
Multicore Programming Models and their Implementation
Challenges

Vivek Sarkar
Rice University

vsarkar@rice.edu

L3 D
irectory/C

ontrol

L2 L2 L2

LSU LSUIFU
BXU

IDU IDU

IFU
BXU

FPU FPU

FXU

FXU

ISU ISU

2
 CS267-Lecture 1  2

The Multicore Revolution: why Concurrency has become
critical for Mainstream Computing
  Chip density is

continuing to increase
~2x every 2 years
  Clock speed is not
  Number of

processor cores is
doubling instead

  There is little or no
hidden parallelism (ILP)
to be found

  Parallelism must be
exposed to and
managed by software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

3

Parallel Software Challenge & Inverted Pyramid of
Parallel Programming Skills

Mainstream
Parallelism-Oblivious

Developers

Parallelism–Aware
Developers

Concurrency Experts

(Doug)

(Stephanie)

(Joe)

Joe needs high level
Programming Models

designed for Domain Experts

Stephanie needs simple
Parallel Programming Models

with safety nets

Focus of today’s Parallel
Programming Models

Focus of Habanero
Project

4

Habanero Project Overview (habanero.rice.edu)

Parallel Applications
(Seismic analysis, Medical imaging, Finite Element Methods, …)

Multicore Platforms
(Cell, Clearspeed, Cyclops, GeForce, Niagara, Opteron, Power, Xeon, …)

1) Habanero
Programming

Languages

Foreign Code
(Matlab, Java, C, C++,

Fortran, CUDA)

Foreign
Function
Interface

2) Habanero
Static Compiler &

Parallel
Intermediate

Representation

3) Habanero
Runtime &
Dynamic
Compiler

Two-level programming model

Implicitly Parallel Coordination
Language for Joe,

CnC (Intel Concurrent Collections)
+

Explicitly Parallel Programming
Languages for Stephanie,

Habanero-Java (from X10 v1.5)
and Habanero-C

Challenge: Develop new
 programming technologies and
 pedagogical foundations for
 portable parallelism on future
 multicore hardware

5

Habanero Static Parallelizing & Optimizing Compiler

Front End

IRGen

AST

C / Fortran
(restricted code regions

for targeting accelerators
& high-end computing)

Interprocedural
Analysis

Parallel Intermediate Representation (PIR)

Annotated
Classfiles

PIR
Analysis &

Optimization

Portable Managed Runtime

Platform-specific static compiler

Partitioned
Code

Sequential C,
Fortran, Java,

…

Foreign
Function
Interface

Habanero
Languages

Classfile
Transformations

6

Outline

  Intel Concurrent Collections Coordination Language
and Implementation Challenges

  X10 + Habanero Execution Model and Implementation
Challenges

7

Acknowledgments
Intel ™ Concurrent Collections Project

 http://whatif.intel.com

  Developer Products Division (DPD)
  Aparna Chandramowlishwaran, Nikolay Kurtov, Shin Lee, Bob Monteleone,

David Moore, John Parks, Stephen Rose, Frank Schlimbach, Leo Treggiari,
Judy Ward, Brian Kazin

  Software Pathfinding and Innovation (SPI)
  Kath Knobe, Geoff Lowney

  Digital Enterprise Group (DEG)
  Steve Lang

  Ex-colleagues
  Alex Nelson (HP, Intel), Carl Offner (HP), Kishore Ramachandran (Georgia

Tech), Hasnain Mandviwala (Georgia Tech)

8

The problem for Joe
 Most serial languages over-constrain orderings

 Require arbitrary serialization
 Allow for overwriting of data
  The decision of if and when to execute are bound together
  This makes parallel programming hard

 Most parallel programming languages are embedded within serial
languages
  Inherit problems of serial languages
  Too specific w.r.t. type of parallelism in the application and wrt the

type target architecture

 Concurrent Collections Approach: introduce a coordination language
that
 Systematically eliminate over-constraints
 Explicitly specify required constraints

9

Exploit parallelism across and within steps
 Locality
 Overhead
 Load balancing
 Distribution among processors
 Scheduling within a processor
 Platform-aware optimizations

Decomposition into Steps
Single-Assignment Collections as interfaces between steps
Inter-step data flow = put/get operations on Item Collections
Inter-step control flow = put operations on Tagged Collections to

create (prescribe) new steps

Tuning Expert: (person,
runtime, compiler)
No domain knowledge
Only tuning knowledge

