-and-Conquer Parallel Algorithms … 
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Work-First Policy is not always better than Help-First 
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Additional Results 
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Implementation Challenges for Finish & Async 

  Extend space-efficient scalable work-stealing schedulers to 
support terminally strict finish-async programs  

  Extend work-stealing algorithms to be locality-conscious 
(place-aware) 

  Extend work-stealing algorithms to support directed point-
to-point and barrier synchronizations (phasers) 

  Reduce footprint impact of inflated blocked activities 
  Delayed asyncs 
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X10 + Habanero Execution Model: Portable Parallelism 
in Four Dimensions 

1.  Lightweight dynamic task creation & termination 
•   async, finish (from X10) 

2.  Locality control --- task and data distributions 
•  places (from X10) 

3.  Mutual exclusion 
•  isolated (from Habanero --- extension of X10 atomic) 

4.  Collective and point-to-point synchronization  
•  phasers (from Habanero --- extension of X10 clocks) 
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Task and Data Distributions with Places 

•  Dynamic parallelism with a Partitioned Global Address Space 
•  Places encapsulate binding of activities and globally addressable mutable data 

•  Number of places currently fixed at launch time 
•  Each datum has a designated place specified by its distribution 
•  Each async has a designated place specified by its distribution --- subsumes threads,
 structured parallelism, messaging, DMA transfers, etc. 

•  Keyword here evaluates to place where current activity is executing 
•  Immutable data (value types, value arrays) is place-independent and offers
 opportunity for functional-style parallelism 
•  Type system for places --- “Type Inference for Locality Analysis of Distributed Data
 Structures”, S.Chandra et al, PPoPP 2008. 

Storage classes: 
  Activity-local 
  Place-local 
  Partitioned 

global  
  Immutable  
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Extension of Async with Places 

Examples 

1) finish { // Inter-place parallelism 
      final int x = … , y = … ; 
      print here; // Print current activity’s place 
      async (a) { // Execute at a’s place 
        a.foo(x);  
        print here; // Print a’s place 
      } 
      async (b[i]) b[i].bar(y); // Execute at b[i]’s place 
   }  

2) // Implicit and explicit versions of remote fetch-and-op 
   a) a.x = foo(a.x, b.y) ; 
   b) async (b) { 
        final double v = b.y; // Can be any value type 
        async (a) isolated (a) a.x = foo(a.x, v);  
      } 
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Portable Parallel Programming via X10 Places 

X10 Places 

Physical PEs 

X10 language defines
 mapping from X10 objects
 & activities to X10 places 

X10 Data Structures 

X10 deployment defines
 mapping from virtual X10

 places to physical
 processing elements 
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Hybrid Java+CUDA code generation for CPU+GPU 

               JVM   

private native cudaKernel ( … ) 

cudaKernel ( … ) 

static { 
    System.loadLibrary(“cudaKernel"); 
} 

          libcudaKernel.so 

cudaKernel ( … ) 
kernel <<< … >>> ( … ) 

 GPU 

kernel ( … ) 
JNI 

CUDA 

CPU Host GPU Device 

Java code C + CUDA code 

Single Source Habanero Program 
“JCUDA: a Programmer-Friendly 
Interface for Accelerating Java 
Programs with CUDA”, Yonghong 
Yan, Max Grossman, Vivek 
Sarkar (submitted to Europar 
2009) 
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Speedups using Nvidia GTX 280 GPU 

Benchmark Series Sparse SOR Crypt 
Data Size A B C A B C A B C A B C 

Java-1-thread execution time (s) 7.62 77.42 1219.40 0.50 1.17 19.87 0.62 1.60 2.82 0.51 3.26 8.16 
Java-2-thread execution time (s) 3.84 39.21 755.05 0.26 0.54 8.68 0.26 1.32 2.59 0.27 1.65 4.10 
Java-4-thread execution time (s) 2.03 19.82 390.98 0.25 0.39 5.32 0.16 1.37 2.70 0.11 0.21 2.16 

JCUDA execution time (s) 0.23 0.98 8.54 0.17 0.27 1.22 0.68 1.19 2.12 0.11 0.21 0.37 
JCUDA Speedup w.r.t. Java-1-thread 32.55 78.68 142.87 2.90 4.29 16.26 0.92 1.34 1.33 4.54 15.76 21.87 
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Breakdown of Kernel Execution Time 
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Implementation Challenges for Places 

  Extend work-stealing algorithms to be locality-conscious 
(place-aware) 