“Stephanie”

Domain Expert: (person)
Only domain knowledge
No tuning knowledge

“Joe”

Concurrent Collections Program

Explicit parallel program (Intel TBB or Habanero/X10)

The application problem

Example of a Coordination Language for Domain Experts:
Intel Concurrent Collections (CnC), f.k.a. TStreams

Source: Kathleen Knobe
http://softwarecommunity.intel.com/articles/eng/3862.htm

10

Notation

()

< >

[]

Computation Step

Data Item

Control Tag

11

Producer
Step

Item
Collection

Consumer
Step

put(tag, item) get(tag)

  Tag can be any hashable value (numeric, string, …) that supports equality comparison
  We will restrict our attention to integer tuple tags in this talk

  Item can be any immutable data structure
  Two get’s with the same tag must return identical items

  Single assignment rule
  At most one put permitted with a given tag value; an exception is thrown if a
second put is attempted with the same tag value

  Blocking get’s
  A get operation blocks if no item is present with the given tag, and is unblocked
when a matching put is performed

Producer-Consumer Relationship in CnC

12

put(tag)

  Tag collection
  Role of tag collection is to prescribe (create) new steps

  Tag can be any hashable value (numeric, string, …) that supports equality
comparison

  We will restrict our attention to integer tuple tags in this talk
  Single assignment rule

  At most one put permitted with a given tag value; an exception is thrown if a
second put is attempted with the same tag value

  Step prescription
  Runtime system guarantees that prescribe operation is performed eventually
on child step for each tag in tag collection

Parent
Step

Tag
Collection

Child
Step

prescribe(tag)

Creating new steps in CnC

13

Domain Expert’s view of Concurrent Collections

  No thinking about parallelism
  Only domain knowledge

  No overwriting
  Single assignment collections

  Can be extended with fetch-and-op & reduce operations
  No arbitrary serialization

  only constraints on ordering via tagged puts and gets
  Result is:

  Deterministic
  Race-free
  Fault-tolerant

14

CnC Compile and Execute Model for Habanero-Java

Includes
code to invoke the graph
the code for steps

User specified

Concurrent Collections components

Concurrent
Collections

Textual
Graph

Translator

HJ Classes for
constructing
collections +
step interfaces

implements
HJ Compiler
& Optimizer

Class
Files

Java Virtual Machine

HJ Concurrent
Collections

Library

HJ
Source

File

15

CnC Implementation Challenges
  Scalable runtime implementation for multicore parallelism

  “Multicore Implementations of the Concurrent Collections Programming Model”, Zoran
Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek
Sarkar, Leo Treggiari, CPC 2009 workshop

  Garbage collection of dead items
  “Declarative Aspects of Memory Management in the Concurrent Collections Parallel

Programming Model”, Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe,
Geoff Lowney, Vivek Sarkar, Leo Treggiari, DAMP 2009 workshop

  Extending CnC with hierarchical (modular) structure (in progress)
  Copy avoidance and update-in-place optimizations (in progress)
  Scheduling optimizations for parallelism and locality
  CnC extensions for domain-specific languages and runtimes
  Upcoming Tutorial at PLDI 2009

  “The Concurrent Collections Parallel Programming Model --- Foundations and
Implementation Challenges”, K.Knobe, V.Sarkar

16

Example: Memory Requirements for 2000x2000 Cholesky
Factorization w/ and w/o Garbage Collection of Dead Items

Cholesky Factorization (N = 2000)

Block Size

0 500 1000 1500 2000

B
y
te

s

0

1e+8

2e+8

3e+8

4e+8

5e+8

No Memory Management

Memory Management using slicing annotation

“Declarative Aspects of Memory Management in the Concurrent Collections Parallel Programming Model”, Zoran Budimlic,
Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney, Vivek Sarkar, Leo Treggiari, DAMP 2009 workshop

17

Outline

  Intel Concurrent Collections Coordination Language
and Implementation Challenges

  X10 + Habanero Execution Model and Implementation
Challenges

18

The problem for Stephanie
 Stephanie needs to map & tune Joe’s CnC model (graph + steps) onto

parallel systems
 Exploit parallelism across and within steps
 Optimize Locality, Data Movement, Load balancing, Scheduling, ..