  Efficient implementations of data distributions 
  Multi-place memory management and garbage collection 
  Efficient translation of inter-place communication to 

multicore communication primitives 
  Memory consistency for shared data accessed at multiple 

places 
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X10 + Habanero Execution Model: Portable Parallelism 
in Four Dimensions 

1.  Lightweight dynamic task creation & termination 
•   async, finish (from X10) 

2.  Locality control --- task and data distributions 
•  places (from X10) 

3.  Mutual exclusion 
•  isolated (from Habanero --- extension of X10 atomic) 

4.  Collective and point-to-point synchronization  
•  phasers (from Habanero --- extension of X10 clocks) 
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Multi-Place Isolation 

  X10 atomic: An atomic block ... 
  must be nonblocking 
  must be sequential 
  must not access remote data (single-

place locality) 
  Habanero isolated: An isolated block  
  must be nonblocking (finish is okay, but 

blocking wait operations are not) 
  may create child activities --- nested 

parallelism with implicit finish for 
isolated  

  can be multi-place 
  isolated (*) --- isolated at all places 
  isolated (<place-list>) --- isolated at 

designated places 
  Default: isolated = isolated (*) 

// X10 example w/ single-place atomic: 
// insert in middle of list 
Node node = new Node(data); 
atomic { 
  // Throw BadPlace Exception if 
  // node.place or cur.place != here 

  node.next = cur.next; 
  cur.next = node; 
} 

// Habanero example w/ multi-place 

// isolated: insert in middle of list 
Node node = new Node(data); 
isolated (cur, node) { 
  // No BadPlaceException in this 

  // example 
  node.next = cur.next; 
  async cur.next = node; 
} // implicit finish at end of isolated 
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Lock-Based Implementation of Multi-Place Isolation 

  Two levels of locks 
  Level 1: global read-write lock, G 
  Level 2: array of locks L, one per place 

  isolated (<place-list>) implemented as follows 
 Obtain read lock on G 
 Obtain place lock L[p], for each place p in place-list (in sorted order 

to avoid deadlock) 
  isolated (*) implemented as follows 
 Obtain write lock on G 

  “Improved Scalability of Lock-Based Atomicity through Places”, 
R.Zhang, Z.Budimlic, V.Sarkar, W.Scherer  
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Preliminary Evaluation of Multi-Place Isolation: 
Sorted Linked List on UltraSPARC T1 
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Implementation Challenges for Multi-Place Isolation 

  Extend two-level locking approach to hierarchical places 
  Extend transactional memory implementations for multi-place 

isolation 
  Use compiler techniques to further refine locking granularity e.g., 

  “Minimum lock assignment: A method for exploiting concurrency 
among critical sections”, Yuan Zhang, Vugranam Sreedhar, 
Weirong Zhu, Vivek Sarkar, Guang Gao, LCPC 2008 
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X10 + Habanero Execution Model: Portable Parallelism 
in Four Dimensions 

1.  Lightweight dynamic task creation & termination 
•   async, finish (from X10) 

2.  Locality control --- task and data distributions 
•  places (from X10) 

3.  Mutual exclusion 
•  isolated (from Habanero --- extension of X10 atomic) 

4.  Collective and point-to-point synchronization  
•  phasers (from Habanero --- extension of X10 clocks) 
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  Designed to handle multiple communication patterns 
  Collective Barrier 
  Point-to-point synchronization 

  Dynamic parallelism 
  # activities synchronized on phaser can vary dynamically 

  Support for “single” statements 
  Phase ordering property 
  Deadlock freedom in absence of explicit wait operations 
  Amenable to efficient implementation 

  Lightweight local-spin multicore implementation in Habanero project 
  Extension of X10 clocks 

  “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point 
Synchronization”, J.Shirako, D.Peixotto, V.Sarkar, W.Scherer, ICS 2008 

  “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”, J.Shirako, 
D.Peixotto, V.Sarkar, W.Scherer, to appear in IPDPS 2009 

Overview of Phasers 
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phaser ph = new phaser(MODE); 
  Allocate a phaser, register current activity with it according to MODE.  Phase 0 of ph 

starts. 
  MODE can be SIGNAL_ONLY, WAIT_ONLY, SIGNAL_WAIT (default) or SINGLE 
  Finish Scope rule: phaser ph cannot be used outside the scope of its immediately 

enclosing finish operation 

async phased (MODE1(ph1), MODE2(ph2), …) S 
  Spawn S as an asynchronous (parallel) activity that is registered on phasers ph1, ph2, … 

according to MODE1, MODE2, … 
  Capability rule: parent activity can only transmit phaser capabilities to child activity that 

are a subset of the parent’s capabilities, according to the lattice: 

next; 
  Advance each phaser that activity is registered on to its next phase; semantics depends 

on registration mode 

Collective and Point-to-point Synchronization with Phasers 

SIGNAL_ONLY WAIT_ONLY 

SIGNAL_WAIT 

SINGLE 



47 

Using Phasers as Barriers with Dynamic Parallelism 
finish { 
  phaser ph = new phaser(); //A1 
  async phased(ph){ STMT1; next; STMT2; next; STMT3; } //A2 
  async phased(ph){ STMT4: next; STMT5; } //A3 
                    STMT6; next; STMT7; next; STMT8; //A1 
} 

STMT 6 

async 
STMT 1 

finish 

STMT 4 
next next next 

STMT 7 STMT 2 STMT 5 
next next 

STMT 8 STMT 3 

 Dynamic parallelism 
    # activities registered 
    on phaser can vary 

A1 , A2 , A3 are registered 
on phaser ph 
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Example of Pipeline Parallelism with Phasers 
finish { 
  phaser [] ph = new phaser[m+1]; 
  for (int i = 1; i < m; i++) 
    async phased (ph[i]<SIG>, ph[i-1]<WAIT>){ 
      for (int j = 1; j < n; j++) { 
        a[i][j] = foo(a[i][j], a[i][j-1], a[i-1][j-1]); 
        next; 
      } // for 
} // finish 

(i=1, j=1) 

(i=1, j=2) 

(i=1, j=3) 

(i=1, j=4) 

(i=2, j=1) 

(i=2, j=2) 

(i=2, j=3) 

(i=3, j=1) 

(i=3, j=2) 

(i=4, j=1) 

(i=2, j=4) 

(i=3, j=3) 

(i=3, j=4) 

(i=3, j=2) 

(i=3, j=3) 

(i=3, j=4) 

sig(ph[1]) 
wait(ph[0]) 

sig (ph[3]) 
wait (ph[2]) 

sig(ph[2]) 
wait(ph[1]) 

sig (ph[4]) 
wait (ph[3]) 

next next next next 

next next next next 

next next next next 

next next next next 
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Example of Pipeline Parallelism with Phasers (contd) 
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Speedup on 64-way Power5+ SMP: 
Java Grande Benchmarks & NAS Parallel Benchmarks 

Average speedup with phasers (fixed master) 
3.19x faster than X10 clocks,   2.08x faster than Java threads 
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Implementation Challenges for Phasers 

  Efficient performance (especially in context of JVM’s 
and managed runtimes) 

  Support for dynamic parallelism 
  Support for single statements 
  Support for split-phase barriers 
  Extension to reductions (in progress) 
  Extension to streaming parallelism (in progress) 
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Comparison of Multicore Programming Models along Selected 
Dimensions 

Dynamic
 Parallelism 

Locality Control Mutual
 Exclusion 

Collective &
 Point-to-point

 Synchronization 

Data Parallelism 

Cilk Spawn, sync None Locks None None 
Java
 Concurrency 

Executors,
 Task Queues 

None Locks, monitors,
 atomic classes 

Synchronizers Concurrent collections 

Intel TBB Generic algs,
 tasks 

None Locks, atomic
 classes 

None Concurrent containers 

.Net Parallel
 Extensions 

Generic algs,
 tasks 

None Locks, monitors Futures PLINQ 

OpenMP SPMD (v2.5),
 Tasks (v3.0) 

None Locks, critical,
 atomic 

Barriers None 

CUDA v1.0 None Device, grid,
 block, threads 

None Barriers SIMD 

Intel Concurrent
 Collections 

Tagged
 prescription of

 steps  

None None Tagged put & get
 operations on Item

 Collections 

None 

X10 + Habanero
 extensions 
 (builds on Java
 Concurrency) 

Async, finish Places Isolated blocks,
 Java atomic

 classes 

Phasers, delayed
 async 

SIMD/MIMD array
 operations, Java

 concurrent collections 
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Habanero Team Pictures 

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested  
in a PhD, postdoc, research scientist, or programmer position  

in the Habanero project, or in collaborating with us! 
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Conclusion 

Advances in parallel languages, compilers, and runtimes are necessary
 to address the implementation challenges of multicore programming 
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