 Most parallel programming languages are tied to specific parallel
architecture models

 X10/Habanero Approach: support a portable abstract execution model
that supports high performance with high productivity
1.  Lightweight dynamic task creation & termination
2.  Locality control --- task and data distributions
3.  Mutual exclusion and isolation
4.  Collective and point-to-point synchronization

19

X10 Background
  Developed at IBM since 2004 as part of DARPA HPCS program

  DARPA’s goal: increase development productivity by 10x from 2002 to 2010
  Productivity approach:

  High Level Language designed for portability and safety
  Unified abstractions of asynchrony and concurrency for Multi-core & Cluster Parallelism
  Subsumes threads, shared memory, message-passing, active messages

  Performance transparency – don’t lock out the performance expert!
  Expert programmer should have controls to tune deployments of portable code

  X10 programming model can be used to extend any sequential language
  X10 v1.5 language is based on a sequential subset of Java
  Reference: “X10: An Object-Oriented Approach to Non-Uniform Cluster Computing”,

P.Charles et al, OOPSLA 2005 Onward! Track.
  Open source SMP reference implementation for X10 v1.5: x10.sf.net
  X10 v1.7 has adopted Scala-like syntax and richer type system (http://x10-lang.org/)

  Habanero approach: address implementation challenges for X10 v1.5 on multicore, with
programming model extensions as needed

20

X10 Acknowledgments (as of mid-2008)
Publications
1.  “Type Inference for Locality Analysis of Distributed Data Structures”,

PPoPP 2008.
2.  “Deadlock-free scheduling of X10 Computations with bounded resources”,

SPAA 2007
3.  “A Theory of Memory Models”, PPoPP 2007.
4.  “May-Happen-in-Parallel Analysis of X10 Programs”, PPoPP 2007.
5.  “An annotation and compiler plug-in system for X10”, IBM Technical

Report, Feb 2007.
6.  “Experiences with an SMP Implementation for X10 based on the Java

Concurrency Utilities” Workshop on Programming Models for Ubiquitous
Parallelism (PMUP), September 2006.

7.  "An Experiment in Measuring the Productivity of Three Parallel
Programming Languages”, P-PHEC workshop, February 2006.

8.  "X10: An Object-Oriented Approach to Non-Uniform Cluster Computing",
OOPSLA conference, October 2005.

9.  "Concurrent Clustered Programming", CONCUR conference, August 2005.
10.  "X10: an Experimental Language for High Productivity Programming of

Scalable Systems", P-PHEC workshop, February 2005.

Tutorials
  TiC 2006, PACT 2006, OOPSLA 2006, PPoPP 2007, SC 2007
  Graduate course on X10 at U Pisa (07/07)
  Graduate course at Waseda U (Tokyo, 04/08)

  X10 Core Team (IBM)
  Ganesh Bikshandi, Sreedhar Kodali,

Nathaniel Nystrom, Igor Peshansky, Vijay
Saraswat, Pradeep Varma, Sayantan Sur,
Olivier Tardieu, Krishna Venkat, Tong Wen,
Jose Castanos, Ankur Narang, Komondoor
Raghavan

  X10 Tools
  Philippe Charles, Robert Fuhrer

  Emeritus
  Kemal Ebcioglu, Christian Grothoff, Vincent

Cave, Lex Spoon, Christoph von Praun,
Rajkishore Barik, Chris Donawa, Allan
Kielstra

  Research colleagues
  Vivek Sarkar, Rice U
  Satish Chandra,Guojing Cong
  Ras Bodik, Guang Gao, Radha Jagadeesan,

Jens Palsberg, Rodric Rabbah, Jan Vitek
  Vinod Tipparaju, Jarek Nieplocha (PNNL)
  Kathy Yelick, Dan Bonachea (Berkeley)
  Several others at IBM

21

X10 + Habanero Execution Model: Portable Parallelism
in Four Dimensions

1.  Lightweight dynamic task creation & termination
•  async, finish (from X10)

2.  Locality control --- task and data distributions
•  places (from X10)

3.  Mutual exclusion
•  isolated (from Habanero --- extension of X10 atomic)

4.  Collective and point-to-point synchronization
•  phasers (from Habanero --- extension of X10 clocks)

22

Async and Finish

async S
  Creates a new child activity that

executes statement S
  Returns immediately
  S may reference final variables in

enclosing blocks
  Activities cannot be named
  Activity cannot be aborted or

cancelled

Stmt ::= async Stmt

finish S
  Execute S, but wait until all

(transitively) spawned asyncs have
terminated.

  Rooted exception model
  Trap all exceptions thrown by

spawned activities.
  Throw an (aggregate) exception

if any spawned async terminates
abruptly.

  implicit finish between start and end
of main program

Stmt ::= finish Stmt

23

Activity A4

Activity A0 (Part 3) Activity A0 (Part 2)

Work Stealing for Terminally Strict Computations

Start-
finish

Activity A0 (Part 1)

Activity A1

Activity A2
// X10 pseudo code
main(){ // implicit finish
 Activity A0 (Part 1);
 async {A1; async A2;}
 try {
 finish {
 Activity A0 (Part 2);
 async A3;
 async A4;
 }
 catch (…) { … }
 Activity A0 (Part 3);
}

Activity A3

Start-
finish

End-
finish

End-
finish

Spawn edge

Continue edge

Dependence edge

“Deadlock-Free Scheduling of X10 Computations with
Bounded Resources”, S.Agarwal et al, SPAA 2007.
Theorem 2.6: A work-stealing execution of a terminally strict
multithreaded computation with finish & async constructs on
P processor uses at most S1*P space in its dequeue's, where
S1 is the maximum stack depth in a sequential execution of
the program.

24

Loop Parallelism with Finish and Async:
One-Dimensional Iterative Averaging Example

int iters = 0; delta = epsilon+1;

while (delta > epsilon) {

 finish {

 for (jj = 1 ; jj <= n ; jj++) {

 final int j = jj;

 async { // for-async can be replaced by foreach

 newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;

 diff[j] = Math.abs(newA[j]-oldA[j]);

 } // async

 } // for

 } // finish (join)

 delta = diff.sum(); iters++;

 temp = newA; newA = oldA; oldA = temp;

}

System.out.println("Iterations: " + iters);

25

Recursive Parallelism with Finish and Async

From “What’s in it for the Users? Looking Toward the HPCS Languages and Beyond”,
D. Bernholdt, W.R. Elwasif, Robert J. Harrison, PGAS 2006

. . .

// Main program

. . .

finish refine(root, 1, nmax);

26

“Work-First and Help-First
Scheduling Policies for Terminally
Strict Parallel Programs”, Yi Guo,
Rajkishore Barik, Raghavan
Raman, Vivek Sarkar (to appear
in IPDPS 2009)

Front-end

Work-Stealing
Code Gen for

Work-First policy

Work-Stealing
Code Gen for Help-

First policy

Terminally Strict
Parallel Program

Habanero Work-
Stealing Runtime

with Work-First policy

Habanero Work-
Stealing Runtime with

Help-First policy

Work-Sharing Runtime with
Single Queue (j.u.c.

ThreadPoolExecutor)

Transformed
Program with

Runtime calls for
Async/Finish

Habanero
Framework for
Work-Stealing
Schedulers

  Work-First Policy: worker
executes child task and leaves
continuation to be stolen
  Help-First Policy: worker
executes continuation and
leaves async to be stolen
  Additional X10 requirements
 - Escaping Asyncs
 - Sequential and parallel
 invocations of same code

27

Work-First Policy is better than Help-First Policy for
Recursive Divide-and-Conquer Parallel Algorithms …

!"!#$%

!"#&%

"#'% (#$%
(!#$%

!#)% (#&% (#$%
#%

'*#*%

(**#*%

('*#*%

!**#*%

!'*#*%

+,-./,012%'% +,-./,012%(*% +,-./,012%('% +,-./,012%!*%

!
"#
$%
&
'
(
)&
*
#
)+
(
),
#
$)

-+./012)'()34$'5#)")34675#89:;658<=85$)>?)

345678%)9% 345378%)9%

… but the gap between the two decreases as the task granularity increases

28

Work-First Policy is not always better than Help-First

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

$" %" '" (" $)" &%")'"

!
"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
#
'/
)
(&
0)
.#
&

1&-2&,3'#)$.&

!45&."##$%"&-6&780-'#&9&78,3'#)$&:(,')!")'0&;<&

*+,-./0123"45,067" 8519./0123"45,067"

29

Additional Results

!"!#

$"!#

%!"!#

%$"!#

&!"!#

&$"!#

'!"!#

'$"!#

(!"!#

($"!#

$!"!#

!
"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
/,
0
'#
)
$
&&
1
-
'2
/3
0
)
'4
5
6
&

!"##$%"&-5&7/8-'#&9&7/,0'#)$&&:(,')!")'8&;<&

)*+,-./+0#)-1)23#)-1.23#

30

Implementation Challenges for Finish & Async

  Extend space-efficient scalable work-stealing schedulers to
support terminally strict finish-async programs

  Extend work-stealing algorithms to be locality-conscious
(place-aware)

  Extend work-stealing algorithms to support directed point-
to-point and barrier synchronizations (phasers)

  Reduce footprint impact of inflated blocked activities
  Delayed asyncs

31

X10 + Habanero Execution Model: Portable Parallelism
in Four Dimensions

1.  Lightweight dynamic task creation & termination
•  async, finish (from X10)

2.  Locality control --- task and data distributions
•  places (from X10)

3.  Mutual exclusion
•  isolated (from Habanero --- extension of X10 atomic)

4.  Collective and point-to-point synchronization
•  phasers (from Habanero --- extension of X10 clocks)

32

Task and Data Distributions with Places

•  Dynamic parallelism with a Partitioned Global Address Space
•  Places encapsulate binding of activities and globally addressable mutable data

•  Number of places currently fixed at launch time
•  Each datum has a designated place specified by its distribution
•  Each async has a designated place specified by its distribution --- subsumes threads,
 structured parallelism, messaging, DMA transfers, etc.

•  Keyword here evaluates to place where current activity is executing
•  Immutable data (value types, value arrays) is place-independent and offers
 opportunity for functional-style parallelism
•  Type system for places --- “Type Inference for Locality Analysis of Distributed Data
 Structures”, S.Chandra et al, PPoPP 2008.

Storage classes:
  Activity-local
  Place-local
  Partitioned

global
  Immutable

33

Extension of Async with Places

Examples

1) finish { // Inter-place parallelism
 final int x = … , y = … ;
 print here; // Print current activity’s place
 async (a) { // Execute at a’s place
 a.foo(x);
 print here; // Print a’s place
 }
 async (b[i]) b[i].bar(y); // Execute at b[i]’s place
 }

2) // Implicit and explicit versions of remote fetch-and-op
 a) a.x = foo(a.x, b.y) ;
 b) async (b) {
 final double v = b.y; // Can be any value type
 async (a) isolated (a) a.x = foo(a.x, v);
 }

34

Portable Parallel Programming via X10 Places

X10 Places

Physical PEs

X10 language defines
 mapping from X10 objects
 & activities to X10 places

X10 Data Structures

X10 deployment defines
 mapping from virtual X10

 places to physical
 processing elements

Homogeneous

Multi -core
Clusters

Heterogeneous

Accelerators

16B/cycle (2x)16B/cycle

BIC

FlexIO
TM

MIC

Dual

XDR
TM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64 -bit Power Architecture with VMX

PPE

SPE

LS

SXU

SPU

SM F

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

16B/cycle (2x)16B/cycle

BIC

FlexIO
TM

MIC

Dual

XDR
TM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64 -bit Power Architecture with VMX

PPE

SPE

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

PXUL1

PPU

16B/cycle

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

. . .

. . .
. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

. . .

Memory

PEs,

SMP Node

PEs,

.

Memory

PEs,

SMP Node

PEs,

Interconnect

16B/cycle (2x)16B/cycle

BIC

FlexIO
TM

MIC

Dual

XDR
TM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64 -bit Power Architecture with VMX

PPE

SPE

LS

SXU

SPU

SM F

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

16B/cycle (2x)16B/cycle

BIC

FlexIO
TM

MIC

Dual

XDR
TM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64 -bit Power Architecture with VMX

PPE

SPE

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

PXUL1

PPU

16B/cycle

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

SM F

LS

SXU

SPU

LS

SXU

SPU

SM F

. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

. . .

. . .
. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $
. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

PEs ,

L1 $

PEs ,

L1 $

. . .

. . .
. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

. . .

L2 Cache

PEs ,

L1 $

PEs ,

L1 $

PEs ,

L1 $

PEs ,

L1 $

. . .

Memory

PEs,

SMP Node

PEs,

.

Memory

PEs,

SMP Node

PEs,

Interconnect

. . .

Memory

PEs,

SMP Node

PEs,

. . .

Memory

PEs,PEs,

SMP Node

PEs,PEs,

.

Memory

PEs,

SMP Node

PEs,

. . .

Memory

PEs,PEs,

SMP Node

PEs,PEs,

Interconnect

35

Hybrid Java+CUDA code generation for CPU+GPU

 JVM

private native cudaKernel (…)

cudaKernel (…)

static {
 System.loadLibrary(“cudaKernel");
}

 libcudaKernel.so

cudaKernel (…)
kernel <<< … >>> (…)

 GPU

kernel (…)
JNI

CUDA

CPU Host GPU Device

Java code C + CUDA code

Single Source Habanero Program
“JCUDA: a Programmer-Friendly
Interface for Accelerating Java
Programs with CUDA”, Yonghong
Yan, Max Grossman, Vivek
Sarkar (submitted to Europar
2009)

36

Speedups using Nvidia GTX 280 GPU

Benchmark Series Sparse SOR Crypt
Data Size A B C A B C A B C A B C

Java-1-thread execution time (s) 7.62 77.42 1219.40 0.50 1.17 19.87 0.62 1.60 2.82 0.51 3.26 8.16
Java-2-thread execution time (s) 3.84 39.21 755.05 0.26 0.54 8.68 0.26 1.32 2.59 0.27 1.65 4.10
Java-4-thread execution time (s) 2.03 19.82 390.98 0.25 0.39 5.32 0.16 1.37 2.70 0.11 0.21 2.16

JCUDA execution time (s) 0.23 0.98 8.54 0.17 0.27 1.22 0.68 1.19 2.12 0.11 0.21 0.37
JCUDA Speedup w.r.t. Java-1-thread 32.55 78.68 142.87 2.90 4.29 16.26 0.92 1.34 1.33 4.54 15.76 21.87

37

Breakdown of Kernel Execution Time

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!
"
#$
"
%
&'
(
"

,-./-0

1

,-./-0

2

,-./-0

3

,45.0-

1

,45.0-

2

,45.0-

3

,6781 ,6782 ,6783 3.94:81 3.94:82 3.94:83

!#)*+",-'%.-/01"

;3<=18>?0:

@?0:A3?B4C:-

@.-A3?B4C:-

3?B4C:-

38

Implementation Challenges for Places

  Extend work-stealing algorithms to be locality-conscious
(place-aware)

  Efficient implementations of data distributions
  Multi-place memory management and garbage collection
  Efficient translation of inter-place communication to

multicore communication primitives
  Memory consistency for shared data accessed at multiple

places

39

X10 + Habanero Execution Model: Portable Parallelism
in Four Dimensions

1.  Lightweight dynamic task creation & termination
•  async, finish (from X10)

2.  Locality control --- task and data distributions
•  places (from X10)

3.  Mutual exclusion
•  isolated (from Habanero --- extension of X10 atomic)

4.  Collective and point-to-point synchronization
•  phasers (from Habanero --- extension of X10 clocks)

40

Multi-Place Isolation

  X10 atomic: An atomic block ...
  must be nonblocking
  must be sequential
  must not access remote data (single-

place locality)
  Habanero isolated: An isolated block
  must be nonblocking (finish is okay, but

blocking wait operations are not)
  may create child activities --- nested

parallelism with implicit finish for
isolated

  can be multi-place
  isolated (*) --- isolated at all places
  isolated (<place-list>) --- isolated at

designated places
  Default: isolated = isolated (*)

// X10 example w/ single-place atomic:
// insert in middle of list
Node node = new Node(data);
atomic {
 // Throw BadPlace Exception if
 // node.place or cur.place != here

 node.next = cur.next;
 cur.next = node;
}

// Habanero example w/ multi-place

// isolated: insert in middle of list
Node node = new Node(data);
isolated (cur, node) {
 // No BadPlaceException in this

 // example
 node.next = cur.next;
 async cur.next = node;
} // implicit finish at end of isolated

41

Lock-Based Implementation of Multi-Place Isolation

  Two levels of locks
  Level 1: global read-write lock, G
  Level 2: array of locks L, one per place

  isolated (<place-list>) implemented as follows
 Obtain read lock on G
 Obtain place lock L[p], for each place p in place-list (in sorted order

to avoid deadlock)
  isolated (*) implemented as follows
 Obtain write lock on G

  “Improved Scalability of Lock-Based Atomicity through Places”,
R.Zhang, Z.Budimlic, V.Sarkar, W.Scherer

42

Preliminary Evaluation of Multi-Place Isolation:
Sorted Linked List on UltraSPARC T1

0 �

2,000,000 �

4,000,000 �

6,000,000 �

8,000,000 �

10,000,000 �

12,000,000 �

14,000,000 �

16,000,000 �

18,000,000 �

20,000,000 �

1 � 2 � 4 � 8 � 16 � 32 �

T
h
r
o
u
g
h
p
u
t

(
2
0

s
e
c
s
)
�

Number of Threads�

Operation Mix - 45% insert, 45% remove, 9% lookup, 1% sum�

1 place� 2 place� 4 place� 8 place� 16 place� 32 place�

43

Implementation Challenges for Multi-Place Isolation

  Extend two-level locking approach to hierarchical places
  Extend transactional memory implementations for multi-place

isolation
  Use compiler techniques to further refine locking granularity e.g.,

  “Minimum lock assignment: A method for exploiting concurrency
among critical sections”, Yuan Zhang, Vugranam Sreedhar,
Weirong Zhu, Vivek Sarkar, Guang Gao, LCPC 2008

44

X10 + Habanero Execution Model: Portable Parallelism
in Four Dimensions

1.  Lightweight dynamic task creation & termination
•  async, finish (from X10)

2.  Locality control --- task and data distributions
•  places (from X10)

3.  Mutual exclusion
•  isolated (from Habanero --- extension of X10 atomic)

4.  Collective and point-to-point synchronization
•  phasers (from Habanero --- extension of X10 clocks)

45

  Designed to handle multiple communication patterns
  Collective Barrier
  Point-to-point synchronization

  Dynamic parallelism
  # activities synchronized on phaser can vary dynamically

  Support for “single” statements
  Phase ordering property
  Deadlock freedom in absence of explicit wait operations
  Amenable to efficient implementation

  Lightweight local-spin multicore implementation in Habanero project
  Extension of X10 clocks

  “Phasers: a Unified Deadlock-Free Construct for Collective and Point-to-point
Synchronization”, J.Shirako, D.Peixotto, V.Sarkar, W.Scherer, ICS 2008

  “Phaser Accumulators: a New Reduction Construct for Dynamic Parallelism”, J.Shirako,
D.Peixotto, V.Sarkar, W.Scherer, to appear in IPDPS 2009

Overview of Phasers

46

phaser ph = new phaser(MODE);
  Allocate a phaser, register current activity with it according to MODE. Phase 0 of ph

starts.
  MODE can be SIGNAL_ONLY, WAIT_ONLY, SIGNAL_WAIT (default) or SINGLE
  Finish Scope rule: phaser ph cannot be used outside the scope of its immediately

enclosing finish operation

async phased (MODE1(ph1), MODE2(ph2), …) S
  Spawn S as an asynchronous (parallel) activity that is registered on phasers ph1, ph2, …

according to MODE1, MODE2, …
  Capability rule: parent activity can only transmit phaser capabilities to child activity that

are a subset of the parent’s capabilities, according to the lattice:

next;
  Advance each phaser that activity is registered on to its next phase; semantics depends

on registration mode

Collective and Point-to-point Synchronization with Phasers

SIGNAL_ONLY WAIT_ONLY

SIGNAL_WAIT

SINGLE

47

Using Phasers as Barriers with Dynamic Parallelism
finish {
 phaser ph = new phaser(); //A1
 async phased(ph){ STMT1; next; STMT2; next; STMT3; } //A2
 async phased(ph){ STMT4: next; STMT5; } //A3
 STMT6; next; STMT7; next; STMT8; //A1
}

STMT 6

async
STMT 1

finish

STMT 4
next next next

STMT 7 STMT 2 STMT 5
next next

STMT 8 STMT 3

 Dynamic parallelism
 # activities registered
 on phaser can vary

A1 , A2 , A3 are registered
on phaser ph

48

Example of Pipeline Parallelism with Phasers
finish {
 phaser [] ph = new phaser[m+1];
 for (int i = 1; i < m; i++)
 async phased (ph[i]<SIG>, ph[i-1]<WAIT>){
 for (int j = 1; j < n; j++) {
 a[i][j] = foo(a[i][j], a[i][j-1], a[i-1][j-1]);
 next;
 } // for
} // finish

(i=1, j=1)

(i=1, j=2)

(i=1, j=3)

(i=1, j=4)

(i=2, j=1)

(i=2, j=2)

(i=2, j=3)

(i=3, j=1)

(i=3, j=2)

(i=4, j=1)

(i=2, j=4)

(i=3, j=3)

(i=3, j=4)

(i=3, j=2)

(i=3, j=3)

(i=3, j=4)

sig(ph[1])
wait(ph[0])

sig (ph[3])
wait (ph[2])

sig(ph[2])
wait(ph[1])

sig (ph[4])
wait (ph[3])

next next next next

next next next next

next next next next

next next next next

49

Example of Pipeline Parallelism with Phasers (contd)

50

Speedup on 64-way Power5+ SMP:
Java Grande Benchmarks & NAS Parallel Benchmarks

Average speedup with phasers (fixed master)
3.19x faster than X10 clocks, 2.08x faster than Java threads

51

Implementation Challenges for Phasers

  Efficient performance (especially in context of JVM’s
and managed runtimes)

  Support for dynamic parallelism
  Support for single statements
  Support for split-phase barriers
  Extension to reductions (in progress)
  Extension to streaming parallelism (in progress)

52

Comparison of Multicore Programming Models along Selected
Dimensions

Dynamic
 Parallelism

Locality Control Mutual
 Exclusion

Collective &
 Point-to-point

 Synchronization

Data Parallelism

Cilk Spawn, sync None Locks None None
Java
 Concurrency

Executors,
 Task Queues

None Locks, monitors,
 atomic classes

Synchronizers Concurrent collections

Intel TBB Generic algs,
 tasks

None Locks, atomic
 classes

None Concurrent containers

.Net Parallel
 Extensions

Generic algs,
 tasks

None Locks, monitors Futures PLINQ

OpenMP SPMD (v2.5),
 Tasks (v3.0)

None Locks, critical,
 atomic

Barriers None

CUDA v1.0 None Device, grid,
 block, threads

None Barriers SIMD

Intel Concurrent
 Collections

Tagged
 prescription of

 steps

None None Tagged put & get
 operations on Item

 Collections

None

X10 + Habanero
 extensions
 (builds on Java
 Concurrency)

Async, finish Places Isolated blocks,
 Java atomic

 classes

Phasers, delayed
 async

SIMD/MIMD array
 operations, Java

 concurrent collections

53

Acknowledgments: Rice Habanero Multicore Software Project
  Faculty

  Vivek Sarkar, Bill Scherer
  Research Scientists

  Zoran Budimlic, Chuck Koelbel
  Research Programmer

  Vincent Cavé
  Postdocs

  Jun Shirako, Yonghong Yan, Jisheng Zhao
  PhD Students

  Current: Rajkishore Barik, Yi Guo, David Peixotto, Raghavan Raman, Sagnak
Tasirlar

  Graduated: Mack Joyner (9/08)
  Other collaborators at Rice

  Laksono Adhianto, Keith Cooper, Tim Harvey, John Mellor-Crummey, Krishna
Palem, Walid Taha, Linda Torczon, Anna Youssefi, Rui Zhang, Ryan Zhang,
Fengmei Zhao

  Sponsors and Donors
  AMD, BHP Billiton, DARPA, IBM, Intel, Microsoft, NSF, NVIDIA, Sun

54

Habanero Team Pictures

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
in a PhD, postdoc, research scientist, or programmer position

in the Habanero project, or in collaborating with us!

55

Conclusion

Advances in parallel languages, compilers, and runtimes are necessary
 to address the implementation challenges of multicore programming

Homogeneous
 Multi-core

High Performance
 Clusters

Heterogeneous
Accelerators

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual

XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU

SPU

SMF

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

16B/cycle (2x)16B/cycle

BIC

FlexIOTM

MIC

Dual

XDRTM

16B/cycle

EIB (up to 96B/cycle)

16B/cycle

64-bit Power Architecture with VMX

PPE

SPE

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

PXUL1

PPU

16B/cycle

PXUL1

PPU

16B/cycle

L2
32B/cycle

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

SMF

LS

SXU

SPU

LS

SXU

SPU

SMF

. . .
L2 Cache

PEs,
L1 $

PEs,
L1 $. . .

. . .
. . .

L2 Cache

PEs,
L1 $

PEs,
L1 $

. . .

Memory

PEs,
SMP Node

PEs,

.

Memory

PEs,
SMP Node

PEs,

Interconnect

?